The minimum size of linear sets

Sam Adriaensen

Joint work with Paolo Santonastaso

RICCOTA '23

VRIJE
UNIVERSITEIT
BRUSSEL

What is a linear set?

Definition
Let $U \leq_{\mathbb{F}_{q}} \mathbb{F}_{q^{n}}^{d}$. Define

$$
L_{U}=\left\{\langle\boldsymbol{u}\rangle_{\mathbb{F}_{q^{n}}} \| u \in U \backslash\{\boldsymbol{0}\}\right\}
$$

Then $L_{U} \subset P G\left(d-1, q^{n}\right)$ is called an \mathbb{F}_{q}-linear set. Its rank is $\operatorname{dim}_{\mathbb{F}_{q}} U$.

The size

What is the size of an \mathbb{F}_{q}-linear set of rank k ?

Motivation

Definition

A blocking set in $\operatorname{PG}\left(2, q^{n}\right)$ is a set of points that intersects every line.

Motivation

Definition

A blocking set in $\operatorname{PG}\left(2, q^{n}\right)$ is a set of points that intersects every line.

Choose $U \leq_{\mathbb{F}_{q}} \mathbb{F}_{q^{n}}^{3}$ with $\operatorname{dim}_{\mathbb{F}_{q}} U=n+1$.

Motivation

Definition
 A blocking set in $\mathrm{PG}\left(2, q^{n}\right)$ is a set of points that intersects every line.

Choose $U \leq_{\mathbb{F}_{q}} \mathbb{F}_{q^{n}}^{3}$ with $\operatorname{dim}_{\mathbb{F}_{q}} U=n+1$. A line ℓ in $\operatorname{PG}\left(2, q^{n}\right) \cong \mathrm{a}$ subspace W of $\mathbb{F}_{q^{n}}^{3}$ with
$-\operatorname{dim}_{\mathbb{F}_{q^{n}}} W=2$,

Motivation

Definition

A blocking set in $\mathrm{PG}\left(2, q^{n}\right)$ is a set of points that intersects every line.

Choose $U \leq_{\mathbb{F}_{q}} \mathbb{F}_{q^{n}}^{3}$ with $\operatorname{dim}_{\mathbb{F}_{q}} U=n+1$. A line ℓ in $\operatorname{PG}\left(2, q^{n}\right) \cong \mathrm{a}$ subspace W of $\mathbb{F}_{q^{n}}^{3}$ with
$-\operatorname{dim}_{\mathbb{F}_{q^{n}}} W=2$,

- $\operatorname{dim}_{\mathbb{F}_{q}} W=2 n$.

Motivation

Definition
 A blocking set in $\mathrm{PG}\left(2, q^{n}\right)$ is a set of points that intersects every line.

Choose $U \leq_{\mathbb{F}_{q}} \mathbb{F}_{q^{n}}^{3}$ with $\operatorname{dim}_{\mathbb{F}_{q}} U=n+1$. A line ℓ in $\operatorname{PG}\left(2, q^{n}\right) \cong \mathrm{a}$ subspace W of $\mathbb{F}_{q^{n}}^{3}$ with
$-\operatorname{dim}_{\mathbb{F}_{q^{n}}} W=2$,
$-\operatorname{dim}_{\mathbb{F}_{q}} W=2 n$.
Grassmann's identity $\Longrightarrow U \cap W>\mathbf{0} \Longrightarrow \ell \cap L_{U} \neq \varnothing$.

Motivation

Definition
 A blocking set in $\mathrm{PG}\left(2, q^{n}\right)$ is a set of points that intersects every line.

Choose $U \leq_{\mathbb{F}_{q}} \mathbb{F}_{q^{n}}^{3}$ with $\operatorname{dim}_{\mathbb{F}_{q}} U=n+1$. A line ℓ in $\operatorname{PG}\left(2, q^{n}\right) \cong \mathrm{a}$ subspace W of $\mathbb{F}_{q^{n}}^{3}$ with
$-\operatorname{dim}_{\mathbb{F}_{q^{n}}} W=2$,
$-\operatorname{dim}_{\mathbb{F}_{q}} W=2 n$.
Grassmann's identity $\Longrightarrow U \cap W>\mathbf{0} \Longrightarrow \ell \cap L_{U} \neq \varnothing$.

Lemma

Every \mathbb{F}_{q}-linear set of $\mathrm{PG}\left(2, q^{n}\right)$ of rank $n+1$ is a blocking set.

Motivation

Definition

A blocking set in $\mathrm{PG}\left(2, q^{n}\right)$ is a set of points that intersects every line.

Lemma

Every \mathbb{F}_{q}-linear set of $\mathrm{PG}\left(2, q^{n}\right)$ of rank $n+1$ is a blocking set.

Conjecture

Every minimal blocking set in $\mathrm{PG}\left(2, q^{n}\right)$ of size $<3 \frac{q^{n}+1}{2}$ is a linear set.

Motivation

Definition

A blocking set in $\mathrm{PG}\left(2, q^{n}\right)$ is a set of points that intersects every line.

Lemma

Every \mathbb{F}_{q}-linear set of $\mathrm{PG}\left(2, q^{n}\right)$ of rank $n+1$ is a blocking set.

Conjecture

Every minimal blocking set in $\mathrm{PG}\left(2, q^{n}\right)$ of size $<3 \frac{q^{n}+1}{2}$ is a linear set.

Linear sets are also linked to KM-arcs, rank-metric codes, few intersection sets,

Upper bound

Let U be a k-dim. $\mathbb{F}_{q^{-s}}$ subspace of $\mathbb{F}_{q^{n}}^{d}$. Then U has $\frac{q^{k}-1}{q-1} \mathbb{F}_{q^{-l i n}}$. indep. vectors. $\Longrightarrow U$ has at most $\frac{q^{k}-1}{q-1} \mathbb{F}_{q^{n}}$ lin. indep. vectors.

Upper bound

Let U be a k-dim. $\mathbb{F}_{q^{-}}$-subspace of $\mathbb{F}_{q^{n}}^{d}$. Then U has $\frac{q^{k}-1}{q-1} \mathbb{F}_{q^{-}}$-lin. indep. vectors. $\Longrightarrow U$ has at most $\frac{q^{k}-1}{q-1} \mathbb{F}_{q^{n}}$ lin. indep. vectors.

Proposition (Blokhuis-Lavrauw)

$$
\left|L_{u}\right| \leq \frac{q^{k}-1}{q-1}=q^{k-1}+q^{k-2}+\ldots+q+1
$$

Upper bound

Let U be a k-dim. $\mathbb{F}_{q^{-}}$subspace of $\mathbb{F}_{q^{n}}^{d}$. Then U has $\frac{q^{k}-1}{q-1} \mathbb{F}_{q^{-}}$-in.
indep. vectors. $\Longrightarrow U$ has at most $\frac{q^{k}-1}{q-1} \mathbb{F}_{q^{n}}$-in. indep. vectors.

$$
\begin{aligned}
& \text { Proposition (Blokhuis-Lavrauw) } \\
& \qquad\left|L_{U}\right| \leq \frac{q^{k}-1}{q-1}=q^{k-1}+q^{k-2}+\ldots+q+1 .
\end{aligned}
$$

Linear sets attaining equality are called scattered and have been investigated a lot.

Obstacles for a lower bound

Let U be a k-dim. $\mathbb{F}_{q^{-}}$subspace of $\mathbb{F}_{q^{n}}^{d}$.

Obstacles for a lower bound

Let U be a k-dim. $\mathbb{F}_{q^{-}}$subspace of $\mathbb{F}_{q^{n}}^{d}$.

- What if U has "extra linearities"?

Suppose that $n=s t$ and U is an $\mathbb{F}_{q^{s}}$-subspace. Then $L_{U}=L_{U^{\prime}}$ for every $(k-s+1)$-dim. \mathbb{F}_{q}-subspace $U^{\prime} \leq U$.

Obstacles for a lower bound

- What if U has "extra linearities"?

Suppose that $n=s t$ and U is an $\mathbb{F}_{q^{s}}$-subspace. Then $L_{U}=L_{U^{\prime}}$ for every $(k-s+1)$-dim. \mathbb{F}_{q}-subspace $U^{\prime} \leq U$.

Definition

Let L_{U} be a linear set and $\pi \subseteq \mathrm{PG}\left(d-1, q^{n}\right)$ the subspace corresponding to $W \leq \mathbb{F}_{q^{n}} \mathbb{F}_{q^{n}}^{d}$. The weight of π w.r.t. L_{U} is

$$
W_{L_{U}}(\pi)=\operatorname{dim}_{\mathbb{F}_{q}}(W \cap U)
$$

Obstacles for a lower bound

Let U be a k-dim. $\mathbb{F}_{q^{-}}$subspace of $\mathbb{F}_{q^{n}}$.

Definition

Let L_{U} be a linear set and $\pi \subseteq \mathrm{PG}\left(d-1, q^{n}\right)$ the subspace corresponding to $W \leq \mathbb{F}_{q^{n}} \mathbb{F}_{q^{n}}^{d}$. The weight of π w.r.t. L_{U} is

$$
W_{L_{U}}(\pi)=\operatorname{dim}_{\mathbb{F}_{q}}(W \cap U) .
$$

Theorem (Csajbók-Marino-Pepe, last month!)
Suppose $k \leq(d-1)$ n. If L_{U} has no points of weight 1 , then
$L_{U}=L_{U^{\prime}}$ for some $\mathbb{F}_{q^{m}}$-subspace U^{\prime} of $\mathbb{F}_{q^{n}}^{d}$, with $1<m \mid n$.

Lower bound

Theorem (Bonoli-Polverino)
If L_{U} is an \mathbb{F}_{q}-linear set on $\mathrm{PG}\left(1, q^{n}\right)$ with

- rank n-1,
- at least one point of weight 1,

$$
\left|L_{u}\right| \geq q^{n-1}+1 .
$$

Lower bound

Theorem (Bonoli-Polverino, De Beule-Van de Voorde)
If L_{U} is an \mathbb{F}_{q}-linear set on $\mathrm{PG}\left(1, q^{n}\right)$ with

- rank $k \leq n-1$,
- at least one point of weight 1 ,

$$
\left|L_{u}\right| \geq q^{k-1}+1 .
$$

Lower bound

Theorem (Bonoli-Polverino, De Beule-Van de Voorde)
If L_{U} is an \mathbb{F}_{q}-linear set on $\mathrm{PG}\left(1, q^{n}\right)$ with

- rank $k \leq n-1$,
- at least one point of weight 1 ,

$$
\left|L_{u}\right| \geq q^{k-1}+1 .
$$

Example

The bound is tight. Take $U=U_{1} \times \mathbb{F}_{q}$ for some $U_{1} \leq_{\mathbb{F}_{q}} \mathbb{F}_{q^{n}}$ of dimension $k-1$.

Subgeometries and higher dim. bound

Definition

A subgeometry of $\mathrm{PG}\left(d, q^{n}\right)$ is a linear set L_{U} of rank $d+1$ spanning $\operatorname{PG}\left(d, q^{n}\right)$. The standard example is

$$
L_{\mathbb{F}_{q}^{d+1}}=\left\{\langle x\rangle_{\mathbb{F}_{q^{n}}} \| x \in \mathbb{F}_{q}^{d+1}\right\} .
$$

The other examples are $\operatorname{PGL}\left(d+1, q^{n}\right)$-images of $L_{\mathbb{F}_{q}^{d+1}}$.

Subgeometries and higher dim. bound

Definition

A subgeometry of $\mathrm{PG}\left(d, q^{n}\right)$ is a linear set L_{U} of rank $d+1$ spanning $\operatorname{PG}\left(d, q^{n}\right)$. The standard example is

$$
L_{\mathbb{F}_{q}^{d+1}}=\left\{\langle x\rangle_{\mathbb{F}_{q^{n}}} \| x \in \mathbb{F}_{q}^{d+1}\right\} .
$$

The other examples are $\operatorname{PGL}\left(d+1, q^{n}\right)$-images of $L_{\mathbb{F}_{q}^{d+1}}$.

Every point in a subgeometry has weight 1.

Subgeometries and higher dim. bound

Definition
A subgeometry of $P G\left(d, q^{n}\right)$ is a linear set L_{U} of rank $d+1$ spanning $\operatorname{PG}\left(d, q^{n}\right)$.

Every point in a subgeometry has weight 1.

Theorem (De Beule-Van de Voorde)
Let L_{u} be an \mathbb{F}_{q}-linear set in $\mathrm{PG}\left(d, q^{n}\right)$ such that

- its rank is $k>d$,
- it intersects some hyperplane in a subgeometry.

$$
\left|L_{u}\right| \geq q^{k-1}+\ldots+q^{k-d}+1 .
$$

"Conjecture"

Theorem (De Beule-Van de Voorde)
Let L_{U} be an \mathbb{F}_{q}-linear set in $\operatorname{PG}\left(d, q^{n}\right)$ such that

- its rank is $k>d$,
- it intersects some hyperplane in a subgeometry.

$$
\left|L_{u}\right| \geq q^{k-1}+\ldots+q^{k-d}+1
$$

Conjecture (Jena-Van de Voorde)
Let L_{U} be an \mathbb{F}_{q}-linear set in $\operatorname{PG}\left(d, q^{n}\right)$ such that

- n is prime,
- its rank is $k \leq d+n$,
- L_{u} spans $\operatorname{PG}\left(d, q^{n}\right)$.

$$
\left|L_{u}\right| \geq q^{k-1}+\ldots+q^{k-d}+1
$$

Projection of a linear set

Let L_{U} be an \mathbb{F}_{q}-linear set of rank k in $\operatorname{PG}\left(d-1, q^{n}\right)$.

Projection of a linear set

Let L_{U} be an \mathbb{F}_{q}-linear set of rank k in $\operatorname{PG}\left(d-1, q^{n}\right)$. Let P be a point of weight $w>0$.

Projection of a linear set

Let L_{U} be an \mathbb{F}_{q}-linear set of rank k in $P G\left(d-1, q^{n}\right)$. Let P be a point of weight $w>0$. Choose a hyperplane $\pi \not \supset P$.

Projection of a linear set

Let L_{U} be an \mathbb{F}_{q}-linear set of rank k in $P G\left(d-1, q^{n}\right)$. Let P be a point of weight $w>0$. Choose a hyperplane $\pi \not \supset P$. Define the set $L^{\prime} \subset \pi$ by

$$
R \in L^{\prime} \Longleftrightarrow\langle P, R\rangle \cap L_{U} \supsetneq\{P\}
$$

Projection of a linear set

Let L_{U} be an \mathbb{F}_{q}-linear set of rank k in $P G\left(d-1, q^{n}\right)$. Let P be a point of weight $w>0$. Choose a hyperplane $\pi \not \supset P$. Define the set $L^{\prime} \subset \pi$ by

$$
R \in L^{\prime} \Longleftrightarrow\langle P, R\rangle \cap L_{U} \supsetneq\{P\}
$$

Then L^{\prime} is an \mathbb{F}_{q}-linear set of rank $k-w$ in $\pi \cong \operatorname{PG}\left(d-2, q^{n}\right)$.

Recursive bound

Let L_{U} be an \mathbb{F}_{q}-linear set of rank k in $P G\left(d-1, q^{n}\right)$.

Recursive bound

Let L_{u} be an \mathbb{F}_{q}-linear set of rank k in $P G\left(d-1, q^{n}\right)$.
Case 1: L_{U} has no point of weight 1. By Csajbók-Marino-Pepe either

Recursive bound

Let L_{U} be an \mathbb{F}_{q}-linear set of rank k in $\operatorname{PG}\left(d-1, q^{n}\right)$.
Case 1: L_{U} has no point of weight 1.
By Csajbók-Marino-Pepe either

- $k>(d-1) n\left(\right.$ and $L_{U}=P G\left(d-1, q^{n}\right)$),

Recursive bound

Let L_{u} be an \mathbb{F}_{q}-linear set of rank k in $\operatorname{PG}\left(d-1, q^{n}\right)$.
Case 1: L_{U} has no point of weight 1.
By Csajbók-Marino-Pepe either

- $k>(d-1) n\left(\right.$ and $L_{U}=P G\left(d-1, q^{n}\right)$),
- or L_{U} is equal to an $\mathbb{F}_{q^{m}}$-linear set with $1<m \mid n$.

Recursive bound

Let L_{u} be an \mathbb{F}_{q}-linear set of rank k in $\operatorname{PG}\left(d-1, q^{n}\right)$.
Case 1: L_{U} has no point of weight 1.
By Csajbók-Marino-Pepe either

- $k>(d-1) n\left(\right.$ and $L_{U}=P G\left(d-1, q^{n}\right)$),
- or L_{U} is equal to an $\mathbb{F}_{q^{m}}$-linear set with $1<m \mid n$.

Case 2: L_{U} has some point P of weight 1.
Project from P. Apply the De Beule-Van de Voorde bound on all the lines through P.

$$
\left|L_{U}\right| \geq q^{k-1}+\left|L^{\prime}\right| .
$$

Recursive bound

Let L_{U} be an \mathbb{F}_{q}-linear set of rank k in $P G\left(d-1, q^{n}\right)$.
Case 1: L_{U} has no point of weight 1.
By Csajbók-Marino-Pepe either

- $k>(d-1) n\left(\right.$ and $L_{U}=P G\left(d-1, q^{n}\right)$),
- or L_{U} is equal to an $\mathbb{F}_{q^{m}}$-linear set with $1<m \mid n$. If n is prime, this implies $m=n$.

Case 2: L_{U} has some point P of weight 1.
Project from P. Apply the De Beule-Van de Voorde bound on all the lines through P.

$$
\left|L_{U}\right| \geq q^{k-1}+\left|L^{\prime}\right| .
$$

Bounds

Suppose that L_{U} is an \mathbb{F}_{q}-linear set of rank k, spanning $\operatorname{PG}\left(d-1, q^{n}\right)$ containing a point of weight 1 . Then

$$
q^{k-1}+\left|L^{\prime}\right| \leq\left|L_{U}\right| \leq q^{k-1}+\ldots+q+1 .
$$

Here L^{\prime} is an \mathbb{F}_{q}-linear set of rank $k-1$ spanning $\operatorname{PG}\left(d-2, q^{n}\right)$.

Bounds

Suppose that L_{U} is an \mathbb{F}_{q}-linear set of rank k, spanning $P G\left(d-1, q^{n}\right)$ containing a point of weight 1 . Then

$$
q^{k-1}+\left|L^{\prime}\right| \leq\left|L_{U}\right| \leq q^{k-1}+\ldots+q+1 .
$$

Here L^{\prime} is an \mathbb{F}_{q}-linear set of rank $k-1$ spanning $\operatorname{PG}\left(d-2, q^{n}\right)$.

Corollary
If n is prime and $k<d+n$, then

$$
\left|L_{u}\right| \geq q^{k-1}+q^{k-2}+\ldots+q^{k-d}+1
$$

This proves the "conjecture" of Jena-Van de Voorde

Finite Geometry \& Friends

Summer school at Vrije Universiteit Brussel

18-22 September 2023.

- Code-based cryptography,
- quantum walks on graphs,
- algebraic graph theory,
- tensors, semifields, rank metric codes.
http://summerschool.fining. org

