The minimum size of linear sets

Sam Adriaensen

Joint work with Paolo Santonastaso RICCOTA '23

What is a linear set?

Definition Let $U \leq_{\mathbb{F}_q} \mathbb{F}_{q^n}^d$. Define $L_U = \{ \langle u \rangle_{\mathbb{F}_{q^n}} \mid u \in U \setminus \{\mathbf{0}\} \}.$ Then $L_U \subset \mathsf{PG}(d-1,q^n)$ is called an \mathbb{F}_q -linear set. Its rank is $\dim_{\mathbb{F}_q} U.$

The size

What is the size of an \mathbb{F}_q -linear set of rank k?

Sam Adriaensen

The minimum size of linear sets

RICCOTA '23 3/12

Definition

A *blocking set* in $PG(2, q^n)$ is a set of points that intersects every line.

Definition

A *blocking set* in $PG(2, q^n)$ is a set of points that intersects every line.

Choose $U \leq_{\mathbb{F}_q} \mathbb{F}_{q^n}^3$ with dim_{\mathbb{F}_q} U = n + 1.

Definition

A *blocking set* in $PG(2, q^n)$ is a set of points that intersects every line.

Choose $U \leq_{\mathbb{F}_q} \mathbb{F}_{q^n}^3$ with $\dim_{\mathbb{F}_q} U = n + 1$. A line ℓ in $PG(2, q^n) \cong a$ subspace W of $\mathbb{F}_{q^n}^3$ with

► dim
$$_{\mathbb{F}_{q^n}}W = 2$$
,

Definition

A *blocking set* in $PG(2, q^n)$ is a set of points that intersects every line.

Choose $U \leq_{\mathbb{F}_q} \mathbb{F}_{q^n}^3$ with $\dim_{\mathbb{F}_q} U = n + 1$. A line ℓ in $PG(2, q^n) \cong a$ subspace W of $\mathbb{F}_{q^n}^3$ with

▶ dim
$$_{\mathbb{F}_{q^n}}W = 2$$
,

• dim_{$$\mathbb{F}_q$$} $W = 2n$.

Definition

A *blocking set* in $PG(2, q^n)$ is a set of points that intersects every line.

Choose $U \leq_{\mathbb{F}_q} \mathbb{F}_{q^n}^3$ with $\dim_{\mathbb{F}_q} U = n + 1$. A line ℓ in $PG(2, q^n) \cong$ a subspace W of $\mathbb{F}_{q^n}^3$ with

► dim_{\mathbb{F}_{q^n}} W = 2,

• dim
$$_{\mathbb{F}_q} W = 2n$$
.

 $\text{Grassmann's identity} \implies U \cap W > \textbf{0} \implies \ell \cap L_U \neq \varnothing.$

Definition

A *blocking set* in $PG(2, q^n)$ is a set of points that intersects every line.

Choose $U \leq_{\mathbb{F}_q} \mathbb{F}_{q^n}^3$ with $\dim_{\mathbb{F}_q} U = n + 1$. A line ℓ in $PG(2, q^n) \cong a$ subspace W of $\mathbb{F}_{q^n}^3$ with

► dim_{\mathbb{F}_{q^n}} W = 2,

• dim
$$_{\mathbb{F}_q} W = 2n$$
.

Grassmann's identity $\implies U \cap W > \mathbf{0} \implies \ell \cap L_U \neq \varnothing$.

Lemma

Every \mathbb{F}_q -linear set of $PG(2, q^n)$ of rank n + 1 is a blocking set.

Definition

A *blocking set* in $PG(2, q^n)$ is a set of points that intersects every line.

Lemma

Every \mathbb{F}_q -linear set of $PG(2, q^n)$ of rank n + 1 is a blocking set.

Conjecture

Every minimal blocking set in $PG(2, q^n)$ of size $< 3\frac{q^n+1}{2}$ is a linear set.

Definition

A *blocking set* in $PG(2, q^n)$ is a set of points that intersects every line.

Lemma

Every \mathbb{F}_q -linear set of $PG(2, q^n)$ of rank n + 1 is a blocking set.

Conjecture

Every minimal blocking set in $PG(2, q^n)$ of size $< 3\frac{q^n+1}{2}$ is a linear set.

Linear sets are also linked to KM-arcs, rank-metric codes, few intersection sets,

Sam Adriaensen

The minimum size of linear sets

Upper bound

Let *U* be a *k*-dim. \mathbb{F}_q -subspace of $\mathbb{F}_{q^n}^d$. Then *U* has $\frac{q^k - 1}{q - 1} \mathbb{F}_q$ -lin. indep. vectors. $\implies U$ has at most $\frac{q^k - 1}{q - 1} \mathbb{F}_{q^n}$ -lin. indep. vectors.

Upper bound

Let *U* be a *k*-dim.
$$\mathbb{F}_q$$
-subspace of $\mathbb{F}_{q^n}^d$. Then *U* has $\frac{q^k - 1}{q - 1} \mathbb{F}_q$ -lin.
indep. vectors. $\implies U$ has at most $\frac{q^k - 1}{q - 1} \mathbb{F}_{q^n}$ -lin. indep. vectors.

Proposition (Blokhuis-Lavrauw)

$$|L_U| \leq rac{q^k-1}{q-1} = q^{k-1} + q^{k-2} + \ldots + q + 1.$$

Sam Adriaensen

The minimum size of linear sets

Upper bound

Let *U* be a *k*-dim.
$$\mathbb{F}_q$$
-subspace of $\mathbb{F}_{q^n}^d$. Then *U* has $\frac{q^k - 1}{q - 1} \mathbb{F}_q$ -lin.
indep. vectors. $\implies U$ has at most $\frac{q^k - 1}{q - 1} \mathbb{F}_{q^n}$ -lin. indep. vectors.

Proposition (Blokhuis-Lavrauw)
$$|L_U| \leq rac{q^k-1}{q-1} = q^{k-1} + q^{k-2} + \ldots + q + 1.$$

Linear sets attaining equality are called *scattered* and have been investigated a lot.

Sam Adriaensen

The minimum size of linear sets

Let *U* be a *k*-dim. \mathbb{F}_q -subspace of $\mathbb{F}_{q^n}^d$.

Let *U* be a *k*-dim. \mathbb{F}_q -subspace of $\mathbb{F}_{q^n}^d$.

▶ What if *U* has "extra linearities"? Suppose that n = st and *U* is an \mathbb{F}_{q^s} -subspace. Then $L_U = L_{U'}$ for every (k - s + 1)-dim. \mathbb{F}_q -subspace $U' \leq U$.

Let *U* be a *k*-dim. \mathbb{F}_q -subspace of $\mathbb{F}_{q^n}^d$.

What if U has "extra linearities"? Suppose that n = st and U is an 𝔽_{q^s}-subspace. Then L_U = L_U for every (k − s + 1)-dim. 𝔽_q-subspace U' ≤ U.

Definition

Let L_U be a linear set and $\pi \subseteq PG(d - 1, q^n)$ the subspace corresponding to $W \leq_{\mathbb{F}_{q^n}} \mathbb{F}_{q^n}^d$. The *weight* of π w.r.t. L_U is

$$W_{L_U}(\pi) = \dim_{\mathbb{F}_q}(W \cap U).$$

Let *U* be a *k*-dim. \mathbb{F}_q -subspace of $\mathbb{F}_{q^n}^d$.

Definition

Let L_U be a linear set and $\pi \subseteq PG(d - 1, q^n)$ the subspace corresponding to $W \leq_{\mathbb{F}_{q^n}} \mathbb{F}_{q^n}^d$. The *weight* of π w.r.t. L_U is

$$W_{L_U}(\pi) = \dim_{\mathbb{F}_q}(W \cap U).$$

Theorem (Csajbók-Marino-Pepe, last month!) Suppose $k \le (d - 1)n$. If L_U has no points of weight 1, then $L_U = L_{U'}$ for some \mathbb{F}_{q^m} -subspace U' of $\mathbb{F}_{q^n}^d$, with 1 < m|n.

Lower bound

Lower bound

Theorem (Bonoli-Polverino, De Beule-Van de Voorde) If L_U is an \mathbb{F}_q -linear set on $PG(1, q^n)$ with

- rank k ≤ n − 1,
- at least one point of weight 1,

 $|L_U| \ge q^{k-1} + 1.$

Lower bound

Theorem (Bonoli-Polverino, De Beule-Van de Voorde) If L_U is an \mathbb{F}_q -linear set on $PG(1, q^n)$ with

- rank k ≤ n − 1,
- at least one point of weight 1,

$$|L_U|\geq q^{k-1}+1.$$

Example

The bound is tight. Take $U = U_1 \times \mathbb{F}_q$ for some $U_1 \leq_{\mathbb{F}_q} \mathbb{F}_{q^n}$ of dimension k - 1.

Subgeometries and higher dim. bound

Definition

A subgeometry of $PG(d, q^n)$ is a linear set L_U of rank d + 1 spanning $PG(d, q^n)$. The standard example is

$$L_{\mathbb{F}_q^{d+1}} = \left\{ \langle x \rangle_{\mathbb{F}_{q^n}} \mid x \in \mathbb{F}_q^{d+1} \right\}.$$

The other examples are $PGL(d + 1, q^n)$ -images of $L_{\mathbb{F}_a^{d+1}}$.

Subgeometries and higher dim. bound

Definition

A subgeometry of $PG(d, q^n)$ is a linear set L_U of rank d + 1 spanning $PG(d, q^n)$. The standard example is

$$L_{\mathbb{F}_q^{d+1}} = \left\{ \langle x \rangle_{\mathbb{F}_{q^n}} \| x \in \mathbb{F}_q^{d+1} \right\}.$$

The other examples are $PGL(d + 1, q^n)$ -images of $L_{\mathbb{F}_a^{d+1}}$.

Every point in a subgeometry has weight 1.

Subgeometries and higher dim. bound

Definition

A subgeometry of $PG(d, q^n)$ is a linear set L_U of rank d + 1 spanning $PG(d, q^n)$.

Every point in a subgeometry has weight 1.

Theorem (De Beule-Van de Voorde)

Let L_U be an \mathbb{F}_q -linear set in $PG(d, q^n)$ such that

- its rank is k > d,
- it intersects some hyperplane in a subgeometry.

$$|L_U| \geq q^{k-1} + \ldots + q^{k-d} + 1.$$

"Conjecture"

Theorem (De Beule-Van de Voorde)

Let L_U be an \mathbb{F}_q -linear set in $PG(d, q^n)$ such that

its rank is k > d,

► it intersects some hyperplane in a subgeometry. $|L_{U}| > q^{k-1} + ... + q^{k-d} + 1.$

Conjecture (Jena-Van de Voorde)

Let L_U be an \mathbb{F}_q -linear set in $PG(d, q^n)$ such that

- n is prime,
- its rank is $k \leq d + n$,
- \blacktriangleright L_U spans PG(d, qⁿ).

$$|L_U|\geq q^{k-1}+\ldots+q^{k-d}+1.$$

Let L_U be an \mathbb{F}_q -linear set of rank k in $PG(d-1, q^n)$.

Let L_U be an \mathbb{F}_q -linear set of rank k in $PG(d - 1, q^n)$. Let P be a point of weight w > 0.

Let L_U be an \mathbb{F}_q -linear set of rank k in $PG(d-1, q^n)$. Let P be a point of weight w > 0. Choose a hyperplane $\pi \not\supseteq P$.

Let L_U be an \mathbb{F}_q -linear set of rank k in $PG(d - 1, q^n)$. Let P be a point of weight w > 0. Choose a hyperplane $\pi \not\supseteq P$. Define the set $L' \subset \pi$ by

$$R \in \mathsf{L}' \iff \langle \mathsf{P}, \mathsf{R} \rangle \cap \mathsf{L}_{\mathsf{U}} \supsetneq \{\mathsf{P}\}.$$

The minimum size of linear sets

Let L_U be an \mathbb{F}_q -linear set of rank k in $PG(d - 1, q^n)$. Let P be a point of weight w > 0. Choose a hyperplane $\pi \not\supseteq P$. Define the set $L' \subset \pi$ by

$$R \in \mathsf{L}' \iff \langle \mathsf{P}, \mathsf{R} \rangle \cap \mathsf{L}_{\mathsf{U}} \supsetneq \{\mathsf{P}\}.$$

Then *L'* is an \mathbb{F}_q -linear set of rank k - w in $\pi \cong PG(d - 2, q^n)$.

The minimum size of linear sets

Let L_U be an \mathbb{F}_q -linear set of rank k in $PG(d - 1, q^n)$.

Let L_U be an \mathbb{F}_q -linear set of rank k in $PG(d-1, q^n)$.

Case 1: L_U has no point of weight 1. By Csajbók-Marino-Pepe either

Let L_U be an \mathbb{F}_q -linear set of rank k in $PG(d - 1, q^n)$.

Case 1: L_U has no point of weight 1. By Csajbók-Marino-Pepe either

▶
$$k > (d - 1)n$$
 (and $L_U = PG(d - 1, q^n)$),

Let L_U be an \mathbb{F}_q -linear set of rank k in $PG(d-1, q^n)$.

Case 1: L_U has no point of weight 1. By Csajbók-Marino-Pepe either

▶
$$k > (d - 1)n$$
 (and $L_U = PG(d - 1, q^n)$),

• or L_U is equal to an \mathbb{F}_{q^m} -linear set with 1 < m|n.

Let L_U be an \mathbb{F}_q -linear set of rank k in $PG(d-1, q^n)$.

Case 1: L_U has no point of weight 1. By Csajbók-Marino-Pepe either

▶
$$k > (d - 1)n$$
 (and $L_U = PG(d - 1, q^n)$),

• or L_U is equal to an \mathbb{F}_{q^m} -linear set with 1 < m|n.

Case 2: L_U has some point *P* of weight 1.

Project from *P*. Apply the De Beule-Van de Voorde bound on all the lines through *P*.

$$|L_U| \ge q^{k-1} + |L'|.$$

Let L_U be an \mathbb{F}_q -linear set of rank k in $PG(d-1, q^n)$.

Case 1: L_U has no point of weight 1. By Csajbók-Marino-Pepe either

▶ k > (d - 1)n (and $L_U = PG(d - 1, q^n)$),

• or L_U is equal to an \mathbb{F}_{q^m} -linear set with 1 < m | n. If *n* is prime, this implies m = n.

Case 2: L_U has some point P of weight 1.

Project from *P*. Apply the De Beule-Van de Voorde bound on all the lines through *P*.

$$|L_U| \ge q^{k-1} + |L'|.$$

Bounds

Suppose that L_U is an \mathbb{F}_q -linear set of rank k, spanning $PG(d-1, q^n)$ containing a point of weight 1. Then

$$q^{k-1} + |L'| \le |L_U| \le q^{k-1} + \ldots + q + 1.$$

Here *L'* is an \mathbb{F}_q -linear set of rank k - 1 spanning $PG(d - 2, q^n)$.

Bounds

Suppose that L_U is an \mathbb{F}_q -linear set of rank k, spanning $PG(d-1, q^n)$ containing a point of weight 1. Then

$$q^{k-1} + |L'| \le |L_U| \le q^{k-1} + \ldots + q + 1.$$

Here *L*' is an \mathbb{F}_q -linear set of rank k - 1 spanning $PG(d - 2, q^n)$.

Corollary If n is prime and k < d + n, then $|L_U| \ge q^{k-1} + q^{k-2} + \ldots + q^{k-d} + 1.$

This proves the "conjecture" of Jena-Van de Voorde

Sam Adriaensen

The minimum size of linear sets

Finite Geometry & Friends Summer school at Vrije Universiteit Brussel 18-22 September 2023. Code-based cryptography, quantum walks on graphs, algebraic graph theory, tensors, semifields, rank metric codes. http://summerschool.fining.org