Motzkin Numbers and Flag Codes

Clementa Alonso-González

Joint work with Miguel Ángel Navarro-Pérez

July 6, 2023

clementa.alonso@ua.es

The Motzkin numbers sequence $\{M_n\}_{n=0}^{\infty}$, whose first ten terms are

1, 1, 2, 4, 9, 21, 51, 127, 323, 835,

was introduced by T. Motzkin, while counting possible sets of nonintersecting chords joining some of *n* points on a circle.

The Motzkin numbers sequence $\{M_n\}_{n=0}^{\infty}$, whose first ten terms are

1, 1, 2, 4, 9, 21, 51, 127, 323, 835,

was introduced by T. Motzkin, while counting possible sets of nonintersecting chords joining some of *n* points on a circle.

$$M_4 = 9$$

The Motzkin numbers sequence $\{M_n\}_{n=0}^{\infty}$, whose first ten terms are

1, 1, 2, 4, 9, 21, 51, 127, 323, 835,

was introduced by T. Motzkin, while counting possible sets of nonintersecting chords joining some of *n* points on a circle.

 $M_5 = 21$

<i>Motzkin numbers</i> 000●00000	Flag codes	Distance vectors	The bijection	Applications
Motzkin num	hers			

We can compute $M_0 = 1$ and

$$M_n = M_{n-1} + \sum_{k=0}^{n-2} M_k M_{n-k-2}.$$

There are many different combinatorial objects counted by this sequence. We are interested in Motzkin paths.

<i>Motzkin numbers</i> 000●00000	Flag codes	Distance vectors	The bijection	Applications
Motzkin num	hors			

We can compute $M_0 = 1$ and

$$M_n = M_{n-1} + \sum_{k=0}^{n-2} M_k M_{n-k-2}.$$

There are many different combinatorial objects counted by this sequence. We are interested in Motzkin paths.

<i>Motzkin numbers</i> 000000000	Flag codes	Distance vectors	<i>The bijection</i>	Applications
Motzkin paths	5			

<i>Motzkin numbers</i> 0000000000	Flag codes	Distance vectors	<i>The bijection</i>	Applications
Motzkin paths	7			

<i>Motzkin numbers</i> 0000000000	Flag codes	Distance vectors	<i>The bijection</i>	Applications
Motzkin paths	7			

<i>Motzkin numbers</i>	Flag codes	Distance vectors	<i>The bijection</i>	Applications
Motzkin paths	5			

<i>Motzkin numbers</i> 00000000●	Flag codes	Distance vectors	<i>The bijection</i>	Applications
Motzkin paths	5			

The number of Motzkin paths of length n is given by the Motzkin number M_n .

Notation

We consider:

- q a prime power and $n \ge 2$ a positive integer,
- \mathbb{F}_q the finite field with q elements,
- \mathbb{F}_q^n the *n*-dimensional vector space over \mathbb{F}_q ,
- $\mathcal{G}_q(k, n)$, the Grassmannian of dimension k for $1 \le k \le n$.

Given subspaces $\mathcal{U}, \mathcal{V} \in \mathcal{G}_q(k, n)$, their injection distance is

$$d_l(\mathcal{U},\mathcal{V})=k-\dim(\mathcal{U}\cap\mathcal{V}).$$

Definition

A constant dimension code C in $\mathcal{G}_q(k, n)$ is a nonempty set of *k*-dimensional subspaces of \mathbb{F}_q^n . Its minimum (injection) distance is

 $d_{l}(\mathcal{C}) = \min\{d_{l}(\mathcal{U}, \mathcal{V}) | \ \mathcal{U}, \mathcal{V} \in \mathcal{C}, \ \mathcal{U} \neq \mathcal{V}\}$

and it takes values in $\{0, 1, \ldots, \min\{k, n-k\}\}$.

Introduced by Koetter and Kschischang in 2008.

Motzkin numbers	Flag codes	Distance vectors	The bijection	Applications
Flags				

A flag of length *r* on \mathbb{F}_q^n is a sequence

$$\mathcal{F} = (\mathcal{F}_1, \ldots, \mathcal{F}_r)$$

of \mathbb{F}_q -subspaces of \mathbb{F}_q^n satisfying

$$\{\mathbf{0}\} \subsetneq \mathcal{F}_1 \subsetneq \mathcal{F}_2 \subsetneq \cdots \subsetneq \mathcal{F}_r \subsetneq \mathbb{F}_q^n$$

The increasing sequence of dimensions

$$(\dim_q(\mathcal{F}_1),\ldots,\dim_q(\mathcal{F}_r))$$

is called the type of \mathcal{F} . If it is (1, 2, ..., n-1), \mathcal{F} is a full flag.

<i>Motzkin numbers</i>	Flag codes	Distance vectors	<i>The bijection</i>	Applications
Flag distance				

Given flags
$$\mathcal{F} = (\mathcal{F}_1, \dots, \mathcal{F}_r)$$
 and $\mathcal{F}' = (\mathcal{F}'_1, \dots, \mathcal{F}'_r)$ of type (t_1, \dots, t_r) on \mathbb{F}_q^n , their flag distance is
$$d_f(\mathcal{F}, \mathcal{F}') = \sum_{i=1}^r d_i(\mathcal{F}_i, \mathcal{F}'_i).$$

Motzkin numbers	Flag codes	Distance vectors	The bijection	Applications
Flag codes				

A flag code C on \mathbb{F}_q^n is a nonempty collection of flags of the same type. Its minimum distance is

$$d_f(\mathcal{C}) = \min\{d_f(\mathcal{F}, \mathcal{F}') \mid \mathcal{F}, \mathcal{F}' \in \mathcal{C}, \ \mathcal{F} \neq \mathcal{F}'\}.$$

Introduced by Liebhold, Nebe and Vázquez-Castro in 2018.

Distance vectors: how to spread the flag distance

We always have

$$0 \leq d_f(\mathcal{C}) \leq D^{(t,n)} = \left(\sum_{t_i \leq \lfloor \frac{n}{2} \rfloor} t_i + \sum_{t_i > \lfloor \frac{n}{2} \rfloor} (n-t_i)\right)$$

When working with full flags,

$$0 \le d_f(\mathcal{C}) \le D^n = \left\lfloor \frac{n^2}{4} \right\rfloor = \begin{cases} \frac{n^2}{4} & \text{if } n \text{ is even,} \\ \frac{n^2 - 1}{4} & \text{if } n \text{ is odd.} \end{cases}$$

Projected codes of a flag code

 $\mathcal C$ a flag code \rightsquigarrow associated constant dimension codes

Definition

Let C be a flag code of type (t_1, \ldots, t_r) on \mathbb{F}_q^n . For every index $i \in \{1, \ldots, r\}$, the *i*-projected code of C is the set of *i*-th subspaces $C_i = p_i(C)$ where

$$p_i: \mathcal{G}_q(t_1, n) \times \cdots \times \mathcal{G}_q(t_r, n) \rightarrow \mathcal{G}_q(t_i, n)$$

is the *i*-th projection.

Motzkin numbers	Flag codes ○○○○○○○●○	Distance vectors	<i>The bijection</i>	Applications
Ouestion				

Relationship between... a flag code C and its projected codes $C_i \subseteq \mathcal{G}_q(t_i, n)$

• Concerning the size: $|C_i| \leq |C|$.

Concerning the distance: it could happen that

 $d_l(\mathcal{C}_i) > d_f(\mathcal{C}), \quad d_l(\mathcal{C}_i) < d_f(\mathcal{C}), \quad d_l(\mathcal{C}_i) = d_f(\mathcal{C}).$

Main difficulty: A flag distance value can be obtained as a sum from different combinations

Motzkin numbers	Flag codes ○○○○○○○●○	Distance vectors	The bijection	Applications
Ouestion				

Relationship between... a flag code C and its projected codes $C_i \subseteq \mathcal{G}_q(t_i, n)$

• Concerning the size: $|C_i| \leq |C|$.

Concerning the distance: it could happen that

 $d_l(\mathcal{C}_i) > d_f(\mathcal{C}), \quad d_l(\mathcal{C}_i) < d_f(\mathcal{C}), \quad d_l(\mathcal{C}_i) = d_f(\mathcal{C}).$

Main difficulty: A flag distance value can be obtained as a sum from different combinations

Motzkin numbers	Flag codes 00000000●	Distance vectors	The bijection	Applications
Question				

Example

Let $\{e_1, e_2, e_3, e_4, e_5, e_6\}$ be the standard basis of the \mathbb{F}_q -vector space \mathbb{F}_q^6 . Consider the flag code C of type (1, 3, 5) on \mathbb{F}_q^6 given by the set of flags:

Observe that it holds:

$$d_f(\mathcal{F}^2, \mathcal{F}^3) = 1 + 0 + 1 = \mathbf{2} = 1 + 1 + 0 = d_f(\mathcal{F}^3, \mathcal{F}^4).$$

To totally capture the relative position of two flags, we need to provide more precise information beyond the distance value.

Definition

Given two different flags $\mathcal{F}, \mathcal{F}'$ of type $t = (t_1, \ldots, t_r)$ on \mathbb{F}_q^n , their associated *distance vector* is

$$\mathbf{d}(\mathcal{F},\mathcal{F}')=(d_l(\mathcal{F}_1,\mathcal{F}_1'),\ldots,d_l(\mathcal{F}_r,\mathcal{F}_r'))\in\mathbb{Z}^r.$$

To totally capture the relative position of two flags, we need to provide more precise information beyond the distance value.

Definition

Given two different flags $\mathcal{F}, \mathcal{F}'$ of type $t = (t_1, \ldots, t_r)$ on \mathbb{F}_q^n , their associated *distance vector* is

$$\mathbf{d}(\mathcal{F},\mathcal{F}')=(d_l(\mathcal{F}_1,\mathcal{F}_1'),\ldots,d_l(\mathcal{F}_r,\mathcal{F}_r'))\in\mathbb{Z}^r.$$

 Matzkin numbers
 Flag codes
 Distance vectors
 The bijection

 000000000
 000000000
 0●0
 000000

Applications

Distance vectors: how to spread the flag distance

Question

How many possible distance vectors could correspond to a given couple of arbitrary full flags \mathcal{F} , \mathcal{F}' on \mathbb{F}_q^n , that is, what is the cardinality of the set

$$\mathcal{D}(n) = \{ \mathbf{d}(\mathcal{F}, \mathcal{F}') | \mathcal{F}, \mathcal{F}' \text{ full flags on } \mathbb{F}_q^n \} \subseteq \mathbb{Z}^{n-1}.$$

Motzkin numbers Flag codes Distance vectors The bijection Applications

Theorem (A-G. and Navarro-Pérez, 2022)

Put $\delta_0 = \delta_n = 0$ and consider integers $\delta_1, \ldots, \delta_{n-1} \ge 0$. Then, there exists a couple of full flags \mathcal{F} , \mathcal{F}' such that

$$d_l(\mathcal{F}_i,\mathcal{F}'_i)=\delta_i$$

if, and only if,

 $\delta_i - \delta_{i-1} \in \{-1, 0, 1\},\$

for all $1 \le i \le n$.

<i>Motzkin numbers</i>	Flag codes	Distance vectors	<i>The bijection</i> ●0000	Applications
The hijection				

Theorem (A-G. and Navarro-Pérez, 2022)

Given $n \ge 2$, there is a bijection Ψ between the set of possible distance vectors $\mathcal{D}(n)$ and the set of Motzkin paths \mathcal{M}_n .

Proof: $\begin{array}{cccc} \mathcal{D}(n) & \xrightarrow{\Psi} & \mathcal{M}_n \\ (\delta_1, \dots, \delta_{n-1}) & \longmapsto & \{(0, \delta_0), (1, \delta_1), \dots, (n-1, \delta_{n-1}), (n, \delta_n)\}. \end{array}$

Motzkin numbers	Flag codes	Distance vectors	<i>The bijection</i> ○●○○○	Applications
Graphically				

Given full flags \mathcal{F} , \mathcal{F}' with $d_i(\mathcal{F}_i, \mathcal{F}'_i) = \delta_i$ and fix $\delta_0 = \delta_n = 0$.

- Plot the points (i, δ_i) in \mathbb{Z}^2 for $0 \le i \le n$.
- Match them to draw the Motzkin path $\mathcal{M}_{\mathcal{F},\mathcal{F}'}$.

Motzkin numbers	Flag codes	Distance vectors	<i>The bijection</i> 00●00	Applications
Graphically				

Given full flags \mathcal{F} , \mathcal{F}' with $d_i(\mathcal{F}_i, \mathcal{F}'_i) = \delta_i$ and fix $\delta_0 = \delta_n = 0$.

- Plot the points (i, δ_i) in \mathbb{Z}^2 for $0 \le i \le n$.
- Match them to draw the Motzkin path $\mathcal{M}_{\mathcal{F},\mathcal{F}'}$.

Motzkin numbers	Flag codes	Distance vectors	<i>The bijection</i> ○○○●○	Applications
The bijection				

• Distance vectors give Motzkin paths and conversely.

• The number of possible flag distance combinations for full flags on \mathbb{F}_{q}^{n} is exactly the *n*-th Motzkin number.

Motzkin numbers	Flag codes	Distance vectors	<i>The bijection</i>	Applications
The bijection				

Distance vectors give Motzkin paths and conversely.

• The number of possible flag distance combinations for full flags on \mathbb{F}_q^n is exactly the *n*-th Motzkin number.

Motzkin numbers	Flag codes	Distance vectors	<i>The bijection</i>	Applications
The bijection				

Distance vectors give Motzkin paths and conversely.

• The number of possible flag distance combinations for full flags on \mathbb{F}_q^n is exactly the *n*-th Motzkin number.

Motzkin numbers	Flag codes	Distance vectors	<i>The bijection</i>	Applications
The bijection				

- Distance vectors give Motzkin paths and conversely.
- The number of possible flag distance combinations for full flags on \mathbb{F}_q^n is exactly the *n*-th Motzkin number.

<i>Motzkin numbers</i>	Flag codes	Distance vectors	<i>The bijection</i> 0000●	Applications
The bijection				

Important remark!

The area of the region determined by $\mathcal{M}_{\mathcal{F},\mathcal{F}'}$ and the abscisa axis is equal to the flag distance $d_f(\mathcal{F},\mathcal{F}')$...

The area under $\mathcal{M}_{\mathcal{F},\mathcal{F}'}$ is 12.

 Motzkin numbers
 Flag codes
 Distance vectors
 The bijection
 Applications

 000000000
 000000000
 000000000
 0000000000
 0000000000

Distance vectors of a flag code

Definition

Given a full flag code \mathcal{C} on \mathbb{F}_q^n , its set of distance vectors is defined as

$$\mathcal{D}(\mathcal{C}) = \{ \textbf{d}(\mathcal{F}, \mathcal{F}') \mid \mathcal{F}, \mathcal{F}' \in \mathcal{C}, \ \textbf{d}_f(\mathcal{F}, \mathcal{F}') = \textbf{d}_f(\mathcal{C}) \}.$$

 Motzkin numbers
 Flag codes
 Distance vectors
 The bijection
 Applications

 00000000
 00000000
 000
 000000000
 0000000000

Distance vectors of a flag code

Example

Let $\{e_1, e_2, e_3, e_4\}$ be the standard basis of \mathbb{F}_q^4 . Take \mathcal{C} given by

$$\begin{array}{rcl} \mathcal{F}^1 &=& (\langle \boldsymbol{e}_1 \rangle \,, & \langle \boldsymbol{e}_1, \boldsymbol{e}_2 \rangle \,, & \langle \boldsymbol{e}_1, \boldsymbol{e}_2, \boldsymbol{e}_4 \rangle), \\ \mathcal{F}^2 &=& (\langle \boldsymbol{e}_1 \rangle \,, & \langle \boldsymbol{e}_1, \boldsymbol{e}_3 \rangle \,, & \langle \boldsymbol{e}_1, \boldsymbol{e}_2, \boldsymbol{e}_3 \rangle), \\ \mathcal{F}^3 &=& (\langle \boldsymbol{e}_2 \rangle \,, & \langle \boldsymbol{e}_2, \boldsymbol{e}_3 \rangle \,, & \langle \boldsymbol{e}_1, \boldsymbol{e}_2, \boldsymbol{e}_3 \rangle). \end{array}$$

Notice that

$$egin{array}{rcl} d_f(\mathcal{F}^1,\mathcal{F}^2)&=&0&+&1&+&1&=&2,\ d_f(\mathcal{F}^1,\mathcal{F}^3)&=&1&+&1&+&1&=&3,\ d_f(\mathcal{F}^2,\mathcal{F}^3)&=&1&+&1&+&0&=&2. \end{array}$$

Hence, $d_f(\mathcal{C}) = 2$ and

 $\mathcal{D}(\mathcal{C}) = \{(0, 1, 1), (1, 1, 0)\}.$

Distance vectors of a flag code

Question

What is the maximum number of distance vectors associated with a full flag code C on \mathbb{F}_{q}^{n} with prescribed minimum distance?

Motzkin numbers Flag codes The bijection Applications Distance vectors 00000000000

The Motzkin paths of a flag code

Definition

Given a full flag code C on \mathbb{F}_{q}^{n} , its set of Motzkin paths is defined as

 $\mathcal{M}(\mathcal{C}) = \Psi(\mathcal{D}(\mathcal{C})).$

Motzkin numbers Flag codes Distance vectors The bijection Applications 0000000000 The Motzkin paths of a flag code Equivalent question What is the maximum number of Motzkin paths of a full flag code C on \mathbb{F}_{q}^{n} with prescribed minimum distance? login The OEIS is supported by the many generous donors to the OEIS Foundation. ⁰¹³⁶²⁷ THE ON-LINE ENCYCLOPEDIA 23 IS 12 OF INTEGER SEQUENCES [®]

founded in 1964 by N. J. A. Sloane

Search

Hints

page 1 2 3 4

Motzkin path área

(Greetings from The On-Line Encyclopedia of Integer Sequences!)

Search: motzkin path area

Displaying 1-10 of 33 results found. Sort: relevance | references | number | modified | created Format: long | short | data

<u>A129181</u> Triangle read by rows: T(n,k) is the number of **Motzkin paths** of length n such that the **area** between the x-axis and the **path** is k (n>=0; 0<=k<=floor(n^2/4)).

 $\begin{array}{c} 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 1, 4, 6, 4, 3, 2, 1, 1, 5, 10, 10, 6, 7, 5, 3, 1, 1, 1, 6, 15, 20, 19, 18, 16, 12, 8, 6, 3, 2, 1, 1, 7, 21, 53, 40, 41, 41, 36, 29, 23, 18, 12, 9, 5, 3, 1, 1, 1, 8, 28, 56, 76, 86, 93, 92, 83, 72, 62, 50, 40, 30, 22, 14, 10, 6, 3, 2, 1, 1, 9, 36, 44, 133, 163 (list, rankhe cfs lister listher use intermed format) \end{array}$

Motzkin numbers Flag codes Distance vectors The bijection Applications 0000000000 The Motzkin paths of a flag code Equivalent question What is the maximum number of Motzkin paths of a full flag code C on \mathbb{F}_{q}^{n} with prescribed minimum distance? login The OEIS is supported by the many generous donors to the OEIS Foundation. ⁰¹³⁶²⁷ THE ON-LINE ENCYCLOPEDIA 23 IS 12 OF INTEGER SEQUENCES [®]

founded in 1964 by N. J. A. Sloane

Search

Hints

page 1 2 3 4

Motzkin path área

(Greetings from The On-Line Encyclopedia of Integer Sequences!)

Search: motzkin path area

Displaying 1-10 of 33 results found. Sort: relevance | references | number | modified | created Format: long | short | data

<u>A129181</u> Triangle read by rows: T(n,k) is the number of **Motzkin paths** of length n such that the **area** between the x-axis and the **path** is k (n>=0; 0<=k<=floor(n^2/4)).

 $\begin{array}{c} 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 1, 4, 6, 4, 3, 2, 1, 1, 5, 10, 10, 6, 7, 5, 3, 1, 1, 1, 6, 15, 20, 19, 18, 16, 12, 8, 6, 3, 2, 1, 1, 7, 21, 53, 40, 41, 41, 36, 29, 23, 18, 12, 9, 5, 3, 1, 1, 1, 8, 28, 56, 76, 86, 93, 92, 83, 72, 62, 50, 40, 30, 22, 14, 10, 6, 3, 2, 1, 1, 9, 36, 44, 133, 163 (list, rankhe cfs lister listher use intermed format) \end{array}$

 Motzkin numbers
 Flag codes
 Distance vectors
 The bijection
 Applications

 Observed
 Observed
 Observed
 Observed
 Observed
 Observed

 The Motzkin paths of a flag code
 Image: Code
 Observed
 Observed
 Observed
 Observed

Theorem (A-G. and Navarro-Pérez, 2022)

Let \mathcal{C} be a full flag code on \mathbb{F}_q^n such that

$$|\mathcal{C}| = |\mathcal{C}_1| = \cdots = |\mathcal{C}_{n-1}|,$$

then $\mathcal{M}(\mathcal{C})$ only contains elevated Motzkin paths.

The converse is not true!

Motzkin numbers

Flag codes

Distance vectors

The bijection

Applications

The Motzkin paths of a flag code

Theorem (A-G. and Navarro-Pérez, 2022)

Let C be a full flag code on \mathbb{F}_q^n . They are equivalent:

• $d_f(\mathcal{C}) = D^n$ (\mathcal{C} is of maximum distance).

② The set $\mathcal{M}(\mathcal{C})$ consists of the only Motzkin path passing either through the point $(\frac{n}{2}, \frac{n}{2})$, if *n* is even, or through the points $(\lfloor \frac{n}{2} \rfloor, \lfloor \frac{n}{2} \rfloor)$ and $(\lceil \frac{n}{2} \rceil, \lfloor \frac{n}{2} \rfloor)$, if *n* is odd.

 Motzkin numbers
 Flag codes
 Distance vectors
 The bijection

 00000000
 00000000
 000
 00000

Applications 0000000●00

The Motzkin paths of a flag code

Motzkin numbers

Flag codes

Distance vectors

The bijection

Applications

The Motzkin paths of a flag code

Consequence:

Any ODFC C of full type is completely determined by just one or two of its projected codes. More precisely:

C is an ODFC $\Leftrightarrow C_{\frac{n}{2}}$ (n even) or $C_{\lfloor \frac{n}{2} \rfloor}$, $C_{\lceil \frac{n}{2} \rceil}$ (n odd) are maximum distance constant dimension codes with size |C|.

Motzkin numbers Flag codes Distance vectors The bijection Applications	ations 000000
--	------------------

Thank you very much for your attention!

