
Preliminaries
Our contribution

Self-dual Butson bent sequences

J.A. Armario⋆, R. Egan†, P. Ó Catháin‡
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Definitions

A Boolean function
f : Zm

2 → Z2

is called a bent function if∣∣∣ ∑
x∈Zm

2

(−1)f (x)(−1)vx
⊤
∣∣∣2 = 2m for all v ∈ Zm

2 ,

consequently, m should be even.
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Example of bent function

f : Z2
2 → Z2

(x1, x2) 7→ x1 · x2

v (0, 0) (0, 1) (1, 0) (1, 1)∑
x∈Zm

q

(−1)f (x)(−1)vx
⊤

2 2 2 −2

Bent functions are of interest in cryptography, coding theory,...
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Example of bent function (nonlinearity of Boolean
functions)

f : Z2
2 → Z2

(x1, x2) 7→ x1 · x2

(x1, x2) (0, 0) (0, 1) (1, 0) (1, 1)

f (x1, x2) 0 0 0 1
x2 0 1 0 1

x1 + x2 0 1 0 0

The Hamming distance of f to the 8 affine Boolean functions is
either 1, 2 or 3. Therefore the nonlinearity of f is 1.
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Example of bent function (Cryptography)

Boolean functions with large nonlinearity are difficult to
approximate by linear functions and so provide resistance against
linear cryptanalysis.

Result

The largest nonlinearity of a Boolean function on Zn
2 is

2n−1 − 2n/2−1 for n even. The functions attaining this bound, are
called bent functions.
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Hadamard matrices

Let H be a square matrix of order n with entries in {±1}. We say
that H is a Hadamard matrix if

HH∗ = nIn

where In is the n×n identity matrix and HT is the transpose of H.

Example

A Sylvester Hadamard matrix of order 2n, denoted by Sn, is
generated by

S0 = 1, Sn =

[
Sn−1 Sn−1

Sn−1 −Sn−1

]
, n = 1, 2, . . .

or
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Example of bent function: Hadamard matrix

f : Z2
2 → Z2

(x1, x2) 7→ x1 · x2

H = [ζ
f (x−y)
2 ]x ,y∈Z2

2
=


1 1 1 −1
1 1 −1 1
1 −1 1 1

−1 1 1 1


HHT = 4I4

hx ,y = ζ
f (x−y)
2 = ζ

f (xz−yz)
2 = hxz,yz x , y , z ∈ Z2

2 Group Invariant
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Sylvester Hadamard matrices

Property

Let Sn be the Sylvester Hadamard matrix of order 2n. Then

[Sn]i ,j = (−1)αi−1α
T
j−1

where α0 = (0, . . . , 0), α1 = (0, 0, . . . , 1), . . . , α2m−1 = (1, . . . , 1)
with αi ∈ Zm

2 .
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Bent functions and bent sequences

f : Z2
2 → Z2

(x1, x2) 7→ x1 · x2

v (0, 0) (0, 1) (1, 0) (1, 1)

X = (−1)f (v) 1 1 1 −1∑
x∈Zm

2

(−1)f (x)(−1)vx
⊤

2 2 2 −2

∑
x∈Zm

2

(−1)f (x)(−1)vx
⊤
= [S2]v ,xX
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Bent functions and bent sequences

Property

Let f : Zm
2 → Z2 be a Boolean bent function. The bent sequence

X = (−1)f satisfy
1√
2m

Sm X = Y ,

for some Y ∈ {±1}2m where Sm is the Sylvester Hadamard matrix
of order 2m.
If X = Y then the sequence X is said to be self-dual.
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New notion of bent sequences
[1] P. Solé, W. Cheng, S. Guilley and O. Rioul. Bent Sequences over Hadamard Codes ... IEEE Inter. Symposion on Inf. Theory,
801–806, (2021).

Definition

A new notion of bent sequences was introduced in [1] as a solution
in X ,Y to the system

1√
n
H X = Y ,

where H is a real Hadamard matrix of order n and X ,Y ∈ {±1}n.
X is called a bent sequence for H. When X = Y then is said to be
self-dual.
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New notion of (self-dual) bent sequences
[2] M. Shi, Y. Li, W. Cheng, D. Crnkovic, D. Krotov and P. Solé. Self-dual bent sequences for complex Hadamard matrices. Des.
Codes Cryptogr. 91, 1453 - 1474 (2023).

Definition

In [2] this notion of self-dual bent sequence for a (real) Hadamard
matrix was further generalized to (complex) Hadamard matrix with
entries in the set of the complex 4-th roots of unity as a solution in
X to the system

HX = λX (1)

where λ is an eigenvalue of H and X ∈ {±1,±
√
−1}n.

J.A. Armario⋆, R. Egan†, P. Ó Catháin‡ Self-dual Butson bent sequences



Preliminaries
Our contribution

Our motivation
[1] P. Solé, W. Cheng, S. Guilley and O. Rioul. Bent Sequences over Hadamard Codes ... IEEE Inter. Symposion on Inf. Theory,
801–806, (2021).

[2] M. Shi, Y. Li, W. Cheng, D. Crnkovic, D. Krotov and P. Solé. Self-dual bent sequences for complex Hadamard matrices. Des.
Codes Cryptogr. 91, 1453â-1474 (2023).

Question

How to extend the “notion” of self-dual bent sequence X for any
Butson Hadamard matrix H (not only for the 4-th roots of unity).

Real Complex

1√
n
H X = X ????
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Butson Hadamard matrices

Let ζk be the complex kth root of unity exp (2π
√
−1/k).

Let H be a square matrix of order n with entries in ⟨ζk⟩ =
{ζ lk : l = 0, . . . , k − 1}. We say that H is a Butson Hadamard
matrix if

HH∗ = nIn

where In is the n × n identity matrix and H∗ is the complex
conjugate transpose of H. We denote by H ∈ BH(n, k).

Example: the mth Kronecker power of the q × q Fourier matrix

(Dq,m)i ,j = ζ
αi−1·α⊤

j−1
q ∈ BH(qm, q), where

α0 = (0, . . . , 0), α1 = (0, 0, . . . , 1), . . . , αqm−1 = (q− 1, . . . , q− 1).
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Butson Hadamard matrices: Equivalences

P ∈ Monn(⟨ζk⟩) means P is an n × n monomial matrix with
non-zero entries in the set of kth roots of unity,

The action of pairs (P,Q) ∈ Monn(⟨ζk⟩)2 is defined by

H(P,Q) = PHQ∗,

and this action is an equivalence operation on BH(n, k).

If H(P,Q) = H ′, then H and H ′ are said to be equivalent.

If H = H ′, then (P,Q) is an automorphism of H.
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Generalized bent functions

A map
f : Zm

q → Zq

is a generalized bent function (GBF) if∣∣∣ ∑
x∈Zm

q

ζ
f (x)
q ζ−vx⊤

q

∣∣∣2 = qm for all v ∈ Zm
q ,

where |z | as usual denotes the modulus of z ∈ C

Remark

DmX = [
∑
x∈Zm

q

ζ
f (x)
q ζ−vx⊤

q ]⊤v∈Zm
q

where X = [ζ
f (a)
q ]⊤a∈Zm

q
and z as usual denotes the complex

conjugation.
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Question

Question

If X is a GBF,

1

qm/2
DmX =

1

qm/2
[
∑
x∈Zm

q

ζ
f (x)
q ζ−vx⊤

q ]⊤v∈Zm
q
∈ ⟨ζq⟩q

m
????

where X = [ζ
f (a)
q ]⊤a∈Zm

q
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Result:P.V. Kumar, R.A. Scholtz, L.R. Welch. Generalized bent functions and their properties. J- Combin.

Theory Ser. A, 40 90–107, (1985)

Let q be a prime and f : Zm
q → Zq a GBF,

1

qm/2

∑
x∈Zm

q

ζ
f (x)
q ζ−vx⊤

q =

 ±ζ
f ⋆(v)
q qm = 1 mod 4;

±
√
−1 ζ

f ⋆(v)
q qm = 3 mod 4,

where f ⋆ : Zm
q → Zq, which is called the dual of f .

Example: f : Z2
3 → Z3 so m = 2 and q = 3

X = (ζ3)
f (v) (ζ23 , ζ3, ζ3, ζ

2
3 , ζ3, ζ3, ζ3, 1, 1)

1

3
D3X (ζ3, ζ

2
3 , ζ

2
3 , ζ

2
3 , ζ

2
3 , ζ

2
3 , ζ

2
3 , 1, 1)
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Computational facts for GBF f : Z2
3 → Z3

There is no a solution X ∈ ⟨ζ3⟩9 to the system

1

3
D3,2X = X .

But there are for

1

3
D3,2X = X .

This situation also happens for matrices in the other two classes of
equivalences in BH(9, 3).
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Self-dual bent (p-ary) sequences for Butson matrices

Question

How to extend the “notion” of self-dual bent sequence X for any
Butson Hadamard matrix H (not only for the 4-th roots of unity).

Real Complex

1√
n
H X = X 1√

n
H X = X
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Existence results for 1√
n
H X = X

Proposition

If H ∈ BH(n, q) is symmetric then the sequence X(i−1)n+j =
(
H
)
i ,j

is a self-dual bent sequence for H∗ ⊗ H∗ ∈ BH(n2, q).

Corollary

X(i−1)n+j =
(
Dq,m

)
i ,j

is a self-dual bent sequence for

Dq,2m ∈ BH(q2m, q).

In the 3 equivalence classes of BH(9, 3) are symmetric
matrices.
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Existence results for 1√
n
H X = X

Proposition

If H ∈ BH(4m2, 4) is of Bush-type, then it has at least 22m

self-dual bent sequences attached to −H.

Proposition

If X and Y are self-dual bent sequences for, respectively,
H ∈ BH(n, k) and K ∈ BH(m, k), then X ⊗ Y is a self-dual bent
sequence for H ⊗ K ∈ BH(n ·m, k).
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Necessary conditions of existence for bent sequences for
BH(n, k) for k = 2, 3 and 4

Proposition

If there exists at least one self-dual bent sequence for BH(n, 3)
(resp. BH(n, 4)), then n = 9m2 (resp. n = 4m2) with m a positive
integer.

Remark

The definition of bent sequence reduces to the one in Solé’s papers
when k = 2. Therefore, the necessary condition of existence for
self-dual bent sequences for BH(n, 2) is also that n = 4m2.
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Equivalence relations between self-dual bent sequences

Proposition

Let H ∈ BH(n, k), P ∈ Monn(⟨ζk⟩) and K = PHP∗.

K ∈ BH(n, k) and H and K are said to be strongly conjugate
equivalent. Moreover, PX is a self-dual bent sequence for K
if, and only if, X is a self-dual for H.

If H = K and X is a self-dual bent sequence for H, then PX
is a self-dual bent sequence for H as well and they are said to
be equivalent.
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Open problems

Are there H ∈ BH(36, 3) and X ∈ ⟨ζ3⟩36 satisfying

1

6
HX = X????

It is known there is no solution X ∈ ⟨ζ6⟩216 to

1

6
√
6
D6,3X = X .

Are there H ∈ BH(216, 6) and X ∈ ⟨ζ3⟩216 satisfying

1

6
√
6
HX = X????
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Thank you!!!
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