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Euler’s 36 Officers Problem

• 6 regiments (colours) each with a team of 6 officers

• 6 ranks (piece type)

• Each regiment has one officer of each rank

• Arrange officers in a 6× 6 grid so that there are 6 officers of

different ranks and different regiments
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Example with 5 Officers

Figure 1: Taken from https://www.quantamagazine.org/

eulers-243-year-old-impossible-puzzle-gets-a-quantum-solution-20220110/ 3/21

https://www.quantamagazine.org/eulers-243-year-old-impossible-puzzle-gets-a-quantum-solution-20220110/
https://www.quantamagazine.org/eulers-243-year-old-impossible-puzzle-gets-a-quantum-solution-20220110/


How about 6?

• It’s impossible!

• A certain finite geometric object doesn’t exist
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Finite Geometry

• Geometry: points and lines

• Finite geometry... finite number of points and lines

• Euclidean geometry: infinite number of points and lines.

Construction: R2

• Finite geometries are often constructed using vector spaces

over finite fields

• Recall: there exists a finite field of order q where q is a prime

power
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Applications

• Finite fields: elliptic curve cryptography

• Finite geometry: coding theory

• Finite geometry: experimental designs
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Incidence Geometry

• Points and lines

• Incidence relation between points and lines

• (P, L, I ) - points, lines, incidence relation I ⊆ P × L

7/21



Incidence Geometry

• Points and lines

• Incidence relation between points and lines

• (P, L, I ) - points, lines, incidence relation I ⊆ P × L

7/21



Incidence Geometry

• Points and lines

• Incidence relation between points and lines

• (P, L, I ) - points, lines, incidence relation I ⊆ P × L

7/21



Example: Generalised Polygons

Generalised n-gon

• Two points lie in at most one line, two lines intersect in at

most one point

• No k-gons for k ∈ {3, . . . , n − 1}
• Any two elements (points or lines) is contained in an n-gon

• k-gon: sequence of points a0, . . . , ak−1 where ai and ai+1 lie

in a common line (+ is mod k)
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Example of Example: Generalised Triangle

Figure 2: Fano Plane
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Example of Example: Generalised Quadrangle

Figure 3: Cremona-Richmond Generalised Quadrangle
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Alternative Definition of a Generalised Quadrangle

Generalised Quadrangle

• Two points lie in at most one line, two lines intersect in at

most one point

• Given a line L and a point x not on L, there is a unique point

y on L such that x and y are on a line

x

y L

Figure 4: Second GQ Axiom
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Graph Theory: Incidence Graph

• Vertices: Points and lines

• Edges: Two vertices are adjacent if they are incident

• Bipartite graph with diameter n and girth 2n

• Diameter: Greatest distance between pairs of vertices

• Girth: Length of the shortest cycle in the graph

• Incident point-line pair is called a flag
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Properties of Generalised Polygons

• Thick: if all vertices of L have degree s + 1 and all vertices of

P have degree t + 1 for some numbers s, t

• Order (s, t)

• Feit and Higman proved: finite generalised n-gon of order

(s, t), s, t > 2 implies that n ∈ {2, 3, 4, 6, 8}
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Group Theory: Existence of Generalised Polygons

• Group theory: automorphism groups of graphs

• Symmetry conditions: flag-transitivity, point-primitivity,

line-transitivity etc.

• Jacques Tits - spherical buildings

• Generalised polygons: irreducible spherical buildings of rank 2

• Rank 3 and above classified* by Weiss and Tits

• Rank 2 remains unclassified
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Existence of Generalised Quadrangles

• Classical GQs: arise from groups of Lie type (Jacques Tits

1959)

• Are there any others?

• Yes

• So can we classify them?

• Symmetry conditions on its group of automorphisms:

point-primitivity, line-transitivity etc.
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Results on Generalised Quadrangles

• Bamberg, Giudici, Morris, Royle, Spiga (BGMRS) - 2011

• Let G act point-primitively and line-primitively on a GQ

• Then G is almost simple

• Almost simple: S ⩽ G ⩽ Aut(S), S non-abelian and simple
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Sporadic Groups

• Bamberg, Evans - 2021

• No sporadic almost simple group can act primitively on points

of any generalised quadrangle
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Groups of Lie Type

• BGMRS - 2011

• Let G act primitively on the points and lines of a GQ as before

• Then G is almost simple

• If G is also flag-transitive then G is almost simple of Lie type

• Take G to be Sz(q) and Ree(q) where q is a prime power
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Permutation Groups

• Let G act on Ω

• Transitive: for any α, β ∈ Ω, there is a g ∈ G such that

αg = β

• Primitive: Action of G does not preserve any non-trivial

partitions of Ω, i.e., there does not exist non-trivial B ⊂ Ω

such that Bg = B or Bg ∩ B = ∅

• Action is primitive iff Gα is maximal for every α ∈ Ω

• Consider maximal subgroups of Sz(q) and Ree(q)
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Maximal Subgroups of Suzuki Groups

• q = 2m, m odd

• Eq.Eq.Cq−1, where Eq is elementary abelian of order q and

Cq−1 is cyclic of order q − 1

• Dq−1, the dihedral group of order 2(q − 1)

• Cq±
√
2q+1 : C4

• Sz(q0) where q = qr0 with r prime and q0 > 2
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Maximal Subgroups of Ree Groups

• q = 3m, m odd

• E 1+1+1
q .Cq−1, where Eq is elementary abelian of order q and

Cq−1 is cyclic of order q − 1

• C2 × PSL2(q), the projective special linear group

• (C 2
2 × Dq−1) : C3, the dihedral group of order 2(q − 1)

• Cq±
√
3q+1 : C6

• Ree(q0) where q = qr0 with r prime
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