Classification of Point-Primitive Generalised Quadrangles

Rijeka Conference on Combinatorial Objects and their Applications 2023

Vishnuram Arumugam
July 3, 2023
University of Western Australia

Euler's 36 Officers Problem

- 6 regiments (colours) each with a team of 6 officers
- 6 ranks (piece type)
- Each regiment has one officer of each rank
- Arrange officers in a 6×6 grid so that there are 6 officers of different ranks and different regiments

Example with 5 Officers

(2)

Figure 1: Taken from https://www.quantamagazine.org/ eulers-243-year-old-impossible-puzzle-gets-a-quantum-solution-20220110/

How about 6?

How about 6?

- It's impossible!

How about 6?

- It's impossible!
- A certain finite geometric object doesn't exist

Finite Geometry

- Geometry: points and lines

Finite Geometry

- Geometry: points and lines
- Finite geometry...

Finite Geometry

- Geometry: points and lines
- Finite geometry... finite number of points and lines

Finite Geometry

- Geometry: points and lines
- Finite geometry... finite number of points and lines
- Euclidean geometry: infinite number of points and lines. Construction: \mathbb{R}^{2}

Finite Geometry

- Geometry: points and lines
- Finite geometry... finite number of points and lines
- Euclidean geometry: infinite number of points and lines. Construction: \mathbb{R}^{2}
- Finite geometries are often constructed using vector spaces over finite fields
- Recall: there exists a finite field of order q where q is a prime power

Applications

- Finite fields: elliptic curve cryptography

Applications

- Finite fields: elliptic curve cryptography
- Finite geometry: coding theory

Applications

- Finite fields: elliptic curve cryptography
- Finite geometry: coding theory
- Finite geometry: experimental designs

Incidence Geometry

- Points and lines

Incidence Geometry

- Points and lines
- Incidence relation between points and lines

Incidence Geometry

- Points and lines
- Incidence relation between points and lines
- (P, L, I) - points, lines, incidence relation $I \subseteq P \times L$

Example: Generalised Polygons

Generalised n-gon

- Two points lie in at most one line, two lines intersect in at most one point
- No k-gons for $k \in\{3, \ldots, n-1\}$
- Any two elements (points or lines) is contained in an n-gon
- k-gon: sequence of points a_{0}, \ldots, a_{k-1} where a_{i} and a_{i+1} lie in a common line $(+$ is $\bmod k)$

Example of Example: Generalised Triangle

Figure 2: Fano Plane

Example of Example: Generalised Quadrangle

Figure 3: Cremona-Richmond Generalised Quadrangle

Alternative Definition of a Generalised Quadrangle

Generalised Quadrangle

- Two points lie in at most one line, two lines intersect in at most one point
- Given a line L and a point x not on L, there is a unique point y on L such that x and y are on a line

Figure 4: Second GQ Axiom

Graph Theory: Incidence Graph

- Vertices: Points and lines
- Edges: Two vertices are adjacent if they are incident
- Bipartite graph with diameter n and girth $2 n$
- Diameter: Greatest distance between pairs of vertices
- Girth: Length of the shortest cycle in the graph
- Incident point-line pair is called a flag

Properties of Generalised Polygons

- Thick: if all vertices of L have degree $s+1$ and all vertices of P have degree $t+1$ for some numbers s, t

Properties of Generalised Polygons

- Thick: if all vertices of L have degree $s+1$ and all vertices of P have degree $t+1$ for some numbers s, t
- $\operatorname{Order}(s, t)$

Properties of Generalised Polygons

- Thick: if all vertices of L have degree $s+1$ and all vertices of P have degree $t+1$ for some numbers s, t
- $\operatorname{Order}(s, t)$
- Feit and Higman proved: finite generalised n-gon of order $(s, t), s, t>2$ implies that $n \in\{2,3,4,6,8\}$

Group Theory: Existence of Generalised Polygons

- Group theory: automorphism groups of graphs

Group Theory: Existence of Generalised Polygons

- Group theory: automorphism groups of graphs
- Symmetry conditions: flag-transitivity, point-primitivity, line-transitivity etc.

Group Theory: Existence of Generalised Polygons

- Group theory: automorphism groups of graphs
- Symmetry conditions: flag-transitivity, point-primitivity, line-transitivity etc.
- Jacques Tits - spherical buildings

Group Theory: Existence of Generalised Polygons

- Group theory: automorphism groups of graphs
- Symmetry conditions: flag-transitivity, point-primitivity, line-transitivity etc.
- Jacques Tits - spherical buildings
- Generalised polygons: irreducible spherical buildings of rank 2

Group Theory: Existence of Generalised Polygons

- Group theory: automorphism groups of graphs
- Symmetry conditions: flag-transitivity, point-primitivity, line-transitivity etc.
- Jacques Tits - spherical buildings
- Generalised polygons: irreducible spherical buildings of rank 2
- Rank 3 and above classified* by Weiss and Tits

Group Theory: Existence of Generalised Polygons

- Group theory: automorphism groups of graphs
- Symmetry conditions: flag-transitivity, point-primitivity, line-transitivity etc.
- Jacques Tits - spherical buildings
- Generalised polygons: irreducible spherical buildings of rank 2
- Rank 3 and above classified* by Weiss and Tits
- Rank 2 remains unclassified

Existence of Generalised Quadrangles

- Classical GQs: arise from groups of Lie type (Jacques Tits 1959)
- Are there any others?

Existence of Generalised Quadrangles

- Classical GQs: arise from groups of Lie type (Jacques Tits 1959)
- Are there any others?
- Yes

Existence of Generalised Quadrangles

- Classical GQs: arise from groups of Lie type (Jacques Tits 1959)
- Are there any others?
- Yes
- So can we classify them?

Existence of Generalised Quadrangles

- Classical GQs: arise from groups of Lie type (Jacques Tits 1959)
- Are there any others?
- Yes
- So can we classify them?
- Symmetry conditions on its group of automorphisms: point-primitivity, line-transitivity etc.

Results on Generalised Quadrangles

- Bamberg, Giudici, Morris, Royle, Spiga (BGMRS) - 2011
- Let G act point-primitively and line-primitively on a GQ

Results on Generalised Quadrangles

- Bamberg, Giudici, Morris, Royle, Spiga (BGMRS) - 2011
- Let G act point-primitively and line-primitively on a GQ
- Then G is almost simple

Results on Generalised Quadrangles

- Bamberg, Giudici, Morris, Royle, Spiga (BGMRS) - 2011
- Let G act point-primitively and line-primitively on a GQ
- Then G is almost simple
- Almost simple: $S \leqslant G \leqslant \operatorname{Aut}(S), S$ non-abelian and simple

Sporadic Groups

- Bamberg, Evans - 2021
- No sporadic almost simple group can act primitively on points of any generalised quadrangle

Groups of Lie Type

- BGMRS - 2011
- Let G act primitively on the points and lines of a $G Q$ as before
- Then G is almost simple

Groups of Lie Type

- BGMRS - 2011
- Let G act primitively on the points and lines of a $G Q$ as before
- Then G is almost simple
- If G is also flag-transitive then G is almost simple of Lie type

Groups of Lie Type

- BGMRS - 2011
- Let G act primitively on the points and lines of a $G Q$ as before
- Then G is almost simple
- If G is also flag-transitive then G is almost simple of Lie type
- Take G to be $\operatorname{Sz}(q)$ and $\operatorname{Ree}(q)$ where q is a prime power

Permutation Groups

- Let G act on Ω
- Transitive: for any $\alpha, \beta \in \Omega$, there is a $g \in G$ such that $\alpha^{g}=\beta$

Permutation Groups

- Let G act on Ω
- Transitive: for any $\alpha, \beta \in \Omega$, there is a $g \in G$ such that $\alpha^{g}=\beta$
- Primitive: Action of G does not preserve any non-trivial partitions of Ω, i.e., there does not exist non-trivial $B \subset \Omega$ such that $B^{g}=B$ or $B^{g} \cap B=\varnothing$

Permutation Groups

- Let G act on Ω
- Transitive: for any $\alpha, \beta \in \Omega$, there is a $g \in G$ such that $\alpha^{g}=\beta$
- Primitive: Action of G does not preserve any non-trivial partitions of Ω, i.e., there does not exist non-trivial $B \subset \Omega$ such that $B^{g}=B$ or $B^{g} \cap B=\varnothing$
- Action is primitive iff G_{α} is maximal for every $\alpha \in \Omega$

Permutation Groups

- Let G act on Ω
- Transitive: for any $\alpha, \beta \in \Omega$, there is a $g \in G$ such that $\alpha^{g}=\beta$
- Primitive: Action of G does not preserve any non-trivial partitions of Ω, i.e., there does not exist non-trivial $B \subset \Omega$ such that $B^{g}=B$ or $B^{g} \cap B=\varnothing$
- Action is primitive iff G_{α} is maximal for every $\alpha \in \Omega$
- Consider maximal subgroups of $\mathrm{Sz}(q)$ and $\operatorname{Ree}(q)$

Maximal Subgroups of Suzuki Groups

- $q=2^{m}, m$ odd
- $E_{q} \cdot E_{q} \cdot C_{q-1}$, where E_{q} is elementary abelian of order q and C_{q-1} is cyclic of order $q-1$

Maximal Subgroups of Suzuki Groups

- $q=2^{m}, m$ odd
- $E_{q} \cdot E_{q} \cdot C_{q-1}$, where E_{q} is elementary abelian of order q and C_{q-1} is cyclic of order $q-1$
- D_{q-1}, the dihedral group of order $2(q-1)$

Maximal Subgroups of Suzuki Groups

- $q=2^{m}, m$ odd
- $E_{q} \cdot E_{q} \cdot C_{q-1}$, where E_{q} is elementary abelian of order q and C_{q-1} is cyclic of order $q-1$
- D_{q-1}, the dihedral group of order $2(q-1)$
- $C_{q \pm \sqrt{2 q}+1}: C_{4}$

Maximal Subgroups of Suzuki Groups

- $q=2^{m}, m$ odd
- $E_{q} \cdot E_{q} \cdot C_{q-1}$, where E_{q} is elementary abelian of order q and C_{q-1} is cyclic of order $q-1$
- D_{q-1}, the dihedral group of order $2(q-1)$
- $C_{q \pm \sqrt{2 q}+1}: C_{4}$
- $\operatorname{Sz}\left(q_{0}\right)$ where $q=q_{0}^{r}$ with r prime and $q_{0}>2$

Maximal Subgroups of Ree Groups

- $q=3^{m}, m$ odd
- $E_{q}^{1+1+1} . C_{q-1}$, where E_{q} is elementary abelian of order q and C_{q-1} is cyclic of order $q-1$

Maximal Subgroups of Ree Groups

- $q=3^{m}, m$ odd
- $E_{q}^{1+1+1} . C_{q-1}$, where E_{q} is elementary abelian of order q and C_{q-1} is cyclic of order $q-1$
- $C_{2} \times \mathrm{PSL}_{2}(q)$, the projective special linear group

Maximal Subgroups of Ree Groups

- $q=3^{m}, m$ odd
- $E_{q}^{1+1+1} . C_{q-1}$, where E_{q} is elementary abelian of order q and C_{q-1} is cyclic of order $q-1$
- $C_{2} \times \mathrm{PSL}_{2}(q)$, the projective special linear group
- $\left(C_{2}^{2} \times D_{q-1}\right): C_{3}$, the dihedral group of order 2(q-1)

Maximal Subgroups of Ree Groups

- $q=3^{m}, m$ odd
- $E_{q}^{1+1+1} . C_{q-1}$, where E_{q} is elementary abelian of order q and C_{q-1} is cyclic of order $q-1$
- $C_{2} \times \mathrm{PSL}_{2}(q)$, the projective special linear group
- $\left(C_{2}^{2} \times D_{q-1}\right): C_{3}$, the dihedral group of order 2(q-1)
- $C_{q \pm \sqrt{3 q}+1}: C_{6}$

Maximal Subgroups of Ree Groups

- $q=3^{m}, m$ odd
- $E_{q}^{1+1+1} . C_{q-1}$, where E_{q} is elementary abelian of order q and C_{q-1} is cyclic of order $q-1$
- $C_{2} \times \mathrm{PSL}_{2}(q)$, the projective special linear group
- $\left(C_{2}^{2} \times D_{q-1}\right): C_{3}$, the dihedral group of order 2(q-1)
- $C_{q \pm \sqrt{3 q}+1}: C_{6}$
- Ree $\left(q_{0}\right)$ where $q=q_{0}^{r}$ with r prime

