Block-colourings of e-star systems

Robert Bailey

GRENFELL CAMPUS

RICCOTA 2023

Rijeka
6 July 2023

Joint work with Iren Darijani

G-designs

- Definition: A G-design of order n is a decomposition of (the edges of) a complete graph K_{n} into subgraphs isomorphic to a fixed graph G. We call the copies of G the blocks of the design.

G-designs

- Definition: A G-design of order n is a decomposition of (the edges of) a complete graph K_{n} into subgraphs isomorphic to a fixed graph G. We call the copies of G the blocks of the design.
- For example: if $G=K_{k}$ (a complete graph), we have a Steiner system $S(2, k, n)$.

G-designs

- Definition: A G-design of order n is a decomposition of (the edges of) a complete graph K_{n} into subgraphs isomorphic to a fixed graph G. We call the copies of G the blocks of the design.
- For example: if $G=K_{k}$ (a complete graph), we have a Steiner system $S(2, k, n)$.
- Another example: if $G=C_{m}$ (a cycle on m vertices), we have an m-cycle system.

G-designs

- Definition: A G-design of order n is a decomposition of (the edges of) a complete graph K_{n} into subgraphs isomorphic to a fixed graph G. We call the copies of G the blocks of the design.
- For example: if $G=K_{k}$ (a complete graph), we have a Steiner system $S(2, k, n)$.
- Another example: if $G=C_{m}$ (a cycle on m vertices), we have an m-cycle system.
- In this talk, we suppose that G is an e-star, i.e. a complete bipartite graph $K_{1, e}$.

G-designs

- Definition: A G-design of order n is a decomposition of (the edges of) a complete graph K_{n} into subgraphs isomorphic to a fixed graph G. We call the copies of G the blocks of the design.
- For example: if $G=K_{k}$ (a complete graph), we have a Steiner system $S(2, k, n)$.
- Another example: if $G=C_{m}$ (a cycle on m vertices), we have an m-cycle system.
- In this talk, we suppose that G is an e-star, i.e. a complete bipartite graph $K_{1, e}$.
- Definition: An e-star system is a $K_{1, e}$-design.

G-designs

- Definition: A G-design of order n is a decomposition of (the edges of) a complete graph K_{n} into subgraphs isomorphic to a fixed graph G. We call the copies of G the blocks of the design.
- For example: if $G=K_{k}$ (a complete graph), we have a Steiner system $S(2, k, n)$.
- Another example: if $G=C_{m}$ (a cycle on m vertices), we have an m-cycle system.
- In this talk, we suppose that G is an e-star, i.e. a complete bipartite graph $K_{1, e}$.
- Definition: An e-star system is a $K_{1, e}$-design.
- Since a 1 -star is the same as K_{2} (boring....), and a 2 -star is the same as a path P_{3}, we will assume that $e \geq 3$.

An example

The following is a 3 -star system of order 6 :

Existence of e-star systems

- Clearly, an e-star has e edges, so for an e-star system of order n to exist we require that $e \left\lvert\,\binom{ n}{2}\right.$.

Existence of e-star systems

- Clearly, an e-star has e edges, so for an e-star system of order n to exist we require that $e \left\lvert\,\binom{ n}{2}\right.$.
- Theorem: (Yamamoto et al., 1975) Suppose that $e \geq 3$. Then an e-star system of order n exists if and only if (i) $n \geq 2 e$, and (ii) $e \left\lvert\,\binom{ n}{2}\right.$.

Existence of e-star systems

- Clearly, an e-star has e edges, so for an e-star system of order n to exist we require that $e \left\lvert\,\binom{ n}{2}\right.$.
- Theorem: (Yamamoto et al., 1975) Suppose that $e \geq 3$. Then an e-star system of order n exists if and only if (i) $n \geq 2 e$, and (ii) $e \left\lvert\,\binom{ n}{2}\right.$.
- So what next? In design theory, we are often interested in resolvability - can we partition the set of blocks of a G-design into spanning subgraphs formed of vertex-disjoint copies of G ?

Existence of e-star systems

- Clearly, an e-star has e edges, so for an e-star system of order n to exist we require that $e \left\lvert\,\binom{ n}{2}\right.$.
- Theorem: (Yamamoto et al., 1975) Suppose that $e \geq 3$. Then an e-star system of order n exists if and only if (i) $n \geq 2 e$, and (ii) $e \left\lvert\,\binom{ n}{2}\right.$.
- So what next? In design theory, we are often interested in resolvability - can we partition the set of blocks of a G-design into spanning subgraphs formed of vertex-disjoint copies of G ?
- Some examples include 1-factorizations ($G=K_{2}$), Kirkman triple systems $\left(G=K_{3}=C_{3}\right)$, and the uniform Oberwolfach problem $\left(G=C_{m}\right)$.

Resolvability of e-star systems

- Necessary conditions for a resolvable e-star system to exist were obtained by Huang (1976): we require that $n \equiv 0$ $(\bmod e+1)$ and $n \equiv 1(\bmod 2 e)$.

Resolvability of e-star systems

- Necessary conditions for a resolvable e-star system to exist were obtained by Huang (1976): we require that $n \equiv 0$ $(\bmod e+1)$ and $n \equiv 1(\bmod 2 e)$.
- Clearly, these cannot hold if e is odd - so there is no resolvable 3 -star system, for instance.

Resolvability of e-star systems

- Necessary conditions for a resolvable e-star system to exist were obtained by Huang (1976): we require that $n \equiv 0$ $(\bmod e+1)$ and $n \equiv 1(\bmod 2 e)$.
- Clearly, these cannot hold if e is odd - so there is no resolvable 3 -star system, for instance.
- Theorem: (Yu, 1993) The necessary conditions above are sufficient.

Resolvability of e-star systems

- Necessary conditions for a resolvable e-star system to exist were obtained by Huang (1976): we require that $n \equiv 0$ $(\bmod e+1)$ and $n \equiv 1(\bmod 2 e)$.
- Clearly, these cannot hold if e is odd - so there is no resolvable 3 -star system, for instance.
- Theorem: (Yu, 1993) The necessary conditions above are sufficient.
- An elementary proof of the non-existence of resolvable 3-star systems was given by Küçükçifçi et al. (2015).

Resolvability of e-star systems

- Necessary conditions for a resolvable e-star system to exist were obtained by Huang (1976): we require that $n \equiv 0$ $(\bmod e+1)$ and $n \equiv 1(\bmod 2 e)$.
- Clearly, these cannot hold if e is odd - so there is no resolvable 3 -star system, for instance.
- Theorem: (Yu, 1993) The necessary conditions above are sufficient.
- An elementary proof of the non-existence of resolvable 3-star systems was given by Küçükçifçi et al. (2015).
- So what next?

Colouring blocks

- Let $\mathcal{D}=(V, \mathcal{B})$ be a G-design of order n (so V is the vertex set of K_{n}, and \mathcal{B} is the blocks).

Colouring blocks

- Let $\mathcal{D}=(V, \mathcal{B})$ be a G-design of order n (so V is the vertex set of K_{n}, and \mathcal{B} is the blocks).
- A proper block-colouring is a map from \mathcal{B} to a set of colours S, where intersecting blocks receive different colours.

Colouring blocks

- Let $\mathcal{D}=(V, \mathcal{B})$ be a G-design of order n (so V is the vertex set of K_{n}, and \mathcal{B} is the blocks).
- A proper block-colouring is a map from \mathcal{B} to a set of colours S, where intersecting blocks receive different colours.
- Alternatively, we have a partition of \mathcal{B} into colour classes, where the blocks in each colour class are mutually disjoint.

Colouring blocks

- Let $\mathcal{D}=(V, \mathcal{B})$ be a G-design of order n (so V is the vertex set of K_{n}, and \mathcal{B} is the blocks).
- A proper block-colouring is a map from \mathcal{B} to a set of colours S, where intersecting blocks receive different colours.
- Alternatively, we have a partition of \mathcal{B} into colour classes, where the blocks in each colour class are mutually disjoint.
- We say that \mathcal{D} is k-block-colourable if there exists a colouring with k colour classes, and that \mathcal{D} is k-block-chromatic if k is as small as possible.

Colouring blocks

- Let $\mathcal{D}=(V, \mathcal{B})$ be a G-design of order n (so V is the vertex set of K_{n}, and \mathcal{B} is the blocks).
- A proper block-colouring is a map from \mathcal{B} to a set of colours S, where intersecting blocks receive different colours.
- Alternatively, we have a partition of \mathcal{B} into colour classes, where the blocks in each colour class are mutually disjoint.
- We say that \mathcal{D} is k-block-colourable if there exists a colouring with k colour classes, and that \mathcal{D} is k-block-chromatic if k is as small as possible.
- Alternatively, if \mathcal{D} is k-block-chromatic, we say that it has chromatic index k, denoted $\chi^{\prime}(\mathcal{D})=k$. (Think of this as being an analogy of edge-colourings of graphs.)

Colouring blocks

- Let $\mathcal{D}=(V, \mathcal{B})$ be a G-design of order n (so V is the vertex set of K_{n}, and \mathcal{B} is the blocks).
- A proper block-colouring is a map from \mathcal{B} to a set of colours S, where intersecting blocks receive different colours.
- Alternatively, we have a partition of \mathcal{B} into colour classes, where the blocks in each colour class are mutually disjoint.
- We say that \mathcal{D} is k-block-colourable if there exists a colouring with k colour classes, and that \mathcal{D} is k-block-chromatic if k is as small as possible.
- Alternatively, if \mathcal{D} is k-block-chromatic, we say that it has chromatic index k, denoted $\chi^{\prime}(\mathcal{D})=k$. (Think of this as being an analogy of edge-colourings of graphs.)
- If \mathcal{D} is resolvable, then the chromatic index is as small as possible. So the interesting question is this: what is the least possible chromatic index of a G-design when no resolvable example can exist?

Colouring blocks: an example

An 8-block-colouring of a 3-star system of order 9:

Colouring blocks: an example

An 8-block-colouring of a 3-star system of order 9:

It turns out (by computer search) that 8 colours is the best possible for such a system.

Block colouring of e-star systems

- For an e-star system \mathcal{D} of order n, the maximum size of a colour class is $\left\lfloor\frac{n}{e+1}\right\rfloor$.

Block colouring of e-star systems

- For an e-star system \mathcal{D} of order n, the maximum size of a colour class is $\left\lfloor\frac{n}{e+1}\right\rfloor$.
- Since the number of blocks is $\frac{n(n-1)}{2 e}$, we have that

$$
\chi^{\prime}(\mathcal{D}) \geq\left\lceil\frac{n(n-1)}{2 e} /\left\lfloor\frac{n}{e+1}\right\rfloor\right\rceil .
$$

Block colouring of e-star systems

- For an e-star system \mathcal{D} of order n, the maximum size of a colour class is $\left\lfloor\frac{n}{e+1}\right\rfloor$.
- Since the number of blocks is $\frac{n(n-1)}{2 e}$, we have that

$$
\chi^{\prime}(\mathcal{D}) \geq\left\lceil\frac{n(n-1)}{2 e} /\left\lfloor\frac{n}{e+1}\right\rfloor\right\rceil
$$

- If the resolvability conditions are satisfied, the floor and ceiling functions disappear, and we are left with the obvious formula for the number of parallel classes.

Block colouring of e-star systems

- For an e-star system \mathcal{D} of order n, the maximum size of a colour class is $\left\lfloor\frac{n}{e+1}\right\rfloor$.
- Since the number of blocks is $\frac{n(n-1)}{2 e}$, we have that

$$
\chi^{\prime}(\mathcal{D}) \geq\left\lceil\frac{n(n-1)}{2 e} /\left\lfloor\frac{n}{e+1}\right\rfloor\right\rceil
$$

- If the resolvability conditions are satisfied, the floor and ceiling functions disappear, and we are left with the obvious formula for the number of parallel classes.
- What about an upper bound?

Our main theorem

- Theorem: (B+Darijani, 2023) For all $e \geq 3$, and each $n \equiv 0,1(\bmod 2 e)$, there exists an e-star system of order n with chromatic index at most n.

Our main theorem

- Theorem: (B+Darijani, 2023) For all $e \geq 3$, and each $n \equiv 0,1(\bmod 2 e)$, there exists an e-star system of order n with chromatic index at most n.
- This doesn't cover every possible congruence class mod $2 e$. However....

Our main theorem

- Theorem: (B+Darijani, 2023) For all $e \geq 3$, and each $n \equiv 0,1(\bmod 2 e)$, there exists an e-star system of order n with chromatic index at most n.
- This doesn't cover every possible congruence class mod $2 e$. However....
- Theorem: (B+Darijani, 2023) For every admissible order n, there exists a 3 -star system of order n with chromatic index at most n.

Our main theorem

- Theorem: (B+Darijani, 2023) For all $e \geq 3$, and each $n \equiv 0,1(\bmod 2 e)$, there exists an e-star system of order n with chromatic index at most n.
- This doesn't cover every possible congruence class mod $2 e$. However....
- Theorem: (B+Darijani, 2023) For every admissible order n, there exists a 3 -star system of order n with chromatic index at most n.
- Asymptotically, these are best-possible: for fixed e, there is a lower bound of $\Omega(n)$ and an upper bound of $O(n)$ on the minimum chromatic index.

Idea of proof

- The most straightforward case is for when $n \equiv 0 \bmod 4 e$. The (seven) other cases are all adaptations of this.

Idea of proof

- The most straightforward case is for when $n \equiv 0 \bmod 4 e$. The (seven) other cases are all adaptations of this.
- Let $n=4 e t$, where $t \geq 1$. Partition the set of points V into $2 t$ parts of size $2 e$, labelled $V_{1}, \ldots, V_{2 t}$.

Idea of proof

- The most straightforward case is for when $n \equiv 0 \bmod 4 e$. The (seven) other cases are all adaptations of this.
- Let $n=4 e t$, where $t \geq 1$. Partition the set of points V into $2 t$ parts of size $2 e$, labelled $V_{1}, \ldots, V_{2 t}$.
- On each part, place an e-star system of order $2 e\left(V_{i}, \mathcal{B}_{i}\right)$. These necessarily use $2 e-1$ colours, as no blocks can be vertex-disjoint.

Idea of proof

- The most straightforward case is for when $n \equiv 0 \bmod 4 e$. The (seven) other cases are all adaptations of this.
- Let $n=4 e t$, where $t \geq 1$. Partition the set of points V into $2 t$ parts of size $2 e$, labelled $V_{1}, \ldots, V_{2 t}$.
- On each part, place an e-star system of order $2 e\left(V_{i}, \mathcal{B}_{i}\right)$. These necessarily use $2 e-1$ colours, as no blocks can be vertex-disjoint.
- Next, form a complete graph $K_{2 t}$ whose vertices are the parts of our partition. This admits a 1-factorization, with 1-factors $F_{1}, \ldots, F_{2 t-1}$.

Idea of proof

- The most straightforward case is for when $n \equiv 0 \bmod 4 e$. The (seven) other cases are all adaptations of this.
- Let $n=4 e t$, where $t \geq 1$. Partition the set of points V into $2 t$ parts of size $2 e$, labelled $V_{1}, \ldots, V_{2 t}$.
- On each part, place an e-star system of order $2 e\left(V_{i}, \mathcal{B}_{i}\right)$. These necessarily use $2 e-1$ colours, as no blocks can be vertex-disjoint.
- Next, form a complete graph $K_{2 t}$ whose vertices are the parts of our partition. This admits a 1-factorization, with 1 -factors $F_{1}, \ldots, F_{2 t-1}$.
- Suppose that $F_{1}=\left\{\left(V_{1}, V_{2}\right),\left(V_{3}, V_{4}\right), \ldots,\left(V_{2 t-1}, V_{2 t}\right)\right\}$. The edges between $V_{2 j-1}$ and $V_{2 j}$ form a complete bipartite graph $K_{2 e, 2 e}$; these can be decomposed into $2 e$ colour classes of e-stars.

Idea of proof

- The most straightforward case is for when $n \equiv 0 \bmod 4 e$. The (seven) other cases are all adaptations of this.
- Let $n=4 e t$, where $t \geq 1$. Partition the set of points V into $2 t$ parts of size $2 e$, labelled $V_{1}, \ldots, V_{2 t}$.
- On each part, place an e-star system of order $2 e\left(V_{i}, \mathcal{B}_{i}\right)$. These necessarily use $2 e-1$ colours, as no blocks can be vertex-disjoint.
- Next, form a complete graph $K_{2 t}$ whose vertices are the parts of our partition. This admits a 1-factorization, with 1-factors $F_{1}, \ldots, F_{2 t-1}$.
- Suppose that $F_{1}=\left\{\left(V_{1}, V_{2}\right),\left(V_{3}, V_{4}\right), \ldots,\left(V_{2 t-1}, V_{2 t}\right)\right\}$. The edges between $V_{2 j-1}$ and $V_{2 j}$ form a complete bipartite graph $K_{2 e, 2 e}$; these can be decomposed into $2 e$ colour classes of e-stars.
- We can decompose the edges of $F_{2}, \ldots, F_{2 t-1}$ in a similar way.

Idea of proof, II

- Altogether, we use $2 e$ colours on each of the $2 t-1$ 1-factors, and a further $2 e-1$ colours within each \mathcal{B}_{i}, for a total of $2 e(2 t-1)+2 e-1=4 e t-1=n-1$ colours.

Idea of proof, II

- Altogether, we use $2 e$ colours on each of the $2 t-1$ 1-factors, and a further $2 e-1$ colours within each \mathcal{B}_{i}, for a total of $2 e(2 t-1)+2 e-1=4 e t-1=n-1$ colours.
- Note that we do not claim that the system we construct has chromatic index $n-1$, merely that it is $(n-1)$-blockcolourable.

Idea of proof, II

- Altogether, we use $2 e$ colours on each of the $2 t-1$ 1-factors, and a further $2 e-1$ colours within each \mathcal{B}_{i}, for a total of $2 e(2 t-1)+2 e-1=4 e t-1=n-1$ colours.
- Note that we do not claim that the system we construct has chromatic index $n-1$, merely that it is $(n-1)$-blockcolourable.
- For the other cases, the modifications needed sometimes require an additional colour, and the construction yields an n-block-colourable system.

Can these bounds be improved?

- It would be nice if n or $n-1$ was actually the least number of colours needed for a system of order n.

Can these bounds be improved?

- It would be nice if n or $n-1$ was actually the least number of colours needed for a system of order n.
- Sadly, this is not the case!

Can these bounds be improved?

- It would be nice if n or $n-1$ was actually the least number of colours needed for a system of order n.
- Sadly, this is not the case!
- Using the DESIGN package in GAP to enumerate 3-star systems of small order invariant under certain cyclic groups of prime order, and the GRAPE package to calculate the chromatic numbers of their block-intersection graphs, we found some counterexamples to such a claim.

Can these bounds be improved?

- It would be nice if n or $n-1$ was actually the least number of colours needed for a system of order n.
- Sadly, this is not the case!
- Using the DESIGN package in GAP to enumerate 3-star systems of small order invariant under certain cyclic groups of prime order, and the GRAPE package to calculate the chromatic numbers of their block-intersection graphs, we found some counterexamples to such a claim.
- For example, there are some 8 -block chromatic systems of order 10 , some 10 -block chromatic systems of order 12 , and both 10 - and 11 -block chromatic systems of order 13.

Can these bounds be improved?

- It would be nice if n or $n-1$ was actually the least number of colours needed for a system of order n.
- Sadly, this is not the case!
- Using the DESIGN package in GAP to enumerate 3-star systems of small order invariant under certain cyclic groups of prime order, and the GRAPE package to calculate the chromatic numbers of their block-intersection graphs, we found some counterexamples to such a claim.
- For example, there are some 8 -block chromatic systems of order 10 , some 10 -block chromatic systems of order 12 , and both 10 - and 11 -block chromatic systems of order 13 .
- So the actual values of the minimum chromatic index are still unknown.....

Hvala!

Reference: R. F. Bailey and I. Darijani, Block colourings of star systems, Discrete Math. 346 (2023), 113404 (14pp).

