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G-designs

I Definition: A G-design of order n is a decomposition of (the
edges of) a complete graph Kn into subgraphs isomorphic to
a fixed graph G. We call the copies of G the blocks of the
design.

I For example: if G = Kk (a complete graph), we have a
Steiner system S(2, k, n).

I Another example: if G = Cm (a cycle on m vertices), we have
an m-cycle system.

I In this talk, we suppose that G is an e-star, i.e. a complete
bipartite graph K1,e.

I Definition: An e-star system is a K1,e-design.

I Since a 1-star is the same as K2 (boring....), and a 2-star is
the same as a path P3, we will assume that e ≥ 3.
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An example

The following is a 3-star system of order 6:



Existence of e-star systems

I Clearly, an e-star has e edges, so for an e-star system of order
n to exist we require that e |

(
n
2

)
.

I Theorem: (Yamamoto et al., 1975) Suppose that e ≥ 3.
Then an e-star system of order n exists if and only if
(i) n ≥ 2e, and (ii) e |

(
n
2

)
.

I So what next? In design theory, we are often interested in
resolvability — can we partition the set of blocks of a
G-design into spanning subgraphs formed of vertex-disjoint
copies of G?

I Some examples include 1-factorizations (G = K2), Kirkman
triple systems (G = K3 = C3), and the uniform Oberwolfach
problem (G = Cm).
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Resolvability of e-star systems

I Necessary conditions for a resolvable e-star system to exist
were obtained by Huang (1976): we require that n ≡ 0
(mod e+ 1) and n ≡ 1 (mod 2e).

I Clearly, these cannot hold if e is odd — so there is no
resolvable 3-star system, for instance.

I Theorem: (Yu, 1993) The necessary conditions above are
sufficient.

I An elementary proof of the non-existence of resolvable 3-star
systems was given by Küçükçifçi et al. (2015).

I So what next?
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Colouring blocks

I Let D = (V,B) be a G-design of order n (so V is the vertex
set of Kn, and B is the blocks).

I A proper block-colouring is a map from B to a set of colours
S, where intersecting blocks receive different colours.

I Alternatively, we have a partition of B into colour classes,
where the blocks in each colour class are mutually disjoint.

I We say that D is k-block-colourable if there exists a colouring
with k colour classes, and that D is k-block-chromatic if k is
as small as possible.

I Alternatively, if D is k-block-chromatic, we say that it has
chromatic index k, denoted χ′(D) = k. (Think of this as
being an analogy of edge-colourings of graphs.)

I If D is resolvable, then the chromatic index is as small as
possible. So the interesting question is this: what is the least
possible chromatic index of a G-design when no resolvable
example can exist?
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Colouring blocks: an example

An 8-block-colouring of a 3-star system of order 9:

It turns out (by computer search) that 8 colours is the best
possible for such a system.
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Block colouring of e-star systems

I For an e-star system D of order n, the maximum size of a

colour class is

⌊
n

e+ 1

⌋
.

I Since the number of blocks is
n(n− 1)

2e
, we have that

χ′(D) ≥
⌈
n(n− 1)

2e

/⌊
n

e+ 1

⌋⌉
.

I If the resolvability conditions are satisfied, the floor and ceiling
functions disappear, and we are left with the obvious formula
for the number of parallel classes.

I What about an upper bound?



Block colouring of e-star systems

I For an e-star system D of order n, the maximum size of a

colour class is

⌊
n

e+ 1

⌋
.

I Since the number of blocks is
n(n− 1)

2e
, we have that

χ′(D) ≥
⌈
n(n− 1)

2e

/⌊
n

e+ 1

⌋⌉
.

I If the resolvability conditions are satisfied, the floor and ceiling
functions disappear, and we are left with the obvious formula
for the number of parallel classes.

I What about an upper bound?



Block colouring of e-star systems

I For an e-star system D of order n, the maximum size of a

colour class is

⌊
n

e+ 1

⌋
.

I Since the number of blocks is
n(n− 1)

2e
, we have that

χ′(D) ≥
⌈
n(n− 1)

2e

/⌊
n

e+ 1

⌋⌉
.

I If the resolvability conditions are satisfied, the floor and ceiling
functions disappear, and we are left with the obvious formula
for the number of parallel classes.

I What about an upper bound?



Block colouring of e-star systems

I For an e-star system D of order n, the maximum size of a

colour class is

⌊
n

e+ 1

⌋
.

I Since the number of blocks is
n(n− 1)

2e
, we have that

χ′(D) ≥
⌈
n(n− 1)

2e

/⌊
n

e+ 1

⌋⌉
.

I If the resolvability conditions are satisfied, the floor and ceiling
functions disappear, and we are left with the obvious formula
for the number of parallel classes.

I What about an upper bound?



Our main theorem

I Theorem: (B+Darijani, 2023) For all e ≥ 3, and each
n ≡ 0, 1 (mod 2e), there exists an e-star system of order n
with chromatic index at most n.

I This doesn’t cover every possible congruence class mod 2e.
However....

I Theorem: (B+Darijani, 2023) For every admissible order n,
there exists a 3-star system of order n with chromatic index at
most n.

I Asymptotically, these are best-possible: for fixed e, there is a
lower bound of Ω(n) and an upper bound of O(n) on the
minimum chromatic index.
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Idea of proof

I The most straightforward case is for when n ≡ 0 mod 4e. The
(seven) other cases are all adaptations of this.

I Let n = 4et, where t ≥ 1. Partition the set of points V into
2t parts of size 2e, labelled V1, . . . , V2t.

I On each part, place an e-star system of order 2e (Vi,Bi).
These necessarily use 2e− 1 colours, as no blocks can be
vertex-disjoint.

I Next, form a complete graph K2t whose vertices are the parts
of our partition. This admits a 1-factorization, with 1-factors
F1, . . . , F2t−1.

I Suppose that F1 = {(V1, V2), (V3, V4), . . . , (V2t−1, V2t)}.
The edges between V2j−1 and V2j form a complete bipartite
graph K2e,2e; these can be decomposed into 2e colour classes
of e-stars.

I We can decompose the edges of F2, . . . , F2t−1 in a similar
way.
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Idea of proof, II

I Altogether, we use 2e colours on each of the 2t− 1 1-factors,
and a further 2e− 1 colours within each Bi, for a total of
2e(2t− 1) + 2e− 1 = 4et− 1 = n− 1 colours.

I Note that we do not claim that the system we construct has
chromatic index n− 1, merely that it is (n− 1)-block-
colourable.

I For the other cases, the modifications needed sometimes
require an additional colour, and the construction yields an
n-block-colourable system.
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Can these bounds be improved?

I It would be nice if n or n− 1 was actually the least number of
colours needed for a system of order n.

I Sadly, this is not the case!

I Using the DESIGN package in GAP to enumerate 3-star
systems of small order invariant under certain cyclic groups of
prime order, and the GRAPE package to calculate the
chromatic numbers of their block-intersection graphs, we
found some counterexamples to such a claim.

I For example, there are some 8-block chromatic systems of
order 10, some 10-block chromatic systems of order 12, and
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Hvala!

Reference: R. F. Bailey and I. Darijani, Block colourings of star
systems, Discrete Math. 346 (2023), 113404 (14pp).


