Cyclic self-orthogonal \mathbb{Z}_{2^k} -codes constructed from generalized Boolean functions

Sara Ban

sban@math.uniri.hr

Faculty of Mathematics, University of Rijeka, Croatia

Joint work with Sanja Rukavina

This work has been fully supported by Croatian Science Foundation under the project 6732

- 1 Boolean and generalized Boolean functions
- ② Codes over \mathbb{Z}_{2^k}

- ${rac{3}{3}}$ Cyclic self-orthogonal ${\Bbb Z}_{2^k}$ -codes constructed from Boolean functions
- 4 Cyclic self-orthogonal \mathbb{Z}_{2^k} -codes constructed from a pair of bent functions

Boolean and bent functions

A Boolean function on n variables is a mapping $f: \mathbb{F}_2^n \to \mathbb{F}_2$. The Walsh-Hadamard transformation of f is

$$W_f(v) = \sum_{x \in \mathbb{F}_2^n} (-1)^{f(x) + \langle v, x \rangle}.$$

A bent function is a Boolean function f such that $W_f(v)=\pm 2^{\frac{n}{2}},$ for every $v\in \mathbb{F}_2^n.$

Generalized Boolean and gbent functions

A generalized Boolean function on n variables is a mapping $f: \mathbb{F}_2^n \to \mathbb{Z}_{2^k}$. The generalized Walsh-Hadamard transformation of f is

$$ilde{f}(v) = \sum_{x \in \mathbb{F}_2^n} \omega^{f(x)} (-1)^{\langle v, x \rangle},$$

where $\omega = e^{\frac{2\pi i}{2^k}}$.

A gbent function is a generalized Boolean function f such that $|\tilde{f}(v)|=2^{\frac{n}{2}},$ for every $v\in\mathbb{F}_2^n.$

\mathbb{Z}_{2^k} -codes

Let \mathbb{Z}_{2^k} denote the ring of integers modulo 2^k . A \mathbb{Z}_{2^k} -code C of length n is an additive subgroup of $\mathbb{Z}_{2^k}^n$.

Two \mathbb{Z}_{2^k} -codes are *equivalent* if one can be obtained from the other by permuting the coordinates and (if necessary) changing the signs of certain coordinates.

An element of C is called a *codeword* of C.

A code in which the circular shift of each codeword gives another codeword that belongs to the code is called a *cyclic code*.

A generator matrix of C is a matrix whose rows generate C.

Let C be a \mathbb{Z}_{2^k} -code of length n. The dual code C^{\perp} of the code C is defined as

$$C^{\perp} = \{ x \in \mathbb{Z}_{2^k}^n \mid \langle x, y \rangle = 0 \text{ for all } y \in C \},$$

where $\langle x, y \rangle = x_1 y_1 + x_2 y_2 + \dots + x_n y_n \pmod{2^k}$ for $x = (x_1, x_2, \dots, x_n)$ and $y = (y_1, y_2, \dots, y_n)$.

The code C is *self-orthogonal* if $C \subseteq C^{\perp}$.

Let $x = (x_1, x_2, \dots, x_n) \in \mathbb{Z}_{2^k}^n$. The *Euclidean weight* of x is

$$wt_E(x) = \sum_{i=1}^n \min\{x_i^2, (2^k - x_i)^2\}.$$

Lemma (Bannai, Dougherty, Harada, Oura, 1999)

Let M be a generator matrix of a \mathbb{Z}_{2^k} -code C of length n. Suppose that the rows of M are codewords in $\mathbb{Z}_{2^k}^n$ with Euclidean weight a multiple of 2^{k+1} with any two rows orthogonal. Then C is a self-orthogonal code with all Euclidean weights a multiple of 2^{k+1} .

O. S. ROTHAUS, On "Bent" Functions, J. Comb. Theory Ser. A 20 (1976), 300–305.

- C. CARLET, P. GABORIT, Hyper-bent functions and cyclic codes, *J. Comb. Theory Ser. A* **113**(3) (2006), 466–482.
- C. TANG, N. LI, Y. QI, Z. ZHOU, T. HELLESETH, Linear Codes With Two or Three Weights From Weakly Regular Bent Functions, *IEEE Trans. Inform. Theory* **62**(3) (2016), 1166–1176.
- C. DING, A. MUNEMASA, V. D. TONCHEV, Bent Vectorial Functions, Codes and Designs, *IEEE Trans. Inform. Theory* 65(11) (2019), 7533–7541.
- M. Shi, Y. Liu, H. Randriambololona, L. Sok, P. Solé, Trace codes over Z₄, and Boolean functions, *Des. Codes Cryptogr.* 87 (2019), 1447–1455.

- A. K. SINGH, N. KUMAR, K. P. SHUM, Cyclic self-orthogonal codes over finite chain ring, Asian-Eur. J. Math. 11(6) (2018), 1850078.
- B. KIM, Construction for self-orthogonal codes over a certain non-chain Frobenius ring, J. Korean Math. Soc. 59(1) (2022), 193-204.
- B. KIM, N. HAN, Y. LEE, Self-orthogonal codes over \mathbb{Z}_4 arising from the chain ring $\mathbb{Z}_4[u]/\langle u^2+1\rangle$, Finite Fields Appl. **78** (2022), 101972.

• SB, S. Rukavina, Type IV-II codes over \mathbb{Z}_4 constructed from generalized bent functions, *Australas. J. Combin.* **84**(3) (2022), 341–356.

An $n \times n$ circulant matrix is a matrix of the form

$$\begin{bmatrix} x_0 & x_{n-1} & \dots & x_2 & x_1 \\ x_1 & x_0 & x_{n-1} & \dots & x_2 \\ \vdots & & & & \vdots \\ x_{n-1} & \dots & \dots & x_1 & x_0 \end{bmatrix}.$$

• P. STANICA, T. MARTINSEN, S. GANGOPADHYAY, B. K. SINGH, Bent and generalized bent Boolean functions, *Des. Codes Cryptogr.* **69** (2013), 77–94.

Theorem 1 (SB, S. Rukavina)

Let $a,b,c:\mathbb{F}_2^n\to\mathbb{F}_2$ be Boolean functions and let $3\leq k\leq n$. Let $g_k^{(\epsilon)}:\mathbb{F}_2^{n+2}\to\mathbb{Z}_{2^k}$ be a generalized Boolean function given by

$$g_k^{(\epsilon)}(x,y,z) = 2^{k-1}a(x) + (2^{k-1}b(x)+1)y + (2^{k-1}c(x)+1)z + 2\epsilon yz,$$

 $x\in \mathbb{F}_2^n, y,z\in \mathbb{F}_2,$ where $\epsilon\in \{-1,1\},$ and let $c_{\mathcal{g}_k^{(\epsilon)}}$ be a codeword

$$(g_k^{(\epsilon)}((0,\ldots,0)),g_k^{(\epsilon)}((0,\ldots,0,1)),\ldots,g_k^{(\epsilon)}((1,\ldots,1)))\in \mathbb{Z}_{2^k}^{2^{n+2}}.$$

Let $C_{g_k^{(\epsilon)}}$ be a \mathbb{Z}_{2^k} -code generated by the $2^{n+2} \times 2^{n+2}$ circulant matrix whose first row is the codeword $c_{g_k^{(\epsilon)}}$. Then $C_{g_k^{(\epsilon)}}$ is a cyclic self-orthogonal \mathbb{Z}_{2^k} -code of length 2^{n+2} . If b=c, then all codewords in $C_{g_k^{(\epsilon)}}$ have Euclidean weights divisible by 2^{k+1} .

Example 1

Let
$$n = k = 3$$
,

$$a(x_1, x_2, x_3) = 1$$
, $b(x_1, x_2, x_3) = c(x_1, x_2, x_3) = x_1x_2 + x_1x_3 + x_2$

and $\epsilon = -1$. Then

$$c_{g_3^{(-1)}} = 01540154411441140154411401544114 \in \mathbb{Z}_8^{32}$$

and $C_{g_3^{(-1)}}$ is a cyclic self-orthogonal \mathbb{Z}_8 -code of length 32, where all codewords have Euclidean weights divisible by 16.

Proposition 1 (SB, S. Rukavina, 2022)

Let n be even, and let $a,b:\mathbb{F}_2^n\to\mathbb{F}_2$ be bent functions. Let $f:\mathbb{F}_2^{n+1}\to\mathbb{Z}_4$ be a gbent function given by $f(x,y)=2a(x)(1+y)+2b(x)y+y,\ x\in\mathbb{F}_2^n,\ y\in\mathbb{F}_2$, and let c_f be a codeword

$$(f((0,\ldots,0)),f((0,\ldots,0,1)),\ldots,f((1,\ldots,1)))\in \mathbb{Z}_4^{2^{n+1}}.$$

Let C_f be a \mathbb{Z}_4 -code generated by the $2^{n+1} \times 2^{n+1}$ circulant matrix whose first row is the codeword c_f . Then C_f is a cyclic self-orthogonal \mathbb{Z}_4 -code of length 2^{n+1} , all its codewords have Euclidean weights divisible by 8.

Theorem 2 (SB, S. Rukavina)

Let n be even, and let $a,b:\mathbb{F}_2^n\to\mathbb{F}_2$ be bent functions. Let $k\geq 3$ and let $f_k^{(\epsilon)}:\mathbb{F}_2^{n+1}\to\mathbb{Z}_{2^k}$ be a generalized Boolean function given by

$$f_k^{(\epsilon)}(x,y) = 2^{k-1}a(x) + (2^{k-1}a(x) + 2^{k-1}b(x) + 2^{k-2}\epsilon)y, \ x \in \mathbb{F}_2^n, y \in \mathbb{F}_2,$$

where $\epsilon \in \{-1,1\}$. Let $c_{f_k^{(\epsilon)}}$ be a codeword

$$(f_k^{(\epsilon)}((0,\ldots,0)),f_k^{(\epsilon)}((0,\ldots,0,1)),\ldots,f_k^{(\epsilon)}((1,\ldots,1)))\in \mathbb{Z}_{2^k}^{2^{n+1}}.$$

Let $C_{f_k^{(\epsilon)}}$ be a \mathbb{Z}_{2^k} -code generated by the $2^{n+1} \times 2^{n+1}$ circulant matrix whose first row is the codeword $c_{f_k^{(\epsilon)}}$. Then $C_{f_k^{(\epsilon)}}$ is a cyclic self-orthogonal \mathbb{Z}_{2^k} -code of length 2^{n+1} and all its codewords have Euclidean weights divisible by 2^{2k-1} .

Example 2

Let n = 2, k = 3,

$$a(x_1, x_2) = x_1x_2 + x_2, \ b(x_1, x_2) = x_1x_2 + x_1 + x_2$$

and $\epsilon = 1$. Then

$$c_{f_3^{(1)}} = 02460606 \in \mathbb{Z}_8^8$$

and $C_{f_3^{(1)}}$ is a cyclic self-orthogonal \mathbb{Z}_8 -code of length 8, all its codewords have Euclidean weights divisible by 32.

Theorem 3 (SB, S. Rukavina)

Let n be even, and let $a,b:\mathbb{F}_2^n\to\mathbb{F}_2$ be bent functions. Let $k\geq 3$ and let $h_k^{(\epsilon)}:\mathbb{F}_2^{n+1}\to\mathbb{Z}_{2^k}$ be a generalized Boolean function given by

$$h_k^{(\epsilon)}(x,y) = 2^{k-1}a(x) + (2^{k-1}b(x) + 2^{k-2}\epsilon)y, \ x \in \mathbb{F}_2^n, y \in \mathbb{F}_2,$$

where $\epsilon \in \{-1,1\},$ and let $c_{h_k^{(\epsilon)}}$ be a codeword

$$(h_k^{(\epsilon)}((0,\ldots,0)),h_k^{(\epsilon)}((0,\ldots,0,1)),\ldots,h_k^{(\epsilon)}((1,\ldots,1)))\in \mathbb{Z}_{2^k}^{2^{n+1}}.$$

Let $C_{h_k^{(\epsilon)}}$ be a \mathbb{Z}_{2^k} -code generated by the $2^{n+1} \times 2^{n+1}$ circulant matrix whose first row is the codeword $c_{h_k^{(\epsilon)}}$. Then $C_{h_k^{(\epsilon)}}$ is cyclic self-orthogonal \mathbb{Z}_{2^k} -code and all codewords in $C_{h_k^{(\epsilon)}}$ have Euclidean weights divisible by 2^{2k-1} .

Example 3

Let n = 2, k = 3,

$$a(x_1, x_2) = x_1x_2 + x_2, \ b(x_1, x_2) = x_1x_2 + x_1 + x_2$$

and $\epsilon = 1$. Then

$$c_{h_3^{(1)}} = 02420606 \in \mathbb{Z}_8^8$$

and $C_{h_3^{(1)}}$ is a cyclic self-orthogonal \mathbb{Z}_8 -code of length 8, all its codewords have Euclidean weights divisible by 32.

Thank you!