Cyclic self-orthogonal $\mathbb{Z}_{2^{k} \text {-codes constructed }}$ from generalized Boolean functions

Sara Ban
sban@math.uniri.hr
Faculty of Mathematics, University of Rijeka, Croatia
Joint work with Sanja Rukavina

This work has been fully supported by Croatian Science Foundation under the project 6732
(1) Boolean and generalized Boolean functions
(2) Codes over $\mathbb{Z}_{2^{k}}$
(3) Cyclic self-orthogonal $\mathbb{Z}_{2^{k} \text {-codes constructed }}$ from Boolean functions
(4) Cyclic self-orthogonal $\mathbb{Z}_{2^{k}}$-codes constructed from a pair of bent functions

Boolean and bent functions

A Boolean function on n variables is a mapping $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$.
The Walsh-Hadamard transformation of f is

$$
W_{f}(v)=\sum_{x \in \mathbb{F}_{2}^{n}}(-1)^{f(x)+\langle v, x\rangle}
$$

A bent function is a Boolean function f such that $W_{f}(v)= \pm 2^{\frac{n}{2}}$, for every $v \in \mathbb{F}_{2}^{n}$.

Generalized Boolean and gbent functions

A generalized Boolean function on n variables is a mapping $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{Z}_{2^{k}}$. The generalized Walsh-Hadamard transformation of f is

$$
\tilde{f}(v)=\sum_{x \in \mathbb{F}_{2}^{n}} \omega^{f(x)}(-1)^{\langle v, x\rangle}
$$

where $\omega=e^{\frac{2 \pi i}{2^{k}}}$.
A gbent function is a generalized Boolean function f such that $|\tilde{f}(v)|=2^{\frac{n}{2}}$, for every $v \in \mathbb{F}_{2}^{n}$.

$\mathbb{Z}_{2^{k}}$-codes

Let $\mathbb{Z}_{2^{k}}$ denote the ring of integers modulo 2^{k}. $A \mathbb{Z}_{2^{k}}$-code C of length n is an additive subgroup of $\mathbb{Z}_{2^{k}}^{n}$.
Two $\mathbb{Z}_{2^{k}}$-codes are equivalent if one can be obtained from the other by permuting the coordinates and (if necessary) changing the signs of certain coordinates.
An element of C is called a codeword of C.
A code in which the circular shift of each codeword gives another codeword that belongs to the code is called a cyclic code. A generator matrix of C is a matrix whose rows generate C.

Let C be a $\mathbb{Z}_{2^{k}}$-code of length n. The dual code C^{\perp} of the code C is defined as

$$
C^{\perp}=\left\{x \in \mathbb{Z}_{2^{k}}^{n} \mid\langle x, y\rangle=0 \text { for all } y \in C\right\}
$$

where $\langle x, y\rangle=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}\left(\bmod 2^{k}\right)$ for $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$.
The code C is self-orthogonal if $C \subseteq C^{\perp}$.

Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{Z}_{2^{k}}^{n}$. The Euclidean weight of x is

$$
w t_{E}(x)=\sum_{i=1}^{n} \min \left\{x_{i}^{2},\left(2^{k}-x_{i}\right)^{2}\right\}
$$

Lemma (Bannai, Dougherty, Harada, Oura, 1999)

Let M be a generator matrix of a $\mathbb{Z}_{2^{k}}$-code C of length n. Suppose that the rows of M are codewords in $\mathbb{Z}_{2^{k}}^{n}$ with Euclidean weight a multiple of 2^{k+1} with any two rows orthogonal. Then C is a self-orthogonal code with all Euclidean weights a multiple of 2^{k+1}.

- O. S. Rothaus, On "Bent" Functions, J. Comb. Theory Ser. A 20 (1976), 300-305.
- C. Carlet, P. Gaborit, Hyper-bent functions and cyclic codes, J. Comb. Theory Ser. A 113(3) (2006), 466-482.
- C. Tang, N. Li, Y. Qi, Z. Zhou, T. Helleseth, Linear Codes With Two or Three Weights From Weakly Regular Bent Functions, IEEE Trans. Inform. Theory 62(3) (2016), 1166-1176.
- C. Ding, A. Munemasa, V. D. Tonchev, Bent Vectorial Functions, Codes and Designs, IEEE Trans. Inform. Theory 65(11) (2019), 7533-7541.
- M. Shi, Y. Liu, H. Randriambololona, L. Sok, P. Solé, Trace codes over \mathbb{Z}_{4}, and Boolean functions, Des. Codes Cryptogr. 87 (2019), 1447-1455.
- A. K. Singh, N. Kumar, K. P. Shum, Cyclic self-orthogonal codes over finite chain ring, Asian-Eur. J. Math. 11(6) (2018), 1850078.
- B. Kim, Construction for self-orthogonal codes over a certain non-chain Frobenius ring, J. Korean Math. Soc. 59(1) (2022), 193-204.
- B. Kim, N. Han, Y. Lee, Self-orthogonal codes over \mathbb{Z}_{4} arising from the chain ring $\mathbb{Z}_{4}[u] /\left\langle u^{2}+1\right\rangle$, Finite Fields Appl. 78 (2022), 101972.
- SB, S. Rukavina, Type IV-II codes over \mathbb{Z}_{4} constructed from generalized bent functions, Australas. J. Combin. 84(3) (2022), 341-356.

An $n \times n$ circulant matrix is a matrix of the form

$$
\left[\begin{array}{ccccc}
x_{0} & x_{n-1} & \cdots & x_{2} & x_{1} \\
x_{1} & x_{0} & x_{n-1} & \cdots & x_{2} \\
\vdots & & & & \vdots \\
x_{n-1} & \cdots & \cdots & x_{1} & x_{0}
\end{array}\right]
$$

- P. Stanica, T. Martinsen, S. Gangopadhyay, B. K. Singh, Bent and generalized bent Boolean functions, Des. Codes Cryptogr. 69 (2013), 77-94.

Theorem 1 (SB, S. Rukavina)

Let $a, b, c: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$ be Boolean functions and let $3 \leq k \leq n$. Let $g_{k}^{(\epsilon)}: \mathbb{F}_{2}^{n+2} \rightarrow \mathbb{Z}_{2^{k}}$ be a generalized Boolean function given by

$$
g_{k}^{(\epsilon)}(x, y, z)=2^{k-1} a(x)+\left(2^{k-1} b(x)+1\right) y+\left(2^{k-1} c(x)+1\right) z+2 \epsilon y z
$$

$x \in \mathbb{F}_{2}^{n}, y, z \in \mathbb{F}_{2}$, where $\epsilon \in\{-1,1\}$, and let $c_{g_{k}^{(\epsilon)}}$ be a codeword

$$
\left(g_{k}^{(\epsilon)}((0, \ldots, 0)), g_{k}^{(\epsilon)}((0, \ldots, 0,1)), \ldots, g_{k}^{(\epsilon)}((1, \ldots, 1))\right) \in \mathbb{Z}_{2^{k}}^{2^{n+2}}
$$

Let $C_{g_{k}^{(\epsilon)}}$ be a $\mathbb{Z}_{2^{k}}$-code generated by the $2^{n+2} \times 2^{n+2}$ circulant matrix whose first row is the codeword $c_{g_{k}^{(\epsilon)}}$. Then $C_{g_{k}^{(\epsilon)}}$ is a cyclic self-orthogonal $\mathbb{Z}_{2^{k}}$-code of length 2^{n+2}. If $b=c$, then all codewords in $C_{g_{k}^{(\epsilon)}}$ have Euclidean weights divisible by 2^{k+1}.

Example 1

Let $n=k=3$,

$$
a\left(x_{1}, x_{2}, x_{3}\right)=1, b\left(x_{1}, x_{2}, x_{3}\right)=c\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2}+x_{1} x_{3}+x_{2}
$$

and $\epsilon=-1$. Then

$$
c_{g_{3}^{(-1)}}=01540154411441140154411401544114 \in \mathbb{Z}_{8}^{32}
$$

and $C_{g_{3}^{(-1)}}$ is a cyclic self-orthogonal \mathbb{Z}_{8}-code of length 32 , where all codewords have Euclidean weights divisible by 16.

Proposition 1 (SB, S. Rukavina, 2022)

Let n be even, and let $a, b: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$ be bent functions. Let $f: \mathbb{F}_{2}^{n+1} \rightarrow \mathbb{Z}_{4}$ be a gbent function given by $f(x, y)=2 a(x)(1+y)+2 b(x) y+y, \quad x \in \mathbb{F}_{2}^{n}, y \in \mathbb{F}_{2}$, and let c_{f} be a codeword

$$
(f((0, \ldots, 0)), f((0, \ldots, 0,1)), \ldots, f((1, \ldots, 1))) \in \mathbb{Z}_{4}^{2^{n+1}}
$$

Let C_{f} be a \mathbb{Z}_{4}-code generated by the $2^{n+1} \times 2^{n+1}$ circulant matrix whose first row is the codeword c_{f}. Then C_{f} is a cyclic self-orthogonal \mathbb{Z}_{4}-code of length 2^{n+1}, all its codewords have Euclidean weights divisible by 8 .

Theorem 2 (SB, S. Rukavina)

Let n be even, and let $a, b: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$ be bent functions. Let $k \geq 3$ and let $f_{k}^{(\epsilon)}: \mathbb{F}_{2}^{n+1} \rightarrow \mathbb{Z}_{2^{k}}$ be a generalized Boolean function given by
$f_{k}^{(\epsilon)}(x, y)=2^{k-1} a(x)+\left(2^{k-1} a(x)+2^{k-1} b(x)+2^{k-2} \epsilon\right) y, x \in \mathbb{F}_{2}^{n}, y \in \mathbb{F}_{2}$, where $\epsilon \in\{-1,1\}$. Let $c_{f_{k}^{(\epsilon)}}$ be a codeword

$$
\left(f_{k}^{(\epsilon)}((0, \ldots, 0)), f_{k}^{(\epsilon)}((0, \ldots, 0,1)), \ldots, f_{k}^{(\epsilon)}((1, \ldots, 1))\right) \in \mathbb{Z}_{2^{k}}^{2^{n+1}}
$$

Let $C_{f_{k}^{(\epsilon)}}$ be a $\mathbb{Z}_{2^{k}}$-code generated by the $2^{n+1} \times 2^{n+1}$ circulant matrix whose first row is the codeword $c_{f_{k}^{(\epsilon)}}$. Then $C_{f_{k}^{(\epsilon)}}$ is a cyclic self-orthogonal $\mathbb{Z}_{2^{k}}$-code of length 2^{n+1} and all its codewords have Euclidean weights divisible by $2^{2 k-1}$.

Example 2

Let $n=2, k=3$,

$$
a\left(x_{1}, x_{2}\right)=x_{1} x_{2}+x_{2}, b\left(x_{1}, x_{2}\right)=x_{1} x_{2}+x_{1}+x_{2}
$$

and $\epsilon=1$. Then

$$
c_{f_{3}^{(1)}}=02460606 \in \mathbb{Z}_{8}^{8}
$$

and $C_{f_{3}^{(1)}}$ is a cyclic self-orthogonal \mathbb{Z}_{8}-code of length 8 , all its codewords have Euclidean weights divisible by 32.

Theorem 3 (SB, S. Rukavina)

Let n be even, and let $a, b: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$ be bent functions. Let $k \geq 3$ and let $h_{k}^{(\epsilon)}: \mathbb{F}_{2}^{n+1} \rightarrow \mathbb{Z}_{2^{k}}$ be a generalized Boolean function given by

$$
h_{k}^{(\epsilon)}(x, y)=2^{k-1} a(x)+\left(2^{k-1} b(x)+2^{k-2} \epsilon\right) y, x \in \mathbb{F}_{2}^{n}, y \in \mathbb{F}_{2},
$$

where $\epsilon \in\{-1,1\}$, and let $c_{h_{k}^{(\epsilon)}}$ be a codeword

$$
\left(h_{k}^{(\epsilon)}((0, \ldots, 0)), h_{k}^{(\epsilon)}((0, \ldots, 0,1)), \ldots, h_{k}^{(\epsilon)}((1, \ldots, 1))\right) \in \mathbb{Z}_{2^{k}}^{2^{n+1}}
$$

Let $C_{h_{k}^{(\epsilon)}}$ be a $\mathbb{Z}_{2^{k}}$-code generated by the $2^{n+1} \times 2^{n+1}$ circulant matrix whose first row is the codeword $c_{h_{k}^{(\epsilon)}}$. Then $C_{h_{k}^{(\epsilon)}}$ is cyclic self-orthogonal $\mathbb{Z}_{2^{k} \text {-code }}$ and all codewords in $C_{h_{k}^{(\epsilon)}}$ have Euclidean weights divisible by $2^{2 k-1}$.

Example 3

Let $n=2, k=3$,

$$
a\left(x_{1}, x_{2}\right)=x_{1} x_{2}+x_{2}, b\left(x_{1}, x_{2}\right)=x_{1} x_{2}+x_{1}+x_{2}
$$

and $\epsilon=1$. Then

$$
c_{h_{3}^{(1)}}=02420606 \in \mathbb{Z}_{8}^{8}
$$

and $C_{h_{3}^{(1)}}$ is a cyclic self-orthogonal \mathbb{Z}_{8}-code of length 8 , all its codewords have Euclidean weights divisible by 32 .

Thank you!

