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Hadamard matrices

A Hadamard matrix (HM) of order n is an n x n matrix H with entries from {41}
such that
HHT = nl, (1)

where I, is the identity of order n.

e Hadamard was interested in finding the maximal
determinant of square matrices of order n with
entries from the unit disc.t

e Hadamard showed that such maximal determinant,
n"/2, is achieved by matrices with entries from the
set {£1} if and only if they satisfy (1).

e Hadamard showed that the order of a HM is

necessarily 1, 2 or 4n for n € N. Jacques Salomon Hadamard

(Versailles 1865 — Paris 1963)

fHadamard: Résolution d’ une question relative aux déterminants (1893)
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Equivalence of Hadamard matrices

e A driving force behind HM research is the Hadamard Conjecture, which asserts
that for every positive integer n there exists a HM of order 4n.}

e Since the number of HMs of order 4n appears to grow rapidly with n (which
contrasts with the Hadamard Conjecture), it is necessary to introduce an
equivalence relation on the set of HMs.

e The group Mon(n, {£1}) of all pairs of {£1}-monomial matrices (signed
permutation matrices) of order n acts on the set of {11}-matrices of order n via

(P,Q)-M=PMQT. (2)

e Two HMs H and H’ are equivalent if they lie in the same Mon(n, {£1})-orbit.

K. Horadam: Hadamard Matrices (2007)
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e The classification of HMs of orders less than 30, up to equivalence, was achieved
through the efforts of numerous mathematicians in the 1980s and 1990st
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Classification of Hadamard matrices

e The classification of HMs of orders less than 30, up to equivalence, was achieved
through the efforts of numerous mathematicians in the 1980s and 1990st

n 1 2
#classes 1 1 1

4 5 6 7
5 3 60 487

e The classification of HMs of order 32,
up to equivalence,
2012.%.

was achieved in

e There are exactly 13,710,027 equiva-
lence classes of HMs.

e Given the profusion of equivalence
classes of HMs, even at small orders,
it makes sense to ask for classifications
of HMs of special types.

fSpence: Classification of HMs of order 24 and 28 (1995)
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‘which are cocyclic over G. Any cocyclic matrix is equivalent to one obtained by entrywisc action of
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e Let G be a finite group and let A be a ZG-module. A 2-cocyclet (or simply
cocycle) with coefficients in A is a map

P : G x G — A such that

(g, hy(gh, k) = (b, k)¥4(g, hk), for all g, h k € G. 3)

1:Up to equivalence of extensions, central extensions of A by G can be parameterised by the group
Z(G,A) ={y: Gx G— Al (g, h)(gh, k) = (h, k)Y (g, hk), forall g, h, k € G}
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Cocyclic Hadamard matrices

o A coboundary is a cocycle of the form (g, h) = ¢(g)d(h)p(gh) =t for a map
¢:G— A

e In the following, let A= C, = (—1) (with trivial ZG-action).

A HM H of order 4n is cocyclic with indexing group G = {g1,...,gan} if there
exist a 2-cocycle ¢ : G X G — (—1) and a map ¢: G — (—1) such that

H = [¥(gi,g))¢(ig))]; “

If 4 is trivial, then H is called group-developed.

e Group developed HMs are known to have square order.t

Note H = [v(gi, gj)p(gh)d(g)P(h)]i,j; we work with this matrix instead.

fWallis: Combinatorial Design (1988)
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In 2010, O Cathain and Réder reported
the classification of CHMs of order less
than 40.
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Classification of Cocyclic Hadamard matrices

e In 2010, O Cathain and Réder reported
the classification of CHMs of order less
than 40.

e To achieve this, they used a known con-
nection between CHMs and certain semi-
regular (4n,2,4n,2n) relative difference
sets in groups of order 8n.1

The cocyclic Hadamard matrices of order less than 40
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Abstract  Inthis paper all cocyclic Hadamard matrices of order less than
Thatis, all such Hadamard constructed, up to

‘This represents a significant extension and completion of work by de Launey and Ito. The
theory of cocyclic development s discussed, and an algorithm for determining whether a
given Hadamard matrix is cocyclic is described. Since all Hadamard matrices of order at
most 28 have been classified, this algorithm suffices to classify cocyclic Hadamard matrices
of order at most 28. Not even the total numbers of Hadamard matrices of orders 32 and
36 are known. Thus we use a different method to construct all cocyclic Hadamard matrices
at these orders. A result of de Launey, Flannery and Horadam on the relationship between
cocyclic Hadamard matrices and relative difference sets is used in the classification of cocy-

orders 32and 36.
and construction of (41, 2, 41, 2)-relative difference sets in the groups of orders 64 and 72.

n 1 2 3 4
# classes 1
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fde Launey, Flannery, and Horadam, Cocyclic Hadamard matrices and difference sets (2000)
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Structure of cocyclic Hadamard matrices of order 4p

e de Launey and Flannery studied the struc-
ture of CHM of order 4p.

Algebraic
e They showed that such matrices have in- Design
dexing groups K x Cp, where |K| = 4, Theory

and can be described by a set of block
Warwick de Launey

arrays. Dane Flannery
e Every CHM of order 4p and p > 3 prime
with indexing group K x C, and cocycle

Amorican Mathematical Society

1 is equivalent to a matrix

w X2 yb zab
X (—1)"we zb (71)ryab
Y (71)):23 (71)5 wb (71)s+txab
Z  (—1)tty? (71)5Xb (71)r{s\tWab

where (r,s, t) € {(1,0,0),(0,1,0),(1,1,0),(1,1,1)} depends on 7, the blocks
W, X, Y, Z are back-circulant, and a block M* is circulant if and only if
x € {a, b,ab} C K acts by inversion on Cp.T

*De Launey and Flannery: Algebraic Design Theory (2011)



Classification of cocyclic Hadamard matrices of order 4p

e |n 2019, Barrera Acevedo, O Cathain and
Dietrich recovered the aforementioned
4 X 4 block arrays via a group theoreti-
cal approach.
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Cocyclic Hadamard matrices (CHMSs) were introduced
by de Launey and Horadam as a class of Hadamard
matrices (HMs) with. interesting algebraic properties.
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ithm for CHMs of order 4n based on relative difference
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algorithm for CHMs of order 4p with p a prime; we
prove refined structure results and provide a classifica-
tion for p < 13. Our analysis shows that every CHM of
order 4p with p = 1 mod 4 is equivalent to a HM with
one of five distinct block structures, including William-
son-type and (transposed) Ito matrices. 1f p = 3 mod 4,
then every CHM of order 4p is equivalent to a
‘Williamson-type or (transposed) Ito matrix.
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e |n 2019, Barrera Acevedo, O Cathain and
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e |n 2019, Barrera Acevedo, O Cathain and
Dietrich recovered the aforementioned
4 X 4 block arrays via a group theoreti-
cal approach.

e They applied a construction algorithm to
obtain the classification of CHMs of or-
ders 4-11 and 4 - 13.

e They are currently exploring the idea of
using SAT-solvers to classify CHMs of or-
ders 4-17 and 4 - 19.
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It is natural to ask whether CHMs of orders 8p and 4pq, for 2 < p < g primes, can be
described by a set of block arrays, as in the case 4p.
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Cocyclic Hadamard matrices of order 8p

e CHMs of oder 8 - 3 are classified: there are 16 classes of such matricest.

e In the following, let H be a CHM of order 8p with p > 3 prime, indexing group G
and cocycle .

The Sylow Theorems and Schur—Zassenhaus Lemma, in combination with results of
Ito} yield the following

e G~ Kix N, where |[K| =8 and N = Cp, except for G = G x C23 — However
there are no CHMs with indexing group C7 x C3 as H?(C7 x C3, G2) is trivial.

o Ey =G x|y(—1) = K x N, where K 22 K x, (—1) (here ¢ denotes the
restriction of 1 : G X G — (—1) to K x K) and N = C,.

6 cathain and Réder, The cocyclic Hadamard matrices of order less than 40 (2011)
ilto, On Hadamard Groups (1994)



Cocyclic Hadamard matrices of order 8p

e CHMs of oder 8 - 3 are classified: there are 16 classes of such matricest.

e In the following, let H be a CHM of order 8p with p > 3 prime, indexing group G
and cocycle .

The Sylow Theorems and Schur—Zassenhaus Lemma, in combination with results of
Ito} yield the following

e G~ Kix N, where |[K| =8 and N = Cp, except for G = G x C23 — However
there are no CHMs with indexing group C7 x C3 as H?(C7 x C3, G2) is trivial.

o Ey =Gx|y(-1) = K x N, where K 22 K 5, (—1) (here ¢ denotes the
restriction of 1 : G X G — (—1) to K x K) and N = C,.

o If K= Cg then K = Cyg or Cg X G (both which are disqualified due to Ito’s and
the fact that H is not group developed).
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Cocyclic Hadamard matrices of order 8p

e CHMs of oder 8 - 3 are classified: there are 16 classes of such matricest.

e In the following, let H be a CHM of order 8p with p > 3 prime, indexing group G
and cocycle .

The Sylow Theorems and Schur—Zassenhaus Lemma, in combination with results of
Ito} yield the following

e G~ Kix N, where |[K| =8 and N = Cp, except for G = G x C23 — However
there are no CHMs with indexing group C7 x C3 as H?(C7 x C3, G2) is trivial.

o Ey =Gx|y(-1) = K x N, where K 22 K 5, (—1) (here ¢ denotes the
restriction of 1 : G X G — (—1) to K x K) and N = C,.

o If K= Cg then K = Cyg or Cg X G (both which are disqualified due to Ito’s and
the fact that H is not group developed).

o Kc{C3,Cyx G, Dg, Qg} (all polycyclic groups).

6 cathain and Réder, The cocyclic Hadamard matrices of order less than 40 (2011)
ilto, On Hadamard Groups (1994)



Cocyclic Hadamard matrices of order 8p

Combining ideas of O Cathain and Rodert, and Barrera Acevedo et alf. we have the

following result.

Theorem

Let H be a CHM of order 8p with indexing group G = K x N and cocycle 1. Then

H= |:’U(k1 kj) [qﬁ <k,‘kjnkf m)] (5)

nﬁmE’V} kiskj €K

6 cathain and Réder, The cocyclic Hadamard matrices of order less than 40 (2011)
iBarl’era Acevedo, O Cathain and Dietrich, Constructing Cocyclic Hadamard Matrices of order 4p (2019)



Cocyclic Hadamard matrices of order 8p

Combining ideas of O Cathain and Rodert, and Barrera Acevedo et alf. we have the
following result.

Theorem

Let H be a CHM of order 8p with indexing group G = K x N and cocycle 1. Then

H= {w(k,-, kj)[qs <k,-kjnkfm>] (5)

nﬁmE’V} kiskj €K

where, by abuse of notation, 1 is the restriction to K and ¢ : N — (—1) is a map.

6 cathain and Réder, The cocyclic Hadamard matrices of order less than 40 (2011)
iBarl’era Acevedo, O Cathain and Dietrich, Constructing Cocyclic Hadamard Matrices of order 4p (2019)



Cocyclic Hadamard matrices of order 8p

Combining ideas of O Cathain and Rodert, and Barrera Acevedo et alf. we have the
following result.

Theorem

Let H be a CHM of order 8p with indexing group G = K x N and cocycle 1. Then

= l|lk:. k: e nki
H= {v(k,,kf)[qﬁ (k,kjn1m>]nﬁmeN} e (5)
where, by abuse of notation, 1 is the restriction to K and ¢ : N — (—1) is a map.
For fixed ki, k; each inner p x p block [(j) (k;kjnk/ m)] is group developed over
n,me

N with respect to the action of K on N.

6 cathain and Réder, The cocyclic Hadamard matrices of order less than 40 (2011)
iBarl’era Acevedo, O Cathain and Dietrich, Constructing Cocyclic Hadamard Matrices of order 4p (2019)



Cocyclic Hadamard matrices of order 8p

Combining ideas of O Cathain and Rodert, and Barrera Acevedo et alf. we have the
following result.

Theorem

Let H be a CHM of order 8p with indexing group G = K x N and cocycle 1. Then

= l|lk:. k: e nki
H= {v(k,,kf)[qﬁ (k,kjn1m>]nﬁmeN} i (5)
i ok
where, by abuse of notation, 1 is the restriction to K and ¢ : N — (—1) is a map.
For fixed ki, k; each inner p x p block [(j) (k;kjnk/ m)] is group developed over
n,me

N with respect to the action of K on N.

Every matrix of form (5) is also cocyclic.

6 cathain and Réder, The cocyclic Hadamard matrices of order less than 40 (2011)
iBarl’era Acevedo, O Cathain and Dietrich, Constructing Cocyclic Hadamard Matrices of order 4p (2019)
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Cocyclic Hadamard matrices of order 8p

The isomorphism type of the central extension K=K X, (—1) is one of the following:

K Isomorphism type of K |GAP ID [16, #]

G x GG x (G xG),C2 [16, 3], [16, 4]
G x Cg, G x Cg [16,5],[16, 6]
Cx G [16,10]

@3 G x (G4 x G), Dg x G|[16, 3], [16, 11]
G, Qe x G [16,14],[16,12]

Ds G x (G x G), C? [16,3],[16, 4]
Dsg, SD16 [16,7],[16, 8]
Q16,08 x G [16,9], [16, 11]

Qs C2, Qs x G [16,4],[16,12]




Cocyclic Hadamard matrices of order 8p

The isomorphism type of the central extension K=K X, (—1) is one of the following:

K Isomorphism type of K |GAP ID [16, #]

G x GG x (G xG),C2 [16, 3], [16, 4]
G x Cg, G x Cg [16,5],[16, 6]
Cx G [16,10]

@3 G x (G4 x G), Dg x G|[16, 3], [16, 11]
G, Qe x G [16,14],[16,12]

Ds G x (G x G), C? [16,3],[16, 4]
Dsg, SD16 [16,7],[16, 8]
Q16,08 x G [16,9], [16, 11]

Qs C2, Qs x G [16,4],[16,12]

For each isomorphism type of K we compute a representative cocycle.



Let K = G4 x G, and consider the presentation

K={(abc|a®=1,b=c,c2=1,b"=b,c? =c,c’ =c).
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K={(abc|a®=1,b=c,c2=1,b"=b,c? =c,c’ =c).
The possible central extensions of K by C, are given by
K=Liy,={(abc,z|a®=2 b =c,c?=2zb"=bz" 2=1)
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Let K = G4 x G, and consider the presentation
K={(abc|a®=1,b=c,c2=1,b"=b,c? =c,c’ =c).
The possible central extensions of K by C, are given by
K=Liy,={(abc,z|a®=2 b =c,c?=2zb"=bz" 2=1)
with (i, k,r) € Z3.
From the central extension 1 — C, —» g prre 5K —1takealift /: K — Li k,r and
compute the 2—cocycle

Gik,r (0, v) = () (V) (uv) 7). (6)

Wi k,r (U, V)]uvek =

1 1 1 1 1 1 1 1

1 (-1)f 1 1 (=1)f (-1) 1 (=1)f

L (=1)" 1 L (=1 (-1) (1) (1)t

1 1 (=1F 1 (=) (=1)k (-1)¥

1 (_1)i+r 1 1 (_1)i+r (_1)i+r (_1)k (_1)i+k+r

1 (-1) 1 (=1)% (=1) (1) (=1)k (—1)k

1 (=1)7  (=1)% (=1)k (1)Kt (=Rt (1) (—1)ktr

1 (_1)i+r (—l)k (_1)k (_1)i+k+r (_1)i+k+r (_1)k (_1)i+k+r



There is a choice in the calculation of the cocycle 1; ., but two cocycles from the
same central extension differ by a coboundary.



There is a choice in the calculation of the cocycle 1; ., but two cocycles from the
same central extension differ by a coboundary.

The elements in the group of couboudaries B?(Cy x Cy, ;) are determined as follows:

11 1 1 1 1 1 1
11 v 6 v & pye ~pe
1 v a Bayd ve af aye
c |16 B 1 e 9 I3 €
@BY8E =]y avde a BYS aBy ae ’
1 6 ~v0ed pyd 1 pByd  ~ée
1pye af BapyByd o afyde
|1 Bve ave € ae 7de afyie «

where a, 8,7, 8, € (—1).



Block structure - Example

From the description

H = |:’l,b(ki7kj)[d> (k,‘kjnkjm)}

n,m€N:| ki ki €K.



Block structure - Example

From the description

H = |:w(ki7kj)[¢ (k,‘kjnkjm)}

"vme"’} ki ki €EK.

Every CHM with indexing group G = (G x () x Cp is equivalent to a matrix

Hi(S, T, UV, W, X, Y, Z)30500 T =

S T? Ub Ve Wab )G ch Zabc
T —1)is° wh G (—1)U® (—1)ivee Zbe (~1)yere
U (~1)we Vb ye (—1) X (~1)'z% (—1)ksbe  (—1)kfrate
v X2 Yb (—1)kse Zzab (—1)kT* (—1)kube (—1)kwebe 5
W (—1)*1 U2 Xxb Z€ (—1)itrveb (Cp)itryse (Lpjkpbe (_q)itkergabe
X (C1)ive Zb (“1)kTP (C1)iye (—1)itksee (L1)kwbe  (J1)itkyabe
% —1)'238 (_1)k5b (_1)kUb (_1)k+r7—ab (_1) +rpac (_1)kvbc (_1)k+rxabc
z (_1)i+r y? (_l)k Tb (_l)k wb (_1)i+k+rsab (_l)i+k+rUac (_l)kXbc (_1)H~k+r yabe

(Ca,B,~,6,e ® Jp),



Block structure - Example

From the description

H = |:w(ki7kj)[¢ (k,‘kjnkjm)}

"vme"’} ki ki €EK.

Every CHM with indexing group G = (G x () x Cp is equivalent to a matrix

Hi(S, T, UV, W, X, Y, Z)30500 T =

S T? Ub Ve Wab )G ch Zabc
T —1)is° wh G (—1)U® (—1)ivee Zbe (~1)yere
U (~1)we Vb ye (—1) X (~1)'z% (—1)ksbe  (—1)kfrate
v X2 Yb (—1)kse Zzab (—1)kT* (—1)kube (—1)kwebe 5
W (—1)*1 U2 Xxb Z€ (—1)itrveb (Cp)itryse (Lpjkpbe (_q)itkergabe
X (C1)ive Zb (“1)kTP (C1)iye (—1)itksee (L1)kwbe  (J1)itkyabe
% —1)'238 (_1)k5b (_1)kUb (_1)k+r7—ab (_1) +rpac (_1)kvbc (_1)k+rxabc
z (_1)i+r y? (_l)k Tb (_l)k wb (_1)i+k+rsab (_l)i+k+rUac (_l)kXbc (_1)H~k+r yabe

(Ca,B,~,6,e ® Jp),

where G4 x G, = (a, b, ¢), i, k,r € {0,1}, o, 8,7,6,e € (—1), Jp denotes the all 1's
matrix of size p X p, and ® and ® denote the Kronecker and Hadamard products of
matrices, respectively.



Block structure

Theorem

Every CHM H of order 8p, with p > 3 prime, and indexing group G = K x N, where
|K| =8 and N = Cp,, is equivalent to one of four block matrices:

Hi=H1(S, T,U,V, W, X, Y, 2)255000 for K=Cix G

Ho = Ho(S, T, U, V, W, X, Y, Z)j;f’[;f;‘;gkv'ﬁ»* for K = C3

Hy = H3(S, T,U,V, W, X, Y, Z)2550k for K = Dg

Ho=Ha(S, T, U, V. W, X, Y, 2)5900 . for K = Qs

where (G4 X G) = (a, b, c), i,k,r € {0,1} and «, B3,7,6,c € (—1).



Towards a classification algorithm

We aim to establish a construction algorithm to classify CHMs of order 8p.
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We aim to establish a construction algorithm to classify CHMs of order 8p.

Ideas to trim the search space:

e Reducing the coboundary space.

e Establishing Hadamard equivalences that preserve the block structures.



Towards a classification algorithm

We aim to establish a construction algorithm to classify CHMs of order 8p.

Ideas to trim the search space:

e Reducing the coboundary space.
e Establishing Hadamard equivalences that preserve the block structures.

e Controlling eigenvalues of the block matrices.
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Can we get rid of coboundaries?



Coboundary space reduction

Can we get rid of coboundaries?

For example, let G = (C3) x Cp.

Ha(S, T UV, W, X, Y, 9200 hllons:t

s ra ub Ve wab xac ybe Zabe
T (1)is? awb BXE (1) av?® (1) pvac s5zbe (-1)/5yabe
U () aw? (1ysb yY€ (1ytraTab (1) aBsz2¢ (1 yjvbe  (aytrpysxabe
v (-1)58x2 (_l)t,yyb (-l)ksc (-1)5“@752"" (_1)k+5‘37—ac (_1)k+t,yubc (-1}k+5+t<mﬁwabc
w (»1)f+’(\Ua (»1)1'0‘7-[: a2 (»1)i+j+rsab (-1)’.+r(\,9'7'Yac (-1)j(y;3"/XbC (»1)’.+j+’u76\/abc
X (,1)/'+S;3va (—1)tg’i’y5Zb (71)k BTC (71)/'+s+t(h@ﬁ’ yab (71)i+k—ssac (71)k+tﬂﬂﬁr whbe (71)m-j-r‘ﬁ,wguabc
Y (71)r+sdza (71)/'+t7vb (71)k7Uc (,1)’77"'*(23”/)(3" (71)k+r+s(ugﬁrwac (71)/+k+r5bc (71)m—i(§7—abc
I Z(-l)f+r+5§Ya(-l)j+tS'yéXb(-l)ku'yJWC (-1)”"’k(wsvab (-l)m'j’tﬁ')'dUac (»1)j+k+t57—bc (_1)msabc_



Coboundary space reduction

Can we get rid of coboundaries?
For example, let G = (C3) x Gp.

Hp(S, T, U, V, W, X, v, 2y brciiskors,t -

2B,7,8

[ S Ta ub awab ByXac ybe 5zabc 1
T (71)fsa awb B XE (71)1' yab (— 1)1' szbc (71)/' yabc
U (1) awd (1ysb VS (-1ytrrab (-1)r522¢ (1Y (-1 tr gyxabe
(-1)SByXx2 (-1)‘ yb (_Uksc (_1)s+r5zah (_1)k+s Tac (»1)k+tubc (_1>k+s+tawahc

aW (71>i+rua (71)ij §2€ (71)1'+j+rsab (71)i+ryac (—1)jﬁ'yXbc (71)f+j+r

ByX (71)i+s (71)t»—zh (71>k TC (71)i+s+tyab (71)H~k+ssac (—l)H’tQWI’C (71)m—j—rUabc
Y (_1)r+s§Za (_1)j+t (-1)kUC (-l)m”.’kﬁwxah (.1)k+’+5awﬂﬂ (_1)j+k+t5bc (-l)m’iT"bC

| oz (r)itrtsya (yttgaxb (nkawe (1)m-k (1)mi-tyac (qytk+tybe (-1)ymsabe |




Coboundary space reduction

Can we get rid of coboundaries?

For example, let G = (C3) x Gp.

Ho(S, T, U, V, W, X, Y, z)"'bvcv”fé"*"svt =

Vs

[ S Ta ub Ve awab ByXac ybe 5zabc 1
T (1)'s? awb ByXE (1)ub (—1)iyVv2e szbc (1)l yabe
U () aw? (1ysb Ve (1 trpae (1)r5z2¢ (1favbe (1) gyxabe
WV (1)58yXA (tyb  (pkse (1)5Ttszab (pktsTac  (pkttybe (pyktsttopabe
aW (71>i+rua (71)j-,—b 52¢ (71)l'+j+rsab (71)i+ryac (—1)j[i'yXbc (71)f+j+r vabe
ByX (71)i+s va (71)t[)—zh (71>k TC (71)i+s+tyab (71)H~k+ssac (71)k+tawhc (71)m—j—rUabc
Y (Urtssza (apttovb (kue (ymitkgayxab  (pktrtsqwac  (qyitkttgbe (-1)m-i Tabe

I 52 (71)i+r+s ya (—1)j+‘,’iwxb (71)kawc (71)m-k, vab (71)m-j-tuac (71)j+k+rTbc (71)m5abc ]

Hence,

Hy = Ha(S, T, U, V, W, X, Y, Z)f}",‘w'kav’*st =Ho(S, T, U, 7V, aW, By X, Y, 8Z)7 05 ihkonst



Coboundary space reduction

Proposition
Let
Hi=Ha(S, T, U, V, W, X, Y, Z)25000 T Hy = Ha(S, T, U, V, W, X, Y, Z)20 50 kst

(oS MONE]

Hi=Ha(S, T, U, V, W, X, Y, Z)205055 Hy = Ha(S, T, U, V, W, X, Y, Z)2050

«,B,v,0,e

Then )
Hi = Hi(S, T, U, aV,yW, adX, aBY, aneZ) 000k

Ho = Ho(S, T, U, 7V, aW, By X, Y, 82)7 5 ort
Hs = Hs(S, T,B:U, V, W, X, exY, 62)2597F

Hi = Ha(S, T, U, oV, W, BX, 7Y, 62Z)0:50



Coboundary space reduction

Proposition
Let
Ho=Ha(S, T, U, V, W, X, Y, 22050 T My = Ha(S, T, U, V, W, X, Y, )50 onst

(oS MONE]

Hs = Hs(S, T, U, V, W, X, Y, Z)>0elik = 3,(S, T, U, V, W, X, Y, Z)"2c0r

a,B,7,8,¢ a,B,7,5,¢e"

Then )
Hi = H.(S, T, U, YW, ad X, aBY, (y'ygz)iiij;:'f‘kl,r

Hy = Ha(S, T, U, 7V, aW, B X, Y, 8Z)7 2 0 konst

Hs = Hs(S, T,B:U, V, W, X, exY, 62)2597F

Hi = Ha(S, T, U, oV, W, BX, 7Y, 62Z)0:50

In the following, let
Hi=Hi(S, T, UV, W, X, Y, Z)00ehhr gy = 305(5, T, U, V, W, X, ¥, Z)7beniknet

Hs = Ha(S, T, U, V, W, X, Y, 22550 He = Ha(S, T, U, V, W, X, ¥, Z)22:50".



Coboundary space reduction

Proposition
Let
Hi=Hi(S, T,U,V, W, X, Y, Z)2000 0 Hy, = 31,(S, T, U, V, W, X, Y, 2)25 0 0kenst

a,B,7,0,e

Hy = H3(S, T, U, V, W, X, Y, Z)225 00 Hy = Ha(S, T, U, V, W, X, Y, 2)25507 .

Then )
Hi = Hi(S, T, U, oV, yW, adX, aBY, areZ) 000k

Ho = Ha(S, T, U, vV, aW, ByX, Y, 6Z2)7 oot

Hs = H3(S, T,B:U, V, W, X, exY,52)2550F

Hy = Ha(S, T, U, 0V, W, BX, 7Y, 6 Z2)7 71"

N5

In the following, let
Hy = Hi(S, T, U, V, W, X, Y, Z)a,b,c,i,k,r Hy = Ha(S, T, U, V, W, X, Y, Z)a,b,c,i,j,k,r,s,z
Hs = H3(S, T, U, V, W, X, Y, Z)2belbk Hy = 3,(S, T, U, V, W, X, Y, Z)bbeir,



Block-structure-preserving equivalences

Can we multiply rows/columns of Hi, ..., Hs by —1 preserving their block structure?



Block-structure-preserving equivalences

Can we multiply rows/columns of Hi, ..., Hs by —1 preserving their block structure?

Hy = Hi(S, T, U, V, W, X, Y, Z)5b:cikr —

S T2 Ub ve wab xac ybe zabc
T (71)/'53 Wb X€ (71)/'Uab (71)/'\/25 Zbc (71)fyabc
U (-1)we vb ye¢ (71)rXab () gzec (71)k5bc (71)k+rTabc
v X2 vb  (—1)kse Zab (—nkT3e  (—1)kube (=1)kwabe
wWo(=1)itrue xb 7€ (—1)ftrveb  (pyitryac (_pykpbe (_pyitkirgabe
X (71)iva zb (71)k Tb (71)iyab (712i+ksac (71)kac (71)i+kuabc
Y (—l)rZaa (_l)ksb (—l)kUb (-1 k+tr gab (-1) +ryyac (-1 k\/bc (-1 ktr ycabc
7 (_1)i+rya (—l)k Tb (_1)ka (_1)H~k+rsab (_1)H~k+ruac (_1)kXbc (_1)i+k+rvabc



Block-structure-preserving equivalences

Can we multiply rows/columns of Hi, ..., Hs by —1 preserving their block structure?

Hy = Hi(S, T, U, V, W, X, Y, Z)»b:csiskor =

_s Ta ub e _wab xac ybe _ zabe
_T (71)"53 Wb _X°¢ 7(71)iuab (71)1'\/3:: Zbc 7(71)iyabc
U (—1)’Wa vb _yc 7(_1)1Xab (_1)rza|: (_1)ksbc 7(_1)k+r Tabc
—v xa yb _(_1)k5c _zab (_l)kTac (_1)kubc _(_l)kWabc
—w (_1)H~rua xb _zc 7(_1)f+r vab (_1)i+r yac (—l)k Tbe 7(_1)H~k+r$abc
_X (71)/'\/3 zb  _(_q)kTb 7(71)fyab (71)i+k$ac (71)k Wwhbe 7(71)i+kuabc

(-1)
Y (21)0Z% (—1kSP —(—1)kUb  —(—1)kFrTab  (Spktryec (Cpkybe  _(_qyktrxabe
7 (—1)rya (—DkTE _(Cnkwb —(—1)itktrsab (Lyyitkbryac (_qykxbe  _(_q)iftktryabe



Block-structure-preserving equivalences

Can we multiply rows/columns of Hi, ..., Hs by —1 preserving their block structure?

Hy = Hi(S, T, U, V, W, X, Y, Z):b:cikr =

_S T2 Ub _ye o Wab xac ch 7Zabc
T 7(71)’.5"' 7Wb X€ (71)/'Uab 7(71)/‘\/36 7Zbc (71)iyabc

U —(—1)'w? _yb ye (71)rXab (=0 =E 7(71)k5bc (71)k+rTabc
_v S xe vb  _(—1)kse . _zab (71)kTac (—1)kube 7(7.1)k wabe
—w (71)1+fua xb _zc 7(71)l+r“/ab (71)1‘+ryac (71)k The —(=il l+{<+rsabc
X 7(71):\/3 7Zb (71)ka (71)1Yab 7(7121+ksac 7(71)kac (71)I+kUabc

Y 7(—1)’2‘33 7(_1)k5b (—l)kUb (-1 k+tr gab —(=1) +ryyac 7(_1)kvbc (-1 k+r xabc

_z (_1)/+rya (—l)ka _(_1)ka _(_1)H~k+rsab (_1)i+k+rUac (_1)kXbc _(_1)i+k+rvabc



Block-structure-preserving equivalences

Can we multiply rows/columns of Hi, ..., Hs by —1 preserving their block structure?

Hy = Hi(S, T, U, V, W, X, Y, Z):b:cikr =

_S T2 Ub _ye o Wab xac ch 7Zabc
T 7(71)’.5"' 7Wb X€ (71)/'Uab 7(71)/‘\/36 7Zbc (71)iyabc

U —(—1)'w? _yb ye (71)rXab (=0 =E 7(71)k5bc (71)k+rTabc
_v S xe vb  _(—1)kse . _zab (71)kTac (—1)kube 7(7.1)k wabe
—w (71)1+fua xb _zc 7(71)l+r“/ab (71)1‘+ryac (71)k The —(=il l+{<+rsabc
X 7(71):\/3 7Zb (71)ka (71)1Yab 7(7121+ksac 7(71)kac (71)I+kUabc

Y 7(—1)’2‘33 7(_1)k5b (—l)kUb (-1 k+tr gab —(=1) +ryyac 7(_1)kvbc (-1 k+r xabc

_z (_1)/+rya (—l)ka _(_1)ka _(_1)H~k+rsab (_1)i+k+rUac (_1)kXbc _(_1)i+k+rvabc

Thus,

Hi = Hi(=S, T, U,—V,-W, X, Y,-Z)bcikr



Block-structure-preserving equivalences

Proposition
Hy = 41 Hi(=S, T, U, =V, —W, X, Y, —Z)>beikr

Hy = £1H3(=S, T, —U, =V, W, X, =Y, Z)2bc i kors:t

Hy = +1 Ho(—T, -V, W, =X, Y, =S, Z, U)>>0" = 11 H4(~T,V,-W, =X, Y, S, —Z, U)>beir
£ £

=41 Hy(~T,V, W, —X,—Y,S,Z, —U)>>"" = 41 H (T, -V, -W, X, Y, =S, —Z, U)>ehr
£ &

=41 Ho(T, -V, W, X, =Y, =5, Z, —U)2P0 = £1 Hy (T, V, —-W, X, Y, S, —Z, —U)2bebir

Hy = +1Ho(a1S, & T, e3U, eV, esW, X, e Y, egZ) 0 rkors:t

where ¢/ € {£1}, for | =1,...,8, and exactly three of e1, e, e3, e4 and one of
es, €, €7, €g are —1.
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Can we rearrange the blocks of Hi, ..., Hs preserving their structure?



Block-structure-preserving equivalences

Can we rearrange the blocks of Hi, ..., Hs preserving their structure?

Hi = H1(S, T, U, V, W, X, Y, Z)Bb:eikr —

S T2 Ub ve Wab xac ch Zabc
T (~1)is? wh x¢ (~1)iU® (—1)ivae Zbe (—1)iyabe
U (_l)rwa vb ye (_1)rXab (_1)rzac (_1)ksbc (_1)k+r7—abc
v X2 yb (_l)ksc zab (_l)k-,—ac (_1)kubc (_l)kwabc
w (_1)H~rUa xb z¢ (_1)i+rvab (_1)H~ryac (_1)k7—bc (_1)i+k+rsabc
X (—l)iVa zb (_l)k-,—b (_l)iyab (_1)f+k$ac (_1)kac (_1)f+kuabc
Yy 71‘)rzaa (71)k5b (=il kyb (71.)k+r Tab (71.)k+rWac (71)k vbe (7.1)k+rxzbc
Z (—1)Tys (kTP (Cnkwb (—1)itktrsab (yyitktryac (_qykxbe (_y)ithtryabe



Block-structure-preserving equivalences

Can we rearrange the blocks of Hi, ..., Hs preserving their structure?

Hy = Hi(S, T, U, V, W, X, Y, Z)»beikr =

S T2 ub ve wab xac y be zabe
T (-1)is? wh x¢ (~1)iUs (~1)ive Zbe (—1)iyobe
U (—1wa vb ye (—1)7x3 (=1)7Z% (—1)ksbe  (_pykbrpabe
v X2 Yb (71)k5c Zab (71)k Tac (71)kubc (71 kWabc
w (_1)i+rUa xb z< (_1)H~rvab (_1)i+ryac (_1)/( Tbe (_1)i+ +rsabc
X (_1)1'\/3 zb (_1)k Tb (_l)iyab (_1)i+ksac (_1)kac (_1)i+kuabc
Yy —1)'Z% (_l)ksb (—l)kUb (_1)k+r Tab (_1)k+rWac (—l)k vbe (_1)k+rx.abc
z (71)/'+rYa (71)k Tb (71)ka (71)H~k+r5ab (71)/'+k+ruac (71)kxbc (71)i+k+rvabc



Block-structure-preserving equivalences

Can we rearrange the blocks of Hi, ..., Hs preserving their structure?

Hy = Hi(S, T, U, V, W, X, Y, Z)»beikr =

T (—1)is? wh x¢ (—1)iu (—1)ivae Zbe (—1)iyabe
S T2 Ub ve Wab xac ch Zabc
U (—1we vb ye (=1)rx (=1)7Z% (—1)ksbe  (_pyktrabe
v X2 Yb (71)k5c Zab (71)k Tac (71)kubc (71 kWabc
w (_1)i+rUa xb z< (_1)H~rvab (_1)i+ryac (_1)/( Tbe (_1)i+ +rsabc
X (_1)1'\/3 zb (_1)k Tb (_l)iyab (_1)i+ksac (_1)kac (_1)i+kuabc
Yy —1)'Z% (_l)ksb (—l)kUb (_1)k+r Tab (_1)k+rWac (—l)k vbe (_1)k+rx.abc
z (71)/'+rYa (71)k Tb (71)ka (71)H~k+r5ab (71)/'+k+ruac (71)kxbc (71)i+k+rvabc



Block-structure-preserving equivalences

Can we rearrange the blocks of Hi, ..., Hs preserving their structure?

Hy = Hi(S, T, U, V, W, X, Y, Z)»beikr =

T (—1)is? wh x¢ (—1)iu (—1)ivae Zbe (—1)iyabe
S T2 Ub ve Wab xac ch Zabc
w (71)"+fUa xb zc (71)i+r“/ab (-1 i'+ryac (71)k7—bc (71)i+f<+rsabc
X (71)1\/3 Zb (71)k Tb (71)1Yab (71)1+ksac (71)kac (71)1+kuabc
U (_1)rWa vb ye< (_l)rxab (_1)rZac (_1)k5bc (_1)k+r-’—abc
v } X2 yb (_1)k5c . zab (‘_1)k Tac (_1)kch (jl)kWabC
z (_1)1+rya (—l)k Tb (—l)ka (_1)r+k+rsab (_1)/+k+ruac (_l)kXbc (_1)l+k+rv.abc
Yy (71)’233 (71)k5b (71)kUb (71)k+r Tab (71)k+rwzc (71)k vbe (71)k+rxzbc



Block-structure-preserving equivalences

Can we rearrange the blocks of Hi, ..., Hs preserving their structure?

Hy = H1(S, T, U, V, W, X, Y, Z)»b:cikr =

T 52 wb X< Uab vac Zzbe yabc
s (_1)1'7—.3 Ub ve (_1)iWab (_1)1'Xac ybe (_1)[Zabc
w (-1)v? xb 7€ (=iy vab (—1)ryae (—l)k Tbe (_1)k+rsabc
X va Zb (71)k Tb Yab (71)k5ac (71)k Wbc (71)k Uabc
U (71)i+rwa \/b ye (71)i+rXab (71)i+rzac (71)k5bc 1 i+k+r—l-abc
v (71)")(3 yb (71)ksc (71)1'Zab (71)i+k Tac (71)kUbC (71)i+k wabe
z (—1y? (—1)kTb (Z1)kwd =1 k+r gab (il)kﬁ»ruac (—1)kxbe  (pyktryabe
Y (71)1+rzaa (71)k5b (71)kUb (71)l+k+r Tab (71)1+k+rWac (

71)k vbe (71)H~k+rxabc



Block-structure-preserving equivalences

Can we rearrange the blocks of Hi, ..., Hs preserving their structure?

Hy = H1(S, T, U, V, W, X, Y, Z)»b:cikr =

T 52 wb X< Uab vac Zzbe yabc
s (_1)1'7—.3 Ub ve (_1)iWab (_1)1'Xac ybe (_1)[Zabc
w (-1)v? xb 7€ (=iy vab (—1)ryae (—l)k Tbe (_1)k+rsabc
X va Zb (71)k Tb Yab (71)k5ac (71)k Wbc (71)k Uabc
U (71)i+rwa \/b ye (71)i+rXab (71)i+rzac (71)k5bc 1 i+k+r—l-abc
v (71)")(3 yb (71)ksc (71)1'Zab (71)i+k Tac (71)kUbC (71)i+k wabe
z (=1)Y2 (—1)kTb (—1)kwd (—1)ktrsab (—1)ktryae (—pykxbe  (pyktryabe
Y (71)H"Zaa (71)k5b (71)kUb (71)i+k+r Tab (71)i+k+rWac (71)k vbe (71)H~k+rxabc

Hi = Hi(T,S, W, X, U, V,Z,Y)>beikr



Block-structure-preserving equivalences

Proposition

Hy = Ha(T,S, W, X, U, V, Z, Y)"beikr
Hy = Ho(T, S, U, V, W, X, Y, Z)"eiikrst —a,(y W, v, Y, X,Z,8, T)»beiiknst

2(X,V,Z,T,Y,S,W, U a,b,c,i,j,k,r,s,t = HZ(Y, Z,S,U, T, W, V7X)a‘b,c./',j,k,r‘s,t

( )
2V, X, Y, 8,Z, T, U, W)»>ohhknst — q0,(W, X, Z, T, Y, S, W, U)y>heiiknet
( )
22, Y, T, W, S U, X, v)»beiibnst

Hs = H3(T,S, W, X, U, V, Z, y)sbehiknst

H4E’H4(T,V,W,X,Y,S.ZA,U)“’C"_7'[4(U Z,V, Y, T, W,S, X)20en
= Ha(V, X, Y, 5,2, T, U, W22 = Hy(W, U, X, Z,V, Y, T,S)20er
=Ha(X,S,Z, T, U, V, W, Y)2P = 1, (Y, W, S, U, X, Z,V, T)20
=Ho(Z,Y, T, W,S, U, X, V)2ehr



Block-structure-preserving equivalences

So we know H; = H1(T,S, W, X, U,V,Z, Y)a*b*cv"’k*’ but can we do any better?



Block-structure-preserving equivalences

So we know H; = H1(T,S, W, X, U,V,Z, Y)a*b*cv"’k*’ but can we do any better?

Proposition

HL(S, T, U, V,W,X,Y,Z)>bei0r = 90(T S, W, X, U, V,Z,Y)>bei0r

Hi(U, W, V,Y,X,2,S, T)b0r =9y(V, X, Y,5,Z2, T,U,W

Hi(W,U,X,Z,V,Y, T,S)>be0r =9y(X,V,Z,T,Y,S,W,U
(

HA(Y,Z,8, Y, T,W,V,X)>0ei0r = (2, v, T,W,S,U, X,V

a,b,c,i,0,r —

a,b,c,i,0,r —

—_ — — —

a,b,c,i,0,r

with (i, r) € {(0,1), (1,0), (1,1)}.



Block-structure-preserving equivalences

So we know H; = H1(T,S, W, X, U,V,Z, Y)a*b*‘*f’k*’ but can we do any better?

Proposition

Hi(S, T, U, V,W,X,Y,Z)>bel00r =9 (T, S, W, X, U, V, Z, Y)>bel0r

Hi(U, W, V,Y,X,2,S, T)b0r =9y(V, X, Y,5,Z2, T,U,W

Hi(W,U,X,Z,V,Y, T,S)>be0r =9y(X,V,Z,T,Y,S,W,U
(

HA(Y,Z,8, Y, T,W,V,X)>0ei0r = (2, v, T,W,S,U, X,V

a,b,c,i,0,r —

a,b,c,i,0,r —

—_ — — —

a,b,c,i,0,r

with (i, r) € {(0,1), (1,0), (1,1)}.

There are more block-structure-preserving equivalences arising from the specialisation
of the “actions” a, b, ¢, and the parameters i,j, k,r,s, t and a,e¢.



Control of eigenvalues

Recall
Hy = Hi(S, T, U, V, W, X, Y, Z)"0ehkr fy = 1,(S, T, U, V,W, X, Y, Z)"bciibkrst
Hy = H3(S, T, U, V, W, X, Y, Z)20ebik = Hy (S, T, U, V, W, X, Y, Z)2behr
From the equation
H;H" = 8plg,,,

for i =1,2,3,4, it follows that

SST ...+ 277 =8pl,.



Control of eigenvalues

Recall
Hy = Hi(S, T, U, V, W, X, Y, Z)"0ehkr fy = 1,(S, T, U, V,W, X, Y, Z)"bciibkrst
Hy = H3(S, T, U, V, W, X, Y, Z)20ebik = Hy (S, T, U, V, W, X, Y, Z)2behr
From the equation
H;H" = 8plg,,,

for i =1,2,3,4, it follows that

SST ...+ 277 =8pl,.

The gramians SST,...,ZZT are symmetric and circulant, and hence polynomials in
the permutation matrix P of the p-cycle (1,2,...,p).



Control of eigenvalues

Recall
Hy = Hi(S, T, U, V, W, X, Y, Z)"0ehkr fy = 1,(S, T, U, V,W, X, Y, Z)"bciibkrst
Hy = H3(S, T, U, V, W, X, Y, Z)20ebik = Hy (S, T, U, V, W, X, Y, Z)2behr

From the equation
H;H" = 8plg,,,

for i =1,2,3,4, it follows that

SST ...+ 277 =8pl,.

The gramians SST,...,ZZT are symmetric and circulant, and hence polynomials in
the permutation matrix P of the p-cycle (1,2,...,p).

The gramians SST, ..., ZZT commute in pairs and are simultaneously diagonalisable.



Control of eigenvalues

Fori=1,...,8and R€{S,...,Z}, let
AiR

)

denote the i-th eigenvalue of RRT.

If AC{S,...,Z} then for i =1,...,8 we have

> Air <8p. (7)

REA

These inequalities can help to trim the search spaces significantly.



Algorithm

This algorithm describes a method to classify all CHMs Hi, Ha, Hs, Hy of order 8p
with p > 3 prime up to equivalence.

Let s, ...,z the sums of the first rows of the blocks S, ..., Z, respectively.

Input: a prime p > 3
Output: a list of all CHMs of order 8p, up to equivalence

1: initialise L as an empty list

2: determine all decompositions D = {(s,...,z) € Z8 | s> 4+ --- + z?> = 8p}

3: discard the element of D that produce equivalent matrices

4: for (s,...,z) € Ddo

53 construct S as the set of back-circulant matrices over 1 of order p with row
6 sum s (that satisfy the eigenvalue constraint)

7 similarly, construct 7,U,V, W, X, ), Z.

8 for (S,...,Z) € § x --- x Z satisfying the eigenvalue constraints do
9: construct Hy, Ha, Hs, Hy.

10: if H; is Hadamard and H ¢ L up to equivalence then add H; to L.
11: return L.

12:



Algorithm

This algorithm describes a method to classify all CHMs Hi, Ha, Hs, Hy of order 8p
with p > 3 prime up to equivalence.

Let s, ...,z the sums of the first rows of the blocks S, ..., Z, respectively.

Input: a prime p > 3
Output: a list of all CHMs of order 8p, up to equivalence

1: initialise L as an empty list

2: determine all decompositions D = {(s,...,z) € Z8 | s> 4+ --- + z°> = 8p}

3: discard the element of D that produce equivalent matrices

4: for (s,...,z) € D do

5y construct S as the set of back-circulant matrices over +1 of order p with row
6 sum s (that satisfy the eigenvalue constraints)

7 similarly, construct 7,U,V, W, X, ), Z.

8 for (S,...,Z) € § x --- X Z satisfying the eigenvalue constraints do
9: construct Hy, Ha, H3, Ha.

10: if H; is Hadamard and H ¢ L up to equivalence then add H; to L.
11: return L.

12: print Thank you!



