A Framework for Classifying Cocyclic HMs of Order $8 p$

Santiago Barrera Acevedo

School of Mathematics
Monash University

Hadamard matrices

A Hadamard matrix (HM) of order n is an $n \times n$ matrix H with entries from $\{ \pm 1\}$ such that

$$
\begin{equation*}
H H^{\top}=n I_{n} \tag{1}
\end{equation*}
$$

where I_{n} is the identity of order n.

Hadamard matrices

A Hadamard matrix (HM) of order n is an $n \times n$ matrix H with entries from $\{ \pm 1\}$ such that

$$
\begin{equation*}
H H^{\top}=n I_{n} \tag{1}
\end{equation*}
$$

where I_{n} is the identity of order n.

- Hadamard was interested in finding the maximal determinant of square matrices of order n with entries from the unit disc. ${ }^{\dagger}$

Jacques Salomon Hadamard
(Versailles 1865 - Paris 1963)

[^0]
Hadamard matrices

A Hadamard matrix (HM) of order n is an $n \times n$ matrix H with entries from $\{ \pm 1\}$ such that

$$
\begin{equation*}
H H^{\top}=n I_{n} \tag{1}
\end{equation*}
$$

where I_{n} is the identity of order n.

- Hadamard was interested in finding the maximal determinant of square matrices of order n with entries from the unit disc. ${ }^{\dagger}$
- Hadamard showed that such maximal determinant, $n^{n / 2}$, is achieved by matrices with entries from the set $\{ \pm 1\}$ if and only if they satisfy (1).

Jacques Salomon Hadamard
(Versailles 1865 - Paris 1963)

[^1]
Hadamard matrices

A Hadamard matrix (HM) of order n is an $n \times n$ matrix H with entries from $\{ \pm 1\}$ such that

$$
\begin{equation*}
H H^{\top}=n I_{n} \tag{1}
\end{equation*}
$$

where I_{n} is the identity of order n.

- Hadamard was interested in finding the maximal determinant of square matrices of order n with entries from the unit disc. ${ }^{\dagger}$
- Hadamard showed that such maximal determinant, $n^{n / 2}$, is achieved by matrices with entries from the set $\{ \pm 1\}$ if and only if they satisfy (1).
- Hadamard showed that the order of a HM is necessarily 1,2 or $4 n$ for $n \in \mathbb{N}$.

Jacques Salomon Hadamard
(Versailles 1865 - Paris 1963)

[^2]
Equivalence of Hadamard matrices

- A driving force behind HM research is the Hadamard Conjecture, which asserts that for every positive integer n there exists a HM of order $4 n .{ }^{\ddagger}$

[^3]
Equivalence of Hadamard matrices

- A driving force behind HM research is the Hadamard Conjecture, which asserts that for every positive integer n there exists a HM of order $4 n .{ }^{\ddagger}$
- Since the number of HMs of order $4 n$ appears to grow rapidly with n (which contrasts with the Hadamard Conjecture), it is necessary to introduce an equivalence relation on the set of HMs .

[^4]
Equivalence of Hadamard matrices

- A driving force behind HM research is the Hadamard Conjecture, which asserts that for every positive integer n there exists a HM of order $4 n .{ }^{\ddagger}$
- Since the number of HMs of order $4 n$ appears to grow rapidly with n (which contrasts with the Hadamard Conjecture), it is necessary to introduce an equivalence relation on the set of HMs.
- The group $\operatorname{Mon}(\boldsymbol{n},\{ \pm \mathbf{1}\})$ of all pairs of $\{ \pm 1\}$-monomial matrices (signed permutation matrices) of order n acts on the set of $\{ \pm 1\}$-matrices of order n via

$$
\begin{equation*}
(P, Q) \cdot M=P M Q^{\top} . \tag{2}
\end{equation*}
$$

[^5]
Equivalence of Hadamard matrices

- A driving force behind HM research is the Hadamard Conjecture, which asserts that for every positive integer n there exists a HM of order $4 n .{ }^{\ddagger}$
- Since the number of HMs of order $4 n$ appears to grow rapidly with n (which contrasts with the Hadamard Conjecture), it is necessary to introduce an equivalence relation on the set of HMs.
- The group $\operatorname{Mon}(n,\{ \pm 1\})$ of all pairs of $\{ \pm 1\}$-monomial matrices (signed permutation matrices) of order n acts on the set of $\{ \pm 1\}$-matrices of order n via

$$
\begin{equation*}
(P, Q) \cdot M=P M Q^{\top} . \tag{2}
\end{equation*}
$$

- Two HMs H and H^{\prime} are equivalent if they lie in the same $\operatorname{Mon}(n,\{ \pm 1\})$-orbit.

[^6]
Classification of Hadamard matrices

- The classification of HMs of orders less than 30 , up to equivalence, was achieved through the efforts of numerous mathematicians in the 1980s and 1990s ${ }^{\dagger}$

n	1	2	3	4	5	6	7
\# classes	1	1	1	5	3	60	487

[^7]
Classification of Hadamard matrices

- The classification of HMs of orders less than 30 , up to equivalence, was achieved through the efforts of numerous mathematicians in the 1980s and 1990s ${ }^{\dagger}$

n	1	2	3	4	5	6	7
\# classes	1	1	1	5	3	60	487

- The classification of HMs of order 32, up to equivalence, was achieved in 2012. ${ }^{\ddagger}$.

Hadamard Matrices of Order 32

Hadi Kharaghani ${ }^{1}$ and Behruz Tayfeh-Rezaie ${ }^{2}$

${ }^{\prime}$ Department of Mathematics and Computer Science, University of Lethbridge, Lethbridge, Alberta T1K3M4, Canada, E-mail: kharaghani@uleth.ca
${ }^{2}$ School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran

Received January 25, 2012; revised May 29, 2012

Published online 5 July 2012 in Wiley Online Library (wileyonlinelibrary.com). DOI $10.1002 /$ jcd. 21323

Abstract: Two Hadamard matrices are considered equivalent if one is obtained from the other by a sequence of operations involving row or column permutations or negations. We complete the classification of Hadamard matrices of order 32. It turns out that there are exactly $13,710,027$ such matrices up to equivalence. © 2012 Wiley Periodicals, Inc. J. Combin. Designs 21 : 212-221, 2013

[^8]
Classification of Hadamard matrices

- The classification of HMs of orders less than 30 , up to equivalence, was achieved through the efforts of numerous mathematicians in the 1980s and 1990s ${ }^{\dagger}$

n	1	2	3	4	5	6	7
\# classes	1	1	1	5	3	60	487

- The classification of HMs of order 32, up to equivalence, was achieved in 2012. ${ }^{\ddagger}$.
- There are exactly 13,710, 027 equivalence classes of HMs.

Hadamard Matrices of Order 32

Hadi Kharaghani ${ }^{1}$ and Behruz Tayfeh-Rezaie ${ }^{2}$

'Department of Mathematics and Computer Science, University of Lethbridge, Lethbridge, Alberta T1K3M4, Canada, E-mail: kharaghani@uleth.ca
${ }^{2}$ School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran

Received January 25, 2012; revised May 29, 2012

Published online 5 July 2012 in Wiley Online Library (wileyonlinelibrary.com). DOI $10.1002 /$ jcd. 21323

Abstract: Two Hadamard matrices are considered equivalent if one is obtained from the other by a sequence of operations involving row or column permutations or negations. We complete the classification of Hadamard matrices of order 32. It turns out that there are exactly $13,710,027$ such matrices up to equivalence. © 2012 Wiley Periodicals, Inc. J. Combin. Designs 21 : 212-221, 2013

[^9]
Classification of Hadamard matrices

- The classification of HMs of orders less than 30 , up to equivalence, was achieved through the efforts of numerous mathematicians in the 1980s and 1990s ${ }^{\dagger}$

n	1	2	3	4	5	6	7
\# classes	1	1	1	5	3	60	487

- The classification of HMs of order 32, up to equivalence, was achieved in 2012. \ddagger.
- There are exactly $13,710,027$ equivalence classes of HMs.
- Given the profusion of equivalence classes of HMs, even at small orders, it makes sense to ask for classifications of HMs of special types.

Hadamard Matrices of Order 32

Hadi Kharaghani ${ }^{1}$ and Behruz Tayfeh-Rezaie ${ }^{2}$
'Department of Mathematics and Computer Science, University of Lethbridge, Lethbridge, Alberta T1K3M4, Canada, E-mail: kharaghani@uleth.ca
${ }^{2}$ School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran

Received January 25, 2012; revised May 29, 2012

Published online 5 July 2012 in Wiley Online Library (wileyonlinelibrary.com). DOI 10.1002 jed. 21323

Abstract: Two Hadamard matrices are considered equivalent if one is obtained from the other by a sequence of operations involving row or column permutations or negations. We complete the classification of Hadamard matrices of order 32. It turns out that there are exactly $13,710,027$ such matrices up to equivalence. © 2012 Wiley Periodicals, Inc. J. Combin. Designs 21 : 212-221, 2013

[^10]
Cocyclic Hadamard matrices

- Cocyclic Hadamard matrices (CHMs) were introduced by de Launey and Horadam as a class of HMs with additional algebraic properties.

Cocyclic Development of Designs

K.J. HORADAM AND W. DE LAUNEY

Cyptomathematics Research, Communications Division, Electronics Research Laboratory, Defence Science and Technology Organisation, Australia.

Received Juty 10, 1992; Revised March 25, 1993

Abstract. We present the basic theory of coccclic development of designs, in which group development over a finite group G is modified by the action of a cocycle defined on $G \times G$. Negacylic and w-gclic development are both special cases of cocyclic development.

Techniques of design construction using the group ring, arising from difference set methods, also apply to cocyclic designs. Important classes of Hadamard matrices and generalized weighing matrices are cocyclic.

We derive a characterization of cocyclic development which allows us to generate all matrices which are cocyclic over G. Any cocyclic matrix is equivalent to one obtained by entrywise action of an asymmetric matrix and a symmetric matrix on a G-developed matrix. The symmetric matrix is a Kronecker product of back ω-cyclic matrices, and the asymmetric matrix is determined by the second integral homology group of G.

We believe this link between combinatorial design theory and low-dimensional group cohomology leads to (i) a new way to generate combinatorial designss, (ii) a better understanding of the structure of some known designs; and (iii) a better understanding of known construction techniques.

Cocyclic Hadamard matrices

- Cocyclic Hadamard matrices (CHMs) were introduced by de Launey and Horadam as a class of HMs with additional algebraic properties.

Cocyclic Development of Designs

K.J. HORADAM AND W. DE LAUNEY

Cyptomathematics Research, Communications Division, Electronics Research Laboratory, Defence Science and Technology Organisation, Australia.

Received Juty 10, 1992; Revised March 25, 1993

Abstract. We present the basic theory of cocclic development of designs, in which group development over a finite group G is modified by the action of a cocycle defined on $G \times G$. Negacylic and wcyclic development are both special cases of cocyclic development.
Techniques of design construction using the group ring, arising from difference set methods, also apply to cocyclic designs. Important classes of Hadamard matrices and generalized weighing matrices are cocyclic.

We derive a characterization of cocyclic development which allows us to generate all matrices which are cocyclic over G. Any cocyclic matrix is equivalent to one obtained by entrywise action of an asymmetric matrix and a symmetric matrix on a G-developed matrix. The symmetric matrix is a Kronecker product of back ω-cyclic matrices, and the asymmetric matrix is determined by the second integral homology group of G.

We believe this link between combinatorial design theory and low-dimensional group cohomology leads to (i) a new way to generate combinatorial designss, (ii) a better understanding of the structure of some known designs; and (iii) a better understanding of known construction techniques.

- Let G be a finite group and let A be a $\mathbb{Z} G$-module. A 2-cocycle ${ }^{\ddagger}$ (or simply cocycle) with coefficients in A is a map

$$
\begin{gather*}
\psi: G \times G \rightarrow A \text { such that } \\
\psi(g, h) \psi(g h, k)=\psi(h, k)^{g} \psi(g, h k), \text { for all } g, h, k \in G . \tag{3}
\end{gather*}
$$

[^11]
Cocyclic Hadamard matrices

- A coboundary is a cocycle of the form $\psi(g, h)=\phi(g) \phi(h) \phi(g h)^{-1}$ for a map $\phi: G \rightarrow A$.

Cocyclic Hadamard matrices

- A coboundary is a cocycle of the form $\psi(g, h)=\phi(g) \phi(h) \phi(g h)^{-1}$ for a map $\phi: G \rightarrow A$.
- In the following, let $A=C_{2}=\langle-1\rangle$ (with trivial $\mathbb{Z} G$-action).

A HM H of order $4 n$ is cocyclic with indexing group $G=\left\{g_{1}, \ldots, g_{4 n}\right\}$ if there exist a 2-cocycle $\psi: G \times G \rightarrow\langle-1\rangle$ and a map $\phi: G \rightarrow\langle-1\rangle$ such that

$$
\begin{equation*}
H \equiv\left[\psi\left(g_{i}, g_{j}\right) \phi\left(g_{i} g_{j}\right)\right]_{i, j} \tag{4}
\end{equation*}
$$

Cocyclic Hadamard matrices

- A coboundary is a cocycle of the form $\psi(g, h)=\phi(g) \phi(h) \phi(g h)^{-1}$ for a map $\phi: G \rightarrow A$.
- In the following, let $A=C_{2}=\langle-1\rangle$ (with trivial $\mathbb{Z} G$-action).

A HM H of order $4 n$ is cocyclic with indexing group $G=\left\{g_{1}, \ldots, g_{4 n}\right\}$ if there exist a 2-cocycle $\psi: G \times G \rightarrow\langle-1\rangle$ and a map $\phi: G \rightarrow\langle-1\rangle$ such that

$$
\begin{equation*}
H \equiv\left[\psi\left(g_{i}, g_{j}\right) \phi\left(g_{i} g_{j}\right)\right]_{i, j} \tag{4}
\end{equation*}
$$

- If ψ is trivial, then H is called group-developed.

Cocyclic Hadamard matrices

- A coboundary is a cocycle of the form $\psi(g, h)=\phi(g) \phi(h) \phi(g h)^{-1}$ for a map $\phi: G \rightarrow A$.
- In the following, let $A=C_{2}=\langle-1\rangle$ (with trivial $\mathbb{Z} G$-action).

A HM H of order $4 n$ is cocyclic with indexing group $G=\left\{g_{1}, \ldots, g_{4 n}\right\}$ if there exist a 2-cocycle $\psi: G \times G \rightarrow\langle-1\rangle$ and a map $\phi: G \rightarrow\langle-1\rangle$ such that

$$
\begin{equation*}
H \equiv\left[\psi\left(g_{i}, g_{j}\right) \phi\left(g_{i} g_{j}\right)\right]_{i, j} \tag{4}
\end{equation*}
$$

- If ψ is trivial, then H is called group-developed.
- Group developed HMs are known to have square order. ${ }^{\dagger}$

[^12]
Cocyclic Hadamard matrices

- A coboundary is a cocycle of the form $\psi(g, h)=\phi(g) \phi(h) \phi(g h)^{-1}$ for a map $\phi: G \rightarrow A$.
- In the following, let $A=C_{2}=\langle-1\rangle$ (with trivial $\mathbb{Z} G$-action).

A HM H of order $4 n$ is cocyclic with indexing group $G=\left\{g_{1}, \ldots, g_{4 n}\right\}$ if there exist a 2-cocycle $\psi: G \times G \rightarrow\langle-1\rangle$ and a map $\phi: G \rightarrow\langle-1\rangle$ such that

$$
\begin{equation*}
H \equiv\left[\psi\left(g_{i}, g_{j}\right) \phi\left(g_{i} g_{j}\right)\right]_{i, j} \tag{4}
\end{equation*}
$$

- If ψ is trivial, then H is called group-developed.
- Group developed HMs are known to have square order. ${ }^{\dagger}$
- Note $H \equiv\left[\psi\left(g_{i}, g_{j}\right) \phi(g h) \phi(g) \phi(h)\right]_{i, j}$; we work with this matrix instead.

[^13]
Classification of Cocyclic Hadamard matrices

- In 2010, Ó Cathaín and Röder reported the classification of CHMs of order less than 40.

The cocyclic Hadamard matrices of order less than 40
Padraig Ó Catháin • Marc Röder

Received: 1 September 2009/Revised: 11 March 2010/Accepted: 11 March 2010 / Published online: 27 March 2010
© Springer Science+Business Media, LLC 2010

Abstract In this paper all cocyclic Hadamard matrices of order less than 40 are classified. That is, all such Hadamard matrices are explicitly constructed, up to Hadamard equivalence. This represents a significant extension and completion of work by de Launey and Ito. The theory of cocyclic development is discussed, and an algorithm for determining whether a given Hadamard matrix is cocyclic is described. Since all Hadamard matrices of order at most 28 have been classified, this algorithm suffices to classify cocyclic Hadamard matrices of order at most 28. Not even the total numbers of Hadamard matrices of orders 32 and 36 are known. Thus we use a different method to construct all cocyclic Hadamard matrices at these orders. A result of de Launey, Flannery and Horadam on the relationship between cocyclic Hadamard matrices and relative difference sets is used in the classification of cocyclic Hadamard matrices of orders 32 and 36 . This is achieved through a complete enumeration and construction of ($4 t, 2,4 t, 2 t$)-relative difference sets in the groups of orders 64 and 72 .

Classification of Cocyclic Hadamard matrices

- In 2010, Ó Cathaín and Röder reported the classification of CHMs of order less than 40.
- To achieve this, they used a known connection between CHMs and certain semiregular ($4 n, 2,4 n, 2 n$) relative difference sets in groups of order $8 n .{ }^{\dagger}$

The cocyclic Hadamard matrices of order less than 40
Padraig Ó Catháin • Marc Röder

Received: 1 September 2009 /Revised: 11 March 2010/Accepted: 11 March 2010 / Published online: 27 March 2010
© Springer Science+Business Media, LLC 2010

Abstract In this paper all cocyclic Hadamard matrices of order less than 40 are classified. That is, all such Hadamard matrices are explicitly constructed, up to Hadamard equivalence. This represents a significant extension and completion of work by de Launey and Ito. The theory of cocyclic development is discussed, and an algorithm for determining whether a given Hadamard matrix is cocyclic is described. Since all Hadamard matrices of order at most 28 have been classified, this algorithm suffices to classify cocyclic Hadamard matrices of order at most 28 . Not even the total numbers of Hadamard matrices of orders 32 and 36 are known. Thus we use a different method to construct all cocyclic Hadamard matrices at these orders. A result of de Launey, Flannery and Horadam on the relationship between cocyclic Hadamard matrices and relative difference sets is used in the classification of cocyclic Hadamard matrices of orders 32 and 36 . This is achieved through a complete enumeration and construction of $(4 t, 2,4 t, 2 t)$-relative difference sets in the groups of orders 64 and 72.

n	1	2	3	4	5	6	7	8	9
\# classes	1	1	1	5	3	16	6	100	35

[^14]
Structure of cocyclic Hadamard matrices of order $4 p$

- de Launey and Flannery studied the structure of CHM of order $4 p$.

Structure of cocyclic Hadamard matrices of order $4 p$

- de Launey and Flannery studied the structure of CHM of order $4 p$.
- They showed that such matrices have indexing groups $K \ltimes C_{p}$, where $|K|=4$, and can be described by a set of block arrays.

Structure of cocyclic Hadamard matrices of order $4 p$

- de Launey and Flannery studied the structure of CHM of order $4 p$.
- They showed that such matrices have indexing groups $K \ltimes C_{p}$, where $|K|=4$, and can be described by a set of block arrays.
- Every CHM of order $4 p$ and $p>3$ prime with indexing group $K \ltimes C_{p}$ and cocycle ψ is equivalent to a matrix

$$
\left[\begin{array}{rrrr}
W & X^{a} & Y^{b} & Z^{a b} \\
x & (-1)^{r} W^{a} & Z^{b} & (-1)^{r} Y^{a b} \\
Y & (-1)^{t} Z^{a} & (-1)^{s} W^{b} & (-1)^{s+t} x^{a b} \\
Z & (-1)^{r+t} Y^{a} & (-1)^{s} X^{b} & (-1)^{r+s+t} W^{a b}
\end{array}\right]
$$

where $(r, s, t) \in\{(1,0,0),(0,1,0),(1,1,0),(1,1,1)\}$ depends on ψ, the blocks W, X, Y, Z are back-circulant, and a block M^{\times}is circulant if and only if $x \in\{a, b, a b\} \subseteq K$ acts by inversion on $C_{p} .^{\dagger}$

[^15]
Classification of cocyclic Hadamard matrices of order $4 p$

- In 2019, Barrera Acevedo, Ó Cathaín and Dietrich recovered the aforementioned 4×4 block arrays via a group theoretical approach.

Constructing cocyclic Hadamard matrices of order $4 p$

Santiago Barrera Acevedo ${ }^{1} \odot \mid$ Padraig ó Catháin ${ }^{2} \odot \mid$
Heiko Dietrich ${ }^{1}$ -
${ }^{\text {'School of Mathematics, Monash }}$
University, Clayton, Victoria, Australia
${ }^{2}$ Mathematical Sciences Department,
Worcester Polytechnic Institute,
Worcester, Massachusetts
Correspondence
Santiago Barrera Acevedo, School of Mathematics, Monash Universily, Clayton, VIC 3800, Australia. Email: santiaga.barreraaceredoce

Abstrac

Cocyclic Hadamard matrices (CHMs) were introduced by de Launey and Horadam as a class of Hadamard matrices (HMs) with interesting algebraic properties. O Catháin and Röder described a classification algorithm for CHMs of order $4 n$ based on relative difference sets in groups of order $8 n$; this led to the classification of all CHMs of order at most 36. On the basis of work of de Launey and Flannery, we describe a classification algorithm for CHMs of order $4 p$ with p a prime; we prove refined structure results and provide a classification for $p \leq 13$. Our analysis shows that every CHM of order $4 p$ with $p \equiv 1 \bmod 4$ is equivalent to a HM with one of five distinct block structures, including William-son-type and (transposed) Ito matrices. If $p \equiv 3 \bmod 4$, then every CHM of order $4 p$ is equivalent to a williamson-type or (transposed) Ito matrix.

Classification of cocyclic Hadamard matrices of order $4 p$

- In 2019, Barrera Acevedo, Ó Cathaín and Dietrich recovered the aforementioned 4×4 block arrays via a group theoretical approach.
- They applied a construction algorithm to obtain the classification of CHMs of orders $4 \cdot 11$ and $4 \cdot 13$.

Constructing cocyclic Hadamard matrices of order $4 p$

Santiago Barrera Acevedo ${ }^{\mathbf{1}} \odot \mid$ Padraig ó Catháin ${ }^{2} \odot \mid$
Heiko Dietrich ${ }^{1}$ -
${ }^{\text {'School of Mathematics, Monash }}$ University, Clayton, Victoria, Australia ${ }^{3}$ Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, Massachusetts

Correspondence
Santiago Barrera Acevedo, School of Mathematics, Monash University, Clayton, VIC 3800, Australia. Email: santiago.barrera.acevedoes monash.edu

Abstract

Cocyclic Hadamard matrices (CHMs) were introduced by de Launey and Horadam as a class of Hadamard matrices (HMs) with interesting algebraic properties. O Catháin and Röder described a classification algorithm for CHMs of order $4 n$ based on relative difference sets in groups of order $8 n$; this led to the classification of all CHMs of order at most 36 . On the basis of work of de Launey and Flannery, we describe a classification algorithm for CHMs of order $4 p$ with p a prime; we prove refined structure results and provide a classification for $p \leq 13$. Our analysis shows that every CHM of order $4 p$ with $p \equiv 1 \bmod 4$ is equivalent to a HM with one of five distinct block structures, including William-son-type and (transposed) Ito matrices. If $p \equiv 3 \bmod 4$, then every CHM of order $4 p$ is equivalent to a Williamson-type or (transposed) Ito matrix.

p	3	5	7	11	13
\# classes	1	1	3	63	336

Classification of cocyclic Hadamard matrices of order $4 p$

- In 2019, Barrera Acevedo, Ó Cathaín and Dietrich recovered the aforementioned 4×4 block arrays via a group theoretical approach.
- They applied a construction algorithm to obtain the classification of CHMs of orders $4 \cdot 11$ and $4 \cdot 13$.
- They are currently exploring the idea of using SAT-solvers to classify CHMs of orders $4 \cdot 17$ and $4 \cdot 19$.

Constructing cocyclic Hadamard matrices of order $4 p$

Santiago Barrera Acevedo ${ }^{1} \odot \mid$ Padraig ó Catháin ${ }^{2} \odot \mid$
Heiko Dietrich ${ }^{1}{ }^{\circ}$
${ }^{\text {'School of Mathematics, Monash }}$ University, Clayton, Victoria, Australia ${ }^{\prime}$ Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, Massachusetts

Correspondence
Santiago Barrera Acevedo, School of Mathematics, Monash University, Clayton, VIC 3800, Australia. Email: santiago.barrera.acevedoes monash.edu

Abstract

Cocyclic Hadamard matrices (CHMs) were introduced by de Launey and Horadam as a class of Hadamard matrices (HMs) with interesting algebraic properties. O Catháin and Röder described a classification algorithm for CHMs of order $4 n$ based on relative difference sets in groups of order $8 n$; this led to the classification of all CHMs of order at most 36 . On the basis of work of de Launey and Flannery, we describe a classification algorithm for CHMs of order $4 p$ with p a prime; we prove refined structure results and provide a classificaion for $p \leq 13$. Our analysis shows that every CHM of order $4 p$ with $p \equiv 1 \bmod 4$ is equivalent to a HM with one of five distinct block structures, including William-son-type and (transposed) Ito matrices. If $p \equiv 3 \bmod 4$ then every CHM of order $4 p$ is equivalent to a williamson-type or (transposed) Ito matrix.

p	3	5	7	11	13
\# classes	1	1	3	63	336

Classification of cocyclic Hadamard matrices of order $4 p$

- In 2019, Barrera Acevedo, Ó Cathaín and Dietrich recovered the aforementioned 4×4 block arrays via a group theoretical approach.
- They applied a construction algorithm to obtain the classification of CHMs of orders $4 \cdot 11$ and $4 \cdot 13$.

Constructing cocyclic Hadamard matrices of order $4 p$

Santiago Barrera Acevedo ${ }^{1} \odot \mid$ Padraig ó Catháin ${ }^{2} \odot \mid$ Heiko Dietrich ${ }^{1}$ -
'School of Mathematics, Monash University, Clayton, Victoria, Australia ${ }^{3}$ Mathematical Sciences Department, Worcester Polytechnic Inssitute, Worcester, Massachusetts

Correspondence
Santiago Rarrera Acevedo, School of Mathematics, Monash University, Clayton, VIC 3800, Australia. Email: santiaga.barrera.aceredog monash.edu

- They are currently exploring the idea of using SAT-solvers to classify CHMs of orders $4 \cdot 17$ and $4 \cdot 19$.

Abstract

Cocyclic Hadamard matrices (CHMs) were introduced by de Launey and Horadam as a class of Hadamard matrices (HMs) with interesting algebraic properties. 0 Catháin and Röder described a classification algorithm for CHMs of order $4 n$ based on relative difference sets in groups of order $8 n$; this led to the classification of all CHMs of order at most 36 . On the basis of work of de Launey and Flannery, we describe a classification algorithm for CHMs of order $4 p$ with p a prime; we prove refined structure results and provide a classification for $p \leq 13$. Our analysis shows that every CHM of order $4 p$ with $p \equiv 1 \bmod 4$ is equivalent to a HM with one of five distinct block structures, including William-son-type and (transposed) Ito matrices. If $p \equiv 3 \bmod 4$, then every CHM of order $4 p$ is equivalent to a Williamson-type or (transposed) Ito matrix.

p	3	5	7	11	13
\# classes	1	1	3	63	336

It is natural to ask whether CHMs of orders $8 p$ and $4 p q$, for $2<p<q$ primes, can be described by a set of block arrays, as in the case $4 p$.

Cocyclic Hadamard matrices of order $8 p$

- CHMs of oder $8 \cdot 3$ are classified; there are 16 classes of such matrices ${ }^{\dagger}$.

[^16]
Cocyclic Hadamard matrices of order $8 p$

- CHMs of oder $8 \cdot 3$ are classified; there are 16 classes of such matrices ${ }^{\dagger}$.
- In the following, let H be a CHM of order $8 p$ with $p>3$ prime, indexing group G and cocycle ψ.

[^17]
Cocyclic Hadamard matrices of order $8 p$

- CHMs of oder $8 \cdot 3$ are classified; there are 16 classes of such matrices ${ }^{\dagger}$.
- In the following, let H be a CHM of order $8 p$ with $p>3$ prime, indexing group G and cocycle ψ.

The Sylow Theorems and Schur-Zassenhaus Lemma, in combination with results of Ito ${ }^{\ddagger}$ yield the following

[^18]
Cocyclic Hadamard matrices of order $8 p$

- CHMs of oder $8 \cdot 3$ are classified; there are 16 classes of such matrices ${ }^{\dagger}$.
- In the following, let H be a CHM of order $8 p$ with $p>3$ prime, indexing group G and cocycle ψ.

The Sylow Theorems and Schur-Zassenhaus Lemma, in combination with results of Ito ${ }^{\ddagger}$ yield the following

- $G \cong K \ltimes N$, where $|K|=8$ and $N \cong C_{p}$, except for $G=C_{7} \ltimes C_{2}^{3}$ - However there are no CHMs with indexing group $C_{7} \ltimes C_{2}^{3}$ as $H^{2}\left(C_{7} \ltimes C_{2}^{3}, C_{2}\right)$ is trivial.

[^19]
Cocyclic Hadamard matrices of order $8 p$

- CHMs of oder $8 \cdot 3$ are classified; there are 16 classes of such matrices ${ }^{\dagger}$.
- In the following, let H be a CHM of order $8 p$ with $p>3$ prime, indexing group G and cocycle ψ.

The Sylow Theorems and Schur-Zassenhaus Lemma, in combination with results of Ito ${ }^{\ddagger}$ yield the following

- $G \cong K \ltimes N$, where $|K|=8$ and $N \cong C_{p}$, except for $G=C_{7} \ltimes C_{2}^{3}$ - However there are no CHMs with indexing group $C_{7} \ltimes C_{2}^{3}$ as $H^{2}\left(C_{7} \ltimes C_{2}^{3}, C_{2}\right)$ is trivial.
- $E_{\psi}=\left.G \ltimes\right|_{\psi}\langle-1\rangle=\hat{K} \ltimes \hat{N}$, where $\hat{K} \cong K \ltimes_{\psi}\langle-1\rangle$ (here ψ denotes the restriction of $\psi: G \times G \rightarrow\langle-1\rangle$ to $K \times K)$ and $\hat{N} \cong C_{p}$.

[^20]
Cocyclic Hadamard matrices of order $8 p$

- CHMs of oder $8 \cdot 3$ are classified; there are 16 classes of such matrices ${ }^{\dagger}$.
- In the following, let H be a CHM of order $8 p$ with $p>3$ prime, indexing group G and cocycle ψ.

The Sylow Theorems and Schur-Zassenhaus Lemma, in combination with results of Ito ${ }^{\ddagger}$ yield the following

- $G \cong K \ltimes N$, where $|K|=8$ and $N \cong C_{p}$, except for $G=C_{7} \ltimes C_{2}^{3}$ - However there are no CHMs with indexing group $C_{7} \ltimes C_{2}^{3}$ as $H^{2}\left(C_{7} \ltimes C_{2}^{3}, C_{2}\right)$ is trivial.
- $E_{\psi}=\left.G \ltimes\right|_{\psi}\langle-1\rangle=\hat{K} \ltimes \hat{N}$, where $\hat{K} \cong K \ltimes_{\psi}\langle-1\rangle$ (here ψ denotes the restriction of $\psi: G \times G \rightarrow\langle-1\rangle$ to $K \times K)$ and $\hat{N} \cong C_{p}$.
- If $K=C_{8}$ then $\hat{K}=C_{16}$ or $C_{8} \times C_{2}$ (both which are disqualified due to Ito's and the fact that H is not group developed).

[^21]
Cocyclic Hadamard matrices of order $8 p$

- CHMs of oder $8 \cdot 3$ are classified; there are 16 classes of such matrices ${ }^{\dagger}$.
- In the following, let H be a CHM of order $8 p$ with $p>3$ prime, indexing group G and cocycle ψ.

The Sylow Theorems and Schur-Zassenhaus Lemma, in combination with results of Ito ${ }^{\ddagger}$ yield the following

- $G \cong K \ltimes N$, where $|K|=8$ and $N \cong C_{p}$, except for $G=C_{7} \ltimes C_{2}^{3}$ - However there are no CHMs with indexing group $C_{7} \ltimes C_{2}^{3}$ as $H^{2}\left(C_{7} \ltimes C_{2}^{3}, C_{2}\right)$ is trivial.
- $E_{\psi}=\left.G \ltimes\right|_{\psi}\langle-1\rangle=\hat{K} \ltimes \hat{N}$, where $\hat{K} \cong K \ltimes_{\psi}\langle-1\rangle$ (here ψ denotes the restriction of $\psi: G \times G \rightarrow\langle-1\rangle$ to $K \times K)$ and $\hat{N} \cong C_{p}$.
- If $K=C_{8}$ then $\hat{K}=C_{16}$ or $C_{8} \times C_{2}$ (both which are disqualified due to Ito's and the fact that H is not group developed).
- $K \in\left\{C_{2}^{3}, C_{4} \times C_{2}, D_{8}, Q_{8}\right\}$ (all polycyclic groups).

[^22]
Cocyclic Hadamard matrices of order $8 p$

Combining ideas of Ó Cathaín and Röder ${ }^{\dagger}$, and Barrera Acevedo et al ${ }^{\ddagger}$. we have the following result.

Theorem

Let H be a CHM of order $8 p$ with indexing group $G=K \ltimes N$ and cocycle ψ. Then

$$
\begin{equation*}
H \equiv\left[\psi\left(k_{i}, k_{j}\right)\left[\phi\left(k_{i} k_{j} n^{k_{j}} m\right)\right]_{n, m \in N}\right]_{k_{i}, k_{j} \in K} \tag{5}
\end{equation*}
$$

[^23]
Cocyclic Hadamard matrices of order $8 p$

Combining ideas of Ó Cathaín and Röder ${ }^{\dagger}$, and Barrera Acevedo et al ${ }^{\ddagger}$. we have the following result.

Theorem

Let H be a CHM of order $8 p$ with indexing group $G=K \ltimes N$ and cocycle ψ. Then

$$
\begin{equation*}
H \equiv\left[\psi\left(k_{i}, k_{j}\right)\left[\phi\left(k_{i} k_{j} n^{k_{j}} m\right)\right]_{n, m \in N}\right]_{k_{i}, k_{j} \in K} \tag{5}
\end{equation*}
$$

where, by abuse of notation, ψ is the restriction to K and $\phi: N \rightarrow\langle-1\rangle$ is a map.

[^24]
Cocyclic Hadamard matrices of order $8 p$

Combining ideas of Ó Cathaín and Röder ${ }^{\dagger}$, and Barrera Acevedo et a^{\ddagger}. we have the following result.

Theorem

Let H be a CHM of order $8 p$ with indexing group $G=K \ltimes N$ and cocycle ψ. Then

$$
\begin{equation*}
H \equiv\left[\psi\left(k_{i}, k_{j}\right)\left[\phi\left(k_{i} k_{j} n^{k_{j}} m\right)\right]_{n, m \in N}\right]_{k_{i}, k_{j} \in K} \tag{5}
\end{equation*}
$$

where, by abuse of notation, ψ is the restriction to K and $\phi: N \rightarrow\langle-1\rangle$ is a map.
For fixed k_{i}, k_{j} each inner $p \times p$ block $\left[\phi\left(k_{i} k_{j} n^{k_{j} m}\right)\right]_{n, m \in N}$ is group developed over N with respect to the action of K on N.

[^25]
Cocyclic Hadamard matrices of order $8 p$

Combining ideas of Ó Cathaín and Röder ${ }^{\dagger}$, and Barrera Acevedo et a^{\ddagger}. we have the following result.

Theorem

Let H be a CHM of order $8 p$ with indexing group $G=K \ltimes N$ and cocycle ψ. Then

$$
\begin{equation*}
H \equiv\left[\psi\left(k_{i}, k_{j}\right)\left[\phi\left(k_{i} k_{j} n^{k_{j}} m\right)\right]_{n, m \in N}\right]_{k_{i}, k_{j} \in K} \tag{5}
\end{equation*}
$$

where, by abuse of notation, ψ is the restriction to K and $\phi: N \rightarrow\langle-1\rangle$ is a map.
For fixed k_{i}, k_{j} each inner $p \times p$ block $\left[\phi\left(k_{i} k_{j} n^{k_{j} m}\right)\right]_{n, m \in N}$ is group developed over N with respect to the action of K on N.

Every matrix of form (5) is also cocyclic.

[^26]
Cocyclic Hadamard matrices of order $8 p$

The isomorphism type of the central extension $\hat{K}=K \ltimes_{\psi}\langle-1\rangle$ is one of the following:

Cocyclic Hadamard matrices of order $8 p$

The isomorphism type of the central extension $\hat{K}=K \ltimes_{\psi}\langle-1\rangle$ is one of the following:

K	Isomorphism type of \hat{K}	GAP ID [16, \#]
$C_{4} \times C_{2}$	$C_{2} \ltimes\left(C_{4} \times C_{2}\right), C_{4}^{2}$	$[16,3],[16,4]$
	$C_{2} \times C_{8}, C_{2} \ltimes C_{8}$	$[16,5],[16,6]$
	$C_{2}^{2} \times C_{4}$	$[16,10]$
C_{2}^{3}	$C_{2} \ltimes\left(C_{4} \times C_{2}\right), D_{8} \times C_{2}$	$[16,3],[16,11]$
	$C_{2}^{4}, Q_{8} \times C_{2}$	$[16,14],[16,12]$
D_{8}	$C_{2} \ltimes\left(C_{4} \times C_{2}\right), C_{4}^{2}$	$[16,3],[16,4]$
	$D_{16}, S D_{16}$	$[16,7],[16,8]$
	$Q_{16}, D_{8} \times C_{2}$	$[16,9],[16,11]$
Q_{8}	$C_{4}^{2}, Q_{8} \times C_{2}$	$[16,4],[16,12]$

Cocyclic Hadamard matrices of order $8 p$

The isomorphism type of the central extension $\hat{K}=K \ltimes_{\psi}\langle-1\rangle$ is one of the following:

K	Isomorphism type of \hat{K}	GAP ID [16, \#]
$C_{4} \times C_{2}$	$C_{2} \ltimes\left(C_{4} \times C_{2}\right), C_{4}^{2}$	$[16,3],[16,4]$
	$C_{2} \times C_{8}, C_{2} \ltimes C_{8}$	$[16,5],[16,6]$
	$C_{2}^{2} \times C_{4}$	$[16,10]$
C_{2}^{3}	$C_{2} \ltimes\left(C_{4} \times C_{2}\right), D_{8} \times C_{2}$	$[16,3],[16,11]$
	$C_{2}^{4}, Q_{8} \times C_{2}$	$[16,14],[16,12]$
D_{8}	$C_{2} \ltimes\left(C_{4} \times C_{2}\right), C_{4}^{2}$	$[16,3],[16,4]$
	$D_{16}, S D_{16}$	$[16,7],[16,8]$
	$Q_{16}, D_{8} \times C_{2}$	$[16,9],[16,11]$
Q_{8}	$C_{4}^{2}, Q_{8} \times C_{2}$	$[16,4],[16,12]$

For each isomorphism type of \hat{K} we compute a representative cocycle.

Cocycles

Let $K=C_{4} \times C_{2}$ and consider the presentation

$$
K=\left\langle a, b, c \mid a^{2}=1, b^{2}=c, c^{2}=1, b^{a}=b, c^{a}=c, c^{b}=c\right\rangle .
$$

Cocycles

Let $K=C_{4} \times C_{2}$ and consider the presentation

$$
K=\left\langle a, b, c \mid a^{2}=1, b^{2}=c, c^{2}=1, b^{a}=b, c^{a}=c, c^{b}=c\right\rangle .
$$

The possible central extensions of K by C_{2} are given by

$$
\hat{K}=L_{i, k, r}=\left\langle a, b, c, z \mid a^{2}=z^{i}, b^{2}=c, c^{2}=z^{k}, b^{a}=b z^{r}, z^{2}=1\right\rangle
$$

with $(i, k, r) \in \mathbb{Z}_{2}^{3}$.

Cocycles

Let $K=C_{4} \times C_{2}$ and consider the presentation

$$
K=\left\langle a, b, c \mid a^{2}=1, b^{2}=c, c^{2}=1, b^{a}=b, c^{a}=c, c^{b}=c\right\rangle .
$$

The possible central extensions of K by C_{2} are given by

$$
\hat{K}=L_{i, k, r}=\left\langle a, b, c, z \mid a^{2}=z^{i}, b^{2}=c, c^{2}=z^{k}, b^{a}=b z^{r}, z^{2}=1\right\rangle
$$

with $(i, k, r) \in \mathbb{Z}_{2}^{3}$.
From the central extension $1 \rightarrow C_{2} \xrightarrow{\iota} L_{i, k, r} \xrightarrow{\pi} K \rightarrow 1$ take a lift $I: K \rightarrow L_{i, k, r}$ and compute the 2-cocycle

$$
\begin{equation*}
\psi_{i, k, r}(u, v)=\iota^{-1}\left(I(u) I(v) I(u v)^{-1}\right) \tag{6}
\end{equation*}
$$

Cocycles

Let $K=C_{4} \times C_{2}$ and consider the presentation

$$
K=\left\langle a, b, c \mid a^{2}=1, b^{2}=c, c^{2}=1, b^{a}=b, c^{a}=c, c^{b}=c\right\rangle .
$$

The possible central extensions of K by C_{2} are given by

$$
\hat{K}=L_{i, k, r}=\left\langle a, b, c, z \mid a^{2}=z^{i}, b^{2}=c, c^{2}=z^{k}, b^{a}=b z^{r}, z^{2}=1\right\rangle
$$

with $(i, k, r) \in \mathbb{Z}_{2}^{3}$.
From the central extension $1 \rightarrow C_{2} \xrightarrow{\iota} L_{i, k, r} \xrightarrow{\pi} K \rightarrow 1$ take a lift $I: K \rightarrow L_{i, k, r}$ and compute the 2-cocycle

$$
\begin{equation*}
\psi_{i, k, r}(u, v)=\iota^{-1}\left(I(u)!(v)!(u v)^{-1}\right) . \tag{6}
\end{equation*}
$$

$$
\begin{aligned}
& {\left[\psi_{i, k, r}(u, v)\right]_{u, v \in K}=} \\
& {\left[\begin{array}{ccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & (-1)^{i} & 1 & 1 & (-1)^{i} & (-1)^{i} & 1 \\
1 & (-1)^{r} & 1 & 1 & (-1)^{r} & (-1)^{r} & (-1)^{k} \\
1 & 1 & 1 & (-1)^{k+r} \\
1 & (-1)^{i+r} & 1 & 1 & 1 & (-1)^{k} & (-1)^{k} \\
1 & (-1)^{k} \\
1 & (-1)^{i} & 1 & (-1)^{k} & (-1)^{i+r} & (-1)^{i+r} & (-1)^{i} \\
1 & (-1)^{r} & (-1)^{k} & (-1)^{i+k+r} \\
1 & (-1)^{i+r} & (-1)^{k} & (-1)^{k+r} & (-1)^{k+k+r} & (-1)^{k+r} & \left.(-1)^{k}\right)(-1)^{i+k} \\
(-1+k+r & (-1)^{k} & (-1)^{k+r} & (-1)^{i+k+r}
\end{array}\right] .}
\end{aligned}
$$

Coboundaries

There is a choice in the calculation of the cocycle $\psi_{i, k, r}$, but two cocycles from the same central extension differ by a coboundary.

Coboundaries

There is a choice in the calculation of the cocycle $\psi_{i, k, r}$, but two cocycles from the same central extension differ by a coboundary.

The elements in the group of couboudaries $B^{2}\left(C_{4} \times C_{2}, C_{2}\right)$ are determined as follows:

$$
C_{\alpha, \beta, \gamma, \delta, \varepsilon}=\left[\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & \gamma & \delta & \gamma & \delta & \beta \gamma \varepsilon & \gamma \beta \varepsilon \\
1 & \gamma & \alpha & \beta & \alpha \gamma \delta & \gamma \delta \varepsilon & \alpha \beta & \alpha \gamma \varepsilon \\
1 & \delta & \beta & 1 & \varepsilon & \delta & \beta & \varepsilon \\
1 & \gamma & \alpha \gamma \delta & \varepsilon & \alpha & \beta \gamma \delta & \alpha \beta \gamma & \alpha \varepsilon \\
1 & \delta & \gamma \delta \varepsilon & \delta & \beta \gamma \delta & 1 & \beta \gamma \delta & \gamma \delta \varepsilon \\
1 & \beta \gamma \varepsilon & \alpha \beta & \beta & \alpha \beta \gamma & \beta \gamma \delta & \alpha & \alpha \beta \gamma \delta \varepsilon \\
1 & \beta \gamma \varepsilon & \alpha \gamma \varepsilon & \varepsilon & \alpha \varepsilon & \gamma \delta \varepsilon & \alpha \beta \gamma \delta \varepsilon & \alpha
\end{array}\right]
$$

where $\alpha, \beta, \gamma, \delta, \varepsilon \in\langle-1\rangle$.

Block structure - Example

From the description

$$
H \equiv\left[\psi\left(k_{i}, k_{j}\right)\left[\phi\left(k_{i} k_{j} n^{k_{j}} m\right)\right]_{n, m \in N}\right]_{k_{i}, k_{j} \in K}
$$

Block structure - Example

From the description

$$
H \equiv\left[\psi\left(k_{i}, k_{j}\right)\left[\phi\left(k_{i} k_{j} n^{k_{j}} m\right)\right]_{n, m \in N}\right]_{k_{i}, k_{j} \in K}
$$

Every CHM with indexing group $G \equiv\left(C_{4} \times C_{2}\right) \ltimes C_{p}$ is equivalent to a matrix

$$
\mathcal{H}_{1}(S, T, U, V, W, X, Y, Z)_{\alpha, \beta, \gamma, \delta, \varepsilon}^{a, b, c, i, k, r}=
$$

$$
\left[\begin{array}{rrrrrrrr}
S & T^{a} & U^{b} & V^{c} & W^{a b} & X^{a c} & Y^{b c} & Z^{a b c} \\
T & (-1)^{i} S^{a} & W^{b} & X^{c} & (-1)^{i} U^{a b} & (-1)^{i} V^{a c} & Z^{b c} & (-1)^{a b} Y^{a b c} \\
U & (-1)^{r} W^{a} & V^{b} & Y^{c} & (-1)^{r} X^{a b} & (-1)^{a} Z^{a c} & (-1)^{k} S^{b c} & (-1)^{k+r} T^{a b c} \\
V & X^{a b} & Y^{b} & (-1)^{k} S^{c} & Z^{a b} & (-1)^{k} T^{a c} & (-1)^{k} U^{b c} & (-1)^{k} W^{a b c} \\
W & (-1)^{i+r} U^{a} & X^{b} & Z^{c} & (-1)^{i+r} V^{a b} & (-1)^{i+r} Y^{a c} & (-1)^{k} T^{b c} & (-1)^{i+k+r} S^{a b c} \\
X & (-1)^{i} V^{a} & Z^{b} & (-1)^{k} T^{b} & (-1)^{a b} & (-1)^{i+k} S^{a c} & (-1)^{k} W^{b c} & (-1)^{i+k} U^{a b c} \\
Y & (-1)^{a} Z^{a} a & (-1)^{k} S^{b} & (-1)^{k} U^{b} & (-1)^{k+r} T^{a b} & (-1)^{k+r} W^{a c} & (-1)^{k} V^{b c} & (-1)^{k+r} X^{a b c} \\
Z(-1)^{i+r} Y^{a} & (-1)^{k} T^{b} & (-1)^{k} W^{b} & (-1)^{i+k+r} S^{a b} & (-1)^{i+k+r} U^{a c} & (-1)^{k} X^{b c} & (-1)^{i+k+r} V^{a b c}
\end{array}\right]
$$

$\left(C_{\alpha, \beta, \gamma, \delta, \varepsilon} \otimes J_{p}\right)$,

Block structure - Example

From the description

$$
H \equiv\left[\psi\left(k_{i}, k_{j}\right)\left[\phi\left(k_{i} k_{j} n^{k_{j}} m\right)\right]_{n, m \in N}\right]_{k_{i}, k_{j} \in K}
$$

Every CHM with indexing group $G \equiv\left(C_{4} \times C_{2}\right) \ltimes C_{p}$ is equivalent to a matrix

$$
\mathcal{H}_{1}(S, T, U, V, W, X, Y, Z)_{\substack{a, \beta, \gamma, \delta, \varepsilon \\ a, b, c, i, k, r}}=
$$

where $C_{4} \times C_{2}=\langle a, b, c\rangle, i, k, r \in\{0,1\}, \alpha, \beta, \gamma, \delta, \varepsilon \in\langle-1\rangle, J_{p}$ denotes the all 1's matrix of size $p \times p$, and \otimes and \odot denote the Kronecker and Hadamard products of matrices, respectively.

Block structure

Theorem

Every CHM H of order $8 p$, with $p>3$ prime, and indexing group $G=K \ltimes N$, where $|K|=8$ and $N \cong C_{p}$, is equivalent to one of four block matrices:

$$
\begin{array}{ll}
H_{1}=\mathcal{H}_{1}(S, T, U, V, W, X, Y, Z)_{\alpha, \beta, \gamma, \delta, \varepsilon}^{a, b, c, i, k, r} & \text { for } K=C_{4} \times C_{2} \\
H_{2}=\mathcal{H}_{2}(S, T, U, V, W, X, Y, Z)_{\alpha, \beta, \gamma, \delta}^{a, b, c, i, j, k, r, s, t} & \text { for } K=C_{2}^{3} \\
H_{3}=\mathcal{H}_{3}(S, T, U, V, W, X, Y, Z)_{\alpha, \beta, \gamma, \delta, \varepsilon}^{a, b, c, i, j, k} & \text { for } K=D_{8} \\
H_{4}=\mathcal{H}_{4}(S, T, U, V, W, X, Y, Z)_{\alpha, \beta, \gamma, \delta, \varepsilon}^{a, b, c, i, r} & \text { for } K=Q_{8}
\end{array}
$$

where $\left(C_{4} \times C_{2}\right)=\langle a, b, c\rangle, i, k, r \in\{0,1\}$ and $\alpha, \beta, \gamma, \delta, \varepsilon \in\langle-1\rangle$.

Towards a classification algorithm

We aim to establish a construction algorithm to classify CHMs of order 8p.

Towards a classification algorithm

We aim to establish a construction algorithm to classify CHMs of order 8 p .

Ideas to trim the search space:

Towards a classification algorithm

We aim to establish a construction algorithm to classify CHMs of order 8p.

Ideas to trim the search space:

- Reducing the coboundary space.

Towards a classification algorithm

We aim to establish a construction algorithm to classify CHMs of order 8p.

Ideas to trim the search space:

- Reducing the coboundary space.
- Establishing Hadamard equivalences that preserve the block structures.

Towards a classification algorithm

We aim to establish a construction algorithm to classify CHMs of order 8p.

Ideas to trim the search space:

- Reducing the coboundary space.
- Establishing Hadamard equivalences that preserve the block structures.
- Controlling eigenvalues of the block matrices.

Coboundary space reduction

Can we get rid of coboundaries?

Coboundary space reduction

Can we get rid of coboundaries?

For example, let $G \equiv\left(C_{2}^{3}\right) \ltimes C_{p}$.

$$
\mathcal{H}_{2}(S, T, U, v, w, X, Y, Z)_{\alpha, \beta, \gamma, \delta}^{a, b, c, i, j, k, r, s, t}=
$$

S	T^{a}	u^{b}	v^{c}	$w^{a b}$	$x^{a c}$	$Y^{b c}$	$z^{a b c}$
T	$(-1)^{i} S^{a}$	αW^{b}	βX^{c}	$(-1)^{i} \alpha U^{a b}$	$(-1)^{i} \beta V^{a c}$	$\delta Z^{b c}$	$(-1)^{i} \delta Y^{a b c}$
U	$(-1)^{r} \alpha W^{a}$	$(-1)^{j} S^{b}$	γY^{c}	$(-1)^{j+r} \alpha T^{a b}$	$(-1)^{r} \alpha \beta \delta Z^{a c}$	$(-1)^{j} \gamma_{j} V^{b c}$	$(-1)^{j+r_{\beta}} \gamma \delta X^{a b c}$
v	$(-1)^{s} \beta X^{a}$	$(-1)^{t} \gamma Y^{b}$	$(-1)^{k} S^{c}$	$(-1)^{s+t}{ }_{\alpha \gamma} z^{a b}$	$(-1)^{k+s} \beta T^{a c}$	$(-1)^{k+t} \gamma U^{b c}$	$(-1)^{k+s+t}{ }_{\alpha \gamma} \delta W^{a b c}$
w	$(-1)^{i+r} \alpha U^{a}$	$(-1)^{j} \alpha T^{b}$	$\alpha \gamma \delta Z^{c}$	$(-1)^{i+j+r} S^{a b}$	$(-1)^{i+r} \alpha \beta \gamma Y^{a c}$	$(-1)^{j}{ }_{\alpha \beta \gamma} X^{b c}$	$(-1)^{i+j+r} \alpha \gamma \delta V^{a b c}$
x	$(-1)^{i+s} \beta V^{a}$	$(-1)^{t} \beta \gamma \delta Z^{b}$	$(-1)^{k} \beta T^{c}$	$1)^{i+s+t} \alpha_{\beta \gamma} Y^{a b}$	$(-1)^{i+k+s} S^{a c}$	$)^{k+t}{ }_{\alpha \beta \gamma} W^{b c}$	$(-1)^{m-j-r} \beta \gamma \delta U^{a b c}$
Y	$(-1)^{r+s} \delta z^{a}$	$(-1)^{j+t} \gamma V^{b}$	$(-1)^{k} \gamma U^{c}$	$(-1)^{m-i-k} \alpha_{\gamma} X^{a b}($	${ }^{+r+s}{ }_{\alpha \beta \gamma} W^{a c}$	$(-1)^{j+k+t} S^{b c}$	$(-1)^{m-i} \delta T^{a b c}$
	$)^{i+r+s} \delta Y^{a}$	$)^{j+t} \beta_{\gamma} \delta X^{b}$	${ }^{k} \alpha \gamma \delta W^{c}$	$(-1)^{m-k} \alpha \gamma \delta V^{a b}$	$(-1)^{m-j-t} \beta \gamma \delta U^{a c}$	$(-1)^{j+k+t} \delta T^{b c}$	$(-1)^{m} S^{a b c}$

Coboundary space reduction

Can we get rid of coboundaries?

For example, let $G \equiv\left(C_{2}^{3}\right) \ltimes C_{p}$.

$$
\mathcal{H}_{2}(S, T, U, V, W, X, Y, Z)_{\alpha, \beta, \gamma, \delta}^{a, b, c, i, j, k, r, s, t} \equiv
$$

S	T^{a}	u^{b}	$\gamma \mathbf{V}^{\mathbf{c}}$	$\alpha \mathbf{W}^{\text {ab }}$	$\beta \gamma X^{\text {ac }}$	$Y^{b c}$	$\delta \mathbf{z}^{\text {abc }}$
T	$(-1)^{i} S^{a}$	$\alpha W^{\text {b }}$	$\beta \gamma \mathbf{X}^{\mathbf{c}}$	$(-1)^{i} U^{a b}$	$(-1)^{i} \gamma \mathrm{~V}^{\text {ac }}$	$\delta \mathbf{z}^{\text {bc }}$	$(-1)^{i} Y^{a b c}$
U	$(-1)^{r} \alpha \mathbf{W}^{\mathbf{a}}$	$(-1)^{j} s^{b}$	Y^{C}	$(-1)^{j+r} T^{a b}$	$(-1)^{r} \delta \mathbf{z}^{\text {ac }}$	$(-1)^{j} \gamma \mathrm{~V}^{\mathrm{bc}}$	$(-1)^{j+r} \beta \gamma \mathbf{x}^{\text {abc }}$
γV	$(-1)^{s} \beta \gamma \mathbf{X}^{\mathbf{a}}$	$(-1)^{t} Y^{b}$	$(-1)^{k} S^{c}$	$(-1)^{s+t} \delta \mathbf{z}^{\text {ab }}$	$(-1)^{k+s} T^{a c}$	$(-1)^{k+t} U^{b c}$	$(-1)^{k+s+t} \alpha \mathbf{W}^{\text {abc }}$
$\alpha \mathbf{W}$	$(-1)^{i+r} U^{a}$	$(-1)^{j} T^{b}$	$\delta \mathbf{Z}^{\text {C }}$	$(-1)^{i+j+r} S^{a b}$	$(-1)^{i+r} Y^{a c}$	$(-1)^{j} \beta_{\gamma} \mathbf{x} \mathbf{b c}$	$(-1)^{i+j+r} \gamma \vee^{\text {abc }}$
$\beta \gamma \mathbf{X}$	$(-1)^{i+s} \gamma \mathrm{~V}^{\text {a }}$	$(-1)^{t} \delta \mathbf{z}^{\mathbf{b}}$	$(-1)^{k} T^{c}$	$(-1)^{i+s+t} Y^{a b}$	$(-1)^{i+k+s} S^{a c}$	$(-1)^{k+t} \alpha \mathbf{W}^{\mathbf{b c}}$	$(-1)^{m-j-r} U^{a b c}$
Y	$(-1)^{r+s} \delta \mathrm{z}^{\text {a }}$	$(-1)^{j+t} \gamma \mathrm{~V}^{\mathrm{b}}$	$(-1)^{k} U^{c}$	$(-1)^{m-i-k} \beta \gamma \mathbf{x}^{\text {ab }}$	$(-1)^{k+r+s} \alpha \mathbf{W}^{\text {ac }}$	$(-1)^{j+k+t} S^{b c}$	$(-1)^{m-i} T^{a b c}$
$\delta \mathbf{Z}$	$(-1)^{i+r+s} Y^{a}$		$(-1)^{k} \alpha \mathbf{W}^{\mathbf{c}}$	$(-1)^{m-k} \gamma \mathrm{~V}^{\mathrm{ab}}$	$(-1)^{m-j-t} U^{a c}$	$(-1)^{j+k+t} T^{b c}$	$(-1)^{m} S^{a b c}$

Coboundary space reduction

Can we get rid of coboundaries?
For example, let $G \equiv\left(C_{2}^{3}\right) \ltimes C_{p}$.

$$
\mathcal{H}_{2}(S, T, U, V, W, X, Y, Z)_{\alpha, \beta, \gamma, \delta}^{a, b, c, i, j, k, r, s, t} \equiv
$$

S	T^{a}	u^{b}	$\gamma \mathbf{V}^{\mathbf{c}}$	$\alpha W^{\text {ab }}$	$\beta \gamma \mathbf{X}^{\text {ac }}$	$Y^{b c}$	$\delta \mathbf{z}^{\text {abc }}$
T	$(-1)^{i} S^{a}$	$\alpha \mathbf{W}^{\mathbf{b}}$	$\beta \gamma \mathbf{X}^{\mathbf{C}}$	$(-1)^{i} U^{a b}$	$(-1)^{i} \gamma \mathrm{~V}^{\text {ac }}$	$\delta \mathbf{Z}^{\text {bc }}$	$(-1)^{i} Y^{a b c}$
U	$(-1)^{r} \alpha \mathbf{W}^{\mathbf{a}}$	$(-1)^{j} S^{b}$	Y^{C}	$(-1)^{j+r} T^{a b}$	$(-1)^{r} \delta \mathbf{z}^{\text {ac }}$	$(-1)^{j} \gamma \mathrm{v}^{\mathrm{bc}}$	$(-1)^{j+r} \beta \gamma \mathbf{X}^{\text {abc }}$
γV	$(-1)^{s} \beta \gamma \mathbf{X}^{\text {a }}$	$(-1)^{t} Y^{b}$	$(-1)^{k} S^{c}$	$(-1)^{s+t} \delta \mathbf{z}^{\text {ab }}$	$(-1)^{k+s} T^{a c}$	$(-1)^{k+t} U^{b c}$	$(-1)^{k+s+t} \alpha \mathbf{W}^{\text {abc }}$
$\alpha \mathbf{W}$	$(-1)^{i+r} U^{a}$	$(-1)^{j} T^{b}$	$\delta \mathbf{Z}^{\text {c }}$	$(-1)^{i+j+r} S^{a b}$	$(-1)^{i+r} Y^{a c}$	$(-1)^{j} \beta_{\gamma} \mathbf{x} \mathbf{b c}$	$(-1)^{i+j+r} \gamma \vee^{\text {abc }}$
$\beta \gamma \mathbf{X}$	$(-1)^{i+s} \gamma \mathrm{~V}^{\text {a }}$	$(-1)^{t} \delta \mathbf{z}^{\text {b }}$	$(-1)^{k} T^{c}$	$(-1)^{i+s+t} Y^{a b}$	$(-1)^{i+k+s} S^{a c}$	$(-1)^{k+t} \alpha \mathbf{W}^{\mathbf{b c}}$	$(-1)^{m-j-r} U^{a b c}$
Y	$(-1)^{r+s} \delta \mathrm{z}^{\text {a }}$	$(-1)^{j+t} \gamma \mathrm{~V}^{\mathrm{b}}$	$(-1)^{k} U^{c}$	$(-1)^{m-i-k} \beta_{\gamma} \mathbf{x}^{\text {ab }}$	$(-1)^{k+r+s} \alpha \mathbf{W}^{\text {ac }}$	$(-1)^{j+k+t} S^{b c}$	$(-1)^{m-i} T^{a b c}$
$\delta \mathbf{Z}$	$(-1)^{i+r+s} Y^{a}$	$(-1)^{j+t} \beta_{\gamma} \mathbf{X}^{\mathbf{b}}$	1) ${ }^{k} \alpha \mathbf{W}^{\mathbf{c}}$	$(-1)^{m-k} \gamma \mathrm{~V}^{\mathrm{ab}}$	$(-1)^{m-j-t} U^{a c}$	$(-1)^{j+k+t} T^{b c}$	$(-1)^{m} S^{a b c}$

Hence,

$$
H_{2}=\mathcal{H}_{2}(S, T, U, V, W, X, Y, Z)_{\alpha, \beta, \gamma, \delta}^{a, b, c, i, j, k, r, s, t} \equiv \mathcal{H}_{2}(S, T, U, \gamma \mathbf{V}, \alpha \mathbf{W}, \beta \gamma \mathbf{X}, Y, \delta \mathbf{Z})_{1,1,1,1}^{a, b, c, i, j, k, r, s, t}
$$

Coboundary space reduction

Proposition

Let

$$
\begin{array}{ll}
H_{1}=\mathcal{H}_{1}(S, T, U, V, W, X, Y, Z)_{\alpha, \beta, \gamma, \delta, \varepsilon}^{a, b, c, i, k, r} & H_{2}=\mathcal{H}_{2}(S, T, U, V, W, X, Y, Z)_{\alpha, \beta, \gamma, \delta}^{a, b, c, i, j, k, r, s, t} \\
H_{3}=\mathcal{H}_{3}(S, T, U, V, W, X, Y, Z)_{\alpha, \beta, \gamma, \delta, \varepsilon}^{a, b, c, i, j, k} & H_{4}=\mathcal{H}_{4}(S, T, U, V, W, X, Y, Z)_{\alpha, \beta, \gamma, \delta, \varepsilon}^{a, b, c, i, r}
\end{array}
$$

Then

$$
\begin{aligned}
& H_{1} \equiv \mathcal{H}_{1}(S, T, U, \alpha V, \gamma W, \alpha \delta X, \alpha \beta Y, \alpha \gamma \varepsilon Z)_{1,1,1,1,1}^{a, b, c, i, k, r} \\
& H_{2} \equiv \mathcal{H}_{2}(S, T, U, \gamma V, \alpha W, \beta \gamma X, Y, \delta Z)_{1,1,1,1}^{a, b, c, i, j, k, r, s, t} \\
& H_{3} \equiv \mathcal{H}_{3}(S, T, \beta \varepsilon U, V, W, X, \varepsilon \gamma Y, \delta Z)_{\alpha, 1,1,1,1}^{a, b, c, i, j, k} \\
& H_{4} \equiv \mathcal{H}_{4}(S, T, U, \alpha V, W, \beta X, \gamma Y, \delta Z)_{1,1,1,1, \varepsilon}^{a, b, c, i, r}
\end{aligned}
$$

Coboundary space reduction

Proposition

Let

$$
\begin{array}{ll}
H_{1}=\mathcal{H}_{1}(S, T, U, V, W, X, Y, Z)_{\alpha, \beta, \gamma, \delta, \varepsilon}^{a, b, c, i, k, r} & H_{2}=\mathcal{H}_{2}(S, T, U, V, W, X, Y, Z)_{\alpha, \beta, \gamma, \delta}^{a, b, c, i, j, k, r, s, t} \\
H_{3}=\mathcal{H}_{3}(S, T, U, V, W, X, Y, Z)_{\alpha, \beta, \gamma, \delta, \varepsilon}^{a, b, c, i, j, k} & H_{4}=\mathcal{H}_{4}(S, T, U, V, W, X, Y, Z)_{\alpha, \beta, \gamma, \delta, \varepsilon}^{a, b, c, i, r}
\end{array}
$$

Then

$$
\begin{aligned}
& H_{1} \equiv \mathcal{H}_{1}(S, T, U, \alpha V, \gamma W, \alpha \delta X, \alpha \beta Y, \alpha \gamma \varepsilon Z)_{1,1,1,1,1}^{a, b, c, i, k, r} \\
& H_{2} \equiv \mathcal{H}_{2}(S, T, U, \gamma V, \alpha W, \beta \gamma X, Y, \delta Z)_{1,1,1,1}^{a, b, c, i, j, k, r, s, t} \\
& H_{3} \equiv \mathcal{H}_{3}(S, T, \beta \varepsilon U, V, W, X, \varepsilon \gamma Y, \delta Z)_{\alpha, 1,1,1,1}^{a, b, c, i, j, k} \\
& H_{4} \equiv \mathcal{H}_{4}(S, T, U, \alpha V, W, \beta X, \gamma Y, \delta Z)_{1,1,1,1, \varepsilon}^{a, b, c, i, r}
\end{aligned}
$$

In the following, let

$$
\begin{array}{ll}
H_{1}=\mathcal{H}_{1}(S, T, U, V, W, X, Y, Z)_{1,1,1,1,1}^{a, b, c, i, k, r} & H_{2}=\mathcal{H}_{2}(S, T, U, V, W, X, Y, Z)_{1,1,1,1}^{a, b, c, i, j, k, r, s, t} \\
H_{3}=\mathcal{H}_{3}(S, T, U, V, W, X, Y, Z)_{\alpha, 1,1,1,1}^{a, b, c, i, j, k} & H_{4}=\mathcal{H}_{4}(S, T, U, V, W, X, Y, Z)_{1,1,1,1, \varepsilon}^{a, b, c, i, r}
\end{array}
$$

Coboundary space reduction

Proposition

Let

$$
\begin{array}{ll}
H_{1}=\mathcal{H}_{1}(S, T, U, V, W, X, Y, Z)_{\alpha, \beta, \gamma, \delta, \varepsilon}^{a, b, c, i, k, r} & H_{2}=\mathcal{H}_{2}(S, T, U, V, W, X, Y, Z)_{\alpha, \beta, \gamma, \delta}^{a, b, c, i, j, k, r, s, t} \\
H_{3}=\mathcal{H}_{3}(S, T, U, V, W, X, Y, Z)_{\alpha, \beta, \gamma, \delta, \varepsilon}^{a, b, c, i, j, k} & H_{4}=\mathcal{H}_{4}(S, T, U, V, W, X, Y, Z)_{\alpha, \beta, \gamma, \delta, \varepsilon}^{a, b, c, i, r}
\end{array}
$$

Then

$$
\begin{aligned}
& H_{1} \equiv \mathcal{H}_{1}(S, T, U, \alpha V, \gamma W, \alpha \delta X, \alpha \beta Y, \alpha \gamma \varepsilon Z)_{1,1,1,1,1}^{a, b, c, i, k, r} \\
& H_{2} \equiv \mathcal{H}_{2}(S, T, U, \gamma V, \alpha W, \beta \gamma X, Y, \delta Z)_{1,1,1,1}^{a, b, c, i, j, k, r, s, t} \\
& H_{3} \equiv \mathcal{H}_{3}(S, T, \beta \varepsilon U, V, W, X, \varepsilon \gamma Y, \delta Z)_{\alpha, 1,1,1,1}^{a, b, c, i, j, k} \\
& H_{4} \equiv \mathcal{H}_{4}(S, T, U, \alpha V, W, \beta X, \gamma Y, \delta Z)_{1,1,1,1, \varepsilon}^{a, b, c, i, r}
\end{aligned}
$$

In the following, let

$$
\begin{array}{ll}
H_{1}=\mathcal{H}_{1}(S, T, U, V, W, X, Y, Z)^{a, b, c, i, k, r} & H_{2}=\mathcal{H}_{2}(S, T, U, V, W, X, Y, Z)^{a, b, c, i, j, k, r, s, t} \\
H_{3}=\mathcal{H}_{3}(S, T, U, V, W, X, Y, Z)_{\alpha}^{a, b, c, i, j, k} & H_{4}=\mathcal{H}_{4}(S, T, U, V, W, X, Y, Z)_{\varepsilon}^{a, b, c, i, r}
\end{array}
$$

Block-structure-preserving equivalences

Can we multiply rows/columns of H_{1}, \ldots, H_{4} by -1 preserving their block structure?

Block-structure-preserving equivalences

Can we multiply rows/columns of H_{1}, \ldots, H_{4} by -1 preserving their block structure?

$$
\begin{aligned}
& H_{1}=\mathcal{H}_{1}(S, T, U, V, W, X, Y, Z)^{a, b, c, i, k, r}= \\
& {\left[\begin{array}{rrrrrrrr}
S & T^{a} & U^{b} & V^{c} & W^{a b} & X^{a c} & Y^{b c} & Z^{a b c} \\
T & (-1)^{i} S^{a} & W^{b} & X^{c} & (-1)^{i} U^{a b} & (-1)^{i} V^{a c} & Z^{b c} & (-1)^{i} Y^{a b c} \\
U & (-1)^{r} W^{a} & V^{b} & Y^{c} & (-1)^{r} X^{a b} & (-1)^{r} Z^{a c} & (-1)^{k} S^{b c} & (-1)^{k+r} T^{a b c} \\
V & X^{a} & Y^{b} & (-1)^{k} S^{c} & Z^{a b} & (-1)^{k} T^{a c} & (-1)^{k} U^{b c} & (-1)^{k} W^{a b c} \\
W & (-1)^{i+r} U^{a} & X^{b} & Z^{c} & (-1)^{i+r} V^{a b} & (-1)^{i+r} Y^{a c} & (-1)^{k} T^{b c} & (-1)^{i+k+r} S^{a b c} \\
X & (-1)^{i} V^{a} & Z^{b} & (-1)^{k} T^{b} & (-1)^{i} Y^{a b} & (-1)^{i+k} S^{a c} & (-1)^{k} W^{b c} & (-1)^{i+k} U^{a b c} \\
Y & (-1)^{r} Z^{a} a & (-1)^{k} S^{b} & (-1)^{k} U^{b} & (-1)^{k+r} T^{a b} & (-1)^{k+r} W^{a c} & (-1)^{k} V^{b c} & (-1)^{k+r} X^{a b c} \\
Z & (-1)^{i+r} Y^{a} & (-1)^{k} T^{b} & (-1)^{k} W^{b} & (-1)^{i+k+r} S^{a b} & (-1)^{i+k+r} U^{a c} & (-1)^{k} X^{b c} & (-1)^{i+k+r} V^{a b c}
\end{array}\right]}
\end{aligned}
$$

Block-structure-preserving equivalences

Can we multiply rows/columns of H_{1}, \ldots, H_{4} by -1 preserving their block structure?

$$
\begin{aligned}
& H_{1}=\mathcal{H}_{1}(S, T, U, V, W, X, Y, Z)^{a, b, c, i, k, r} \equiv \\
& {\left[\begin{array}{crrrrrrr}
-S & T^{a} & U^{b} & -V^{c} & -W^{a b} & X^{a c} & Y^{b c} & -Z^{a b c} \\
-T & (-1)^{i} S^{a} & W^{b} & -X^{c} & -(-1)^{i} U^{a b} & (-1)^{i} V^{a c} & Z^{b c} & -(-1)^{i} Y^{a b c} \\
-U & (-1)^{r} W^{a} & V^{b} & -Y^{c} & -(-1)^{r} X^{a b} & (-1)^{r} Z^{a c} & (-1)^{k} S^{b c} & -(-1)^{k+r} T^{a b c} \\
-V & X^{a b} & Y^{b} & -(-1)^{k} S^{c} & -Z^{a b} & (-1)^{k} T^{a c} & (-1)^{k} U^{b c} & -(-1)^{k} W^{a b c} \\
-W & (-1)^{i+r} U^{a} & X^{b} & -Z^{c} & -(-1)^{i+r} V^{a b} & (-1)^{i+r} Y^{a c} & (-1)^{k} T^{b c} & -(-1)^{i+k+r} S^{a b c} \\
-X & (-1)^{i} V^{a b} & Z^{b} & -(-1)^{k} T^{b} & -(-1)^{i} Y^{a b} & (-1)^{i+k} S^{a c} & (-1)^{k} W^{b c} & -(-1)^{i+k} U^{a b c} \\
-Y & (-1)^{r} Z^{a} a & (-1)^{k} S^{b} & -(-1)^{k} U^{b} & -(-1)^{k+r} T^{a b} & (-1)^{k+r} W^{a c} & (-1)^{k} V^{b c} & -(-1)^{k+r} X^{a b c} \\
-Z & (-1)^{i+r} Y^{a} & (-1)^{k} T^{b} & -(-1)^{k} W^{b} & -(-1)^{i+k+r} S^{a b} & (-1)^{i+k+r} U^{a c} & (-1)^{k} X^{b c} & -(-1)^{i+k+r} V^{a b c}
\end{array}\right]}
\end{aligned}
$$

Block-structure-preserving equivalences

Can we multiply rows/columns of H_{1}, \ldots, H_{4} by -1 preserving their block structure?

$$
\begin{aligned}
& H_{1}=\mathcal{H}_{1}(S, T, U, V, W, X, Y, Z)^{a, b, c, i, k, r} \equiv \\
& {\left[\begin{array}{rrrrrrrr}
-S & T^{a} & U^{b} & -V^{c} & -W^{a b} & X^{a c} & Y^{b c} & -Z^{a b c} \\
T & -(-1)^{i} S^{a} & -W^{b} & X^{c} & (-1)^{i} U^{a b} & -(-1)^{i} V^{a c} & -Z^{b c} & (-1)^{i} Y^{a b c} \\
U & -(-1)^{r} W^{a} & -V^{b} & Y^{c} & (-1)^{r} X^{a b} & -(-1)^{r}-Z^{a c} & -(-1)^{k} S^{b c} & (-1)^{k+r} T^{a b c} \\
-V & X^{a} & Y^{b} & -(-1)^{k} S^{c} & -Z^{a b} & (-1)^{a c} & (-1)^{k} U^{b c} & -(-1)^{k} W^{a b c} \\
-W & (-1)^{i+r} U^{a} & X^{b} & -Z^{c} & -(-1)^{i+r} V^{a b} & (-1)^{i+r} Y^{a c} & (-1)^{k} T^{b c} & -(-1)^{i+k+r} S^{a b c} \\
X & -(-1)^{i} V^{a} & -Z^{b} & (-1)^{k} T^{b} & (-1)^{i} Y^{a b} & -(-1)^{i+k} S^{a c} & -(-1)^{k} W^{b c} & (-1)^{i+k} U^{a b c} \\
Y & -(-1)^{r} Z^{a} a & -(-1)^{k} S^{b} & (-1)^{k} U^{b} & (-1)^{k+r} T^{a b} & -(-1)^{k+r} W^{a c} & -(-1)^{k} V^{b c} & (-1)^{k+r} X^{a b c} \\
-Z & (-1)^{i+r} Y^{a} & (-1)^{k} T^{b} & -(-1)^{k} W^{b} & -(-1)^{i+k+r} S^{a b} & (-1)^{i+k+r} U^{a c} & (-1)^{k} X^{b c} & -(-1)^{i+k+r} V^{a b c}
\end{array}\right]}
\end{aligned}
$$

Block-structure-preserving equivalences

Can we multiply rows/columns of H_{1}, \ldots, H_{4} by -1 preserving their block structure?

$$
\begin{aligned}
& H_{1}=\mathcal{H}_{1}(S, T, U, V, W, X, Y, Z)^{a, b, c, i, k, r} \equiv \\
& {\left[\begin{array}{rrrrrrrr}
-S & T^{a} & U^{b} & -V^{c} & -W^{a b} & X^{a c} & Y^{b c} & -Z^{a b c} \\
T & -(-1)^{i} S^{a} & -W^{b} & X^{c} & (-1)^{i} U^{a b} & -(-1)^{i} V^{a c} & -Z^{b c} & (-1)^{i} Y^{a b c} \\
U & -(-1)^{r} W^{a} & -V^{b} & Y^{c} & (-1)^{r} X^{a b} & -(-1)^{r}-Z^{a c} & -(-1)^{k} S^{b c} & (-1)^{k+r} T^{a b c} \\
-V & X^{a} & Y^{b} & -(-1)^{k} S^{c} & -Z^{a b} & (-1)^{k} T^{a c} & (-1)^{k} U^{b c} & -(-1)^{k} W^{a b c} \\
-W & (-1)^{i+r} U^{a} & X^{b} & -Z^{c} & -(-1)^{i+r} V^{a b} & (-1)^{i+r} Y^{a c} & (-1)^{k} T^{b c} & -(-1)^{i+k+r} S^{a b c} \\
X & -(-1)^{i} V^{a} & -Z^{b} & (-1)^{k} T^{b} & (-1)^{i} Y^{a b} & -(-1)^{i+k} S^{a c} & -(-1)^{k} W^{b c} & (-1)^{i+k} U^{a b c} \\
Y & -(-1)^{r} Z^{a} a & -(-1)^{k} S^{b} & (-1)^{k} U^{b} & (-1)^{k+r} T^{a b} & -(-1)^{k+r} W^{a c} & -(-1)^{k} V^{b c} & (-1)^{k+r} X^{a b c} \\
-Z & (-1)^{i+r} Y^{a} & (-1)^{k} T^{b} & -(-1)^{k} W^{b} & -(-1)^{i+k+r} S^{a b} & (-1)^{i+k+r} U^{a c} & (-1)^{k} X^{b c} & -(-1)^{i+k+r} V^{a b c}
\end{array}\right]}
\end{aligned}
$$

Thus,

$$
H_{1} \equiv \mathcal{H}_{1}(-S, T, U,-V,-W, X, Y,-Z)^{a, b, c, i, k, r}
$$

Block-structure-preserving equivalences

Proposition

$$
\begin{aligned}
H_{1} & \equiv \pm 1 \mathcal{H}_{1}(-S, T, U,-V,-W, X, Y,-Z)^{a, b, c, i, k, r} \\
H_{3} & \equiv \pm 1 \mathcal{H}_{3}(-S, T,-U,-V, W, X,-Y, Z)_{\alpha}^{a, b, c, i, j, k, r, s, t} \\
H_{4} & \equiv \pm 1 \mathcal{H}_{4}(-T,-V, W,-X, Y,-S, Z, U)_{\varepsilon}^{a, b, c, i, r} \equiv \pm 1 \mathcal{H}_{4}(-T, V,-W,-X, Y, S,-Z, U)_{\varepsilon}^{a, b, c, i, r} \\
& \equiv \pm 1 \mathcal{H}_{4}(-T, V, W,-X,-Y, S, Z,-U)_{\varepsilon}^{a, b, c, i, r} \equiv \pm 1 \mathcal{H}_{4}(T,-V,-W, X, Y,-S,-Z, U)_{\varepsilon}^{a, b, c, i, r} \\
& \equiv \pm 1 \mathcal{H}_{4}(T,-V, W, X,-Y,-S, Z,-U)_{\varepsilon}^{a, b, c, i, r} \equiv \pm 1 \mathcal{H}_{4}(T, V,-W, X,-Y, S,-Z,-U)_{\varepsilon}^{a, b, c, i, r}
\end{aligned}
$$

$H_{2} \equiv \pm 1 \mathcal{H}_{2}\left(e_{1} S, e_{2} T, e_{3} U, e_{4} V, e_{5} W, e_{6} X, e_{7} Y, e_{8} Z\right)^{a, b, c, i, j, k, r, s, t}$
where $e_{I} \in\{ \pm 1\}$, for $I=1, \ldots, 8$, and exactly three of $e_{1}, e_{2}, e_{3}, e_{4}$ and one of $e_{5}, e_{6}, e_{7}, e_{8}$ are -1 .

Block-structure-preserving equivalences

Can we rearrange the blocks of H_{1}, \ldots, H_{4} preserving their structure?

Block-structure-preserving equivalences

Can we rearrange the blocks of H_{1}, \ldots, H_{4} preserving their structure?

$$
\begin{aligned}
& H_{1}=\mathcal{H}_{1}(S, T, U, V, W, X, Y, Z)^{a, b, c, i, k, r}= \\
& {\left[\begin{array}{crrrrrrr}
S & T^{a} & U^{b} & V^{c} & W^{a b} & X^{a c} & Y^{b c} & Z^{a b c} \\
T & (-1)^{i} S^{a} & W^{b} & X^{c} & (-1)^{i} U^{a b} & (-1)^{i} V^{a c} & Z^{b c} & (-1)^{i} Y^{a b c} \\
U & (-1)^{r} W^{a} & V^{b} & Y^{c} & (-1)^{r} X^{a b} & (-1)^{r} Z^{a c} & (-1)^{k} S^{b c} & (-1)^{k+r} T^{a b c} \\
V & X^{a} & Y^{b} & (-1)^{k} S^{c} & Z^{a b} & (-1)^{k} T^{a c} & (-1)^{k} U^{b c} & (-1)^{k} W^{a b c} \\
W & (-1)^{i+r} U^{a} & X^{b} & Z^{c} & (-1)^{i+r} V^{a b} & (-1)^{i+r} Y^{a c} & (-1)^{k} T^{b c} & (-1)^{i+k+r} S^{a b c} \\
X & (-1)^{i} V^{a} & Z^{b} & (-1)^{k} T^{b} & (-1)^{i} Y^{a b} & (-1)^{i+k} S^{a c} & (-1)^{k} W^{b c} & (-1)^{i+k} U^{a b c} \\
Y & (-1)^{r} Z^{a} a & (-1)^{k} S^{b} & (-1)^{k} U^{b} & (-1)^{k+r} T^{a b} & (-1)^{k+r} W^{a c} & (-1)^{k} V^{b c} & (-1)^{k+r} X^{a b c} \\
Z & (-1)^{i+r} Y^{a b} & (-1)^{k} T^{b} & (-1)^{k} W^{b} & (-1)^{i+k+r} S^{a b} & (-1)^{i+k+r} U^{a c} & (-1)^{k} X^{b c} & (-1)^{i+k+r} V^{a b c}
\end{array}\right]}
\end{aligned}
$$

Block-structure-preserving equivalences

Can we rearrange the blocks of H_{1}, \ldots, H_{4} preserving their structure?

$$
\begin{aligned}
& H_{1}=\mathcal{H}_{1}(S, T, U, V, W, X, Y, Z)^{a, b, c, i, k, r} \equiv \\
& {\left[\begin{array}{crrrrrrr}
S & T^{a} & U^{b} & V^{c} & W^{a b} & X^{a c} & Y^{b c} & Z^{a b c} \\
T & (-1)^{i} S^{a} & W^{b} & X^{c} & (-1)^{i} U^{a b} & (-1)^{i} V^{a c} & Z^{b c} & (-1)^{a b c} Y^{a b c} \\
U & (-1)^{r} W^{a} & V^{b} & Y^{c} & (-1)^{r} X^{a b} & (-1)^{r} Z^{a c} & (-1)^{k} S^{b c} & (-1)^{k+r} T^{a b c} \\
V & X^{a} & Y^{b} & (-1)^{k} S^{c} & Z^{a b} & (-1)^{k} T^{a c} & (-1)^{k} U^{b c} & (-1)^{k} W^{a b c} \\
W & (-1)^{i+r} U^{a} & X^{b} & Z^{c} & (-1)^{i+r} V^{a b} & (-1)^{i+r} Y^{a c} & (-1)^{k} T^{b c} & (-1)^{i+k+r} S^{a b c} \\
X & (-1)^{i} V^{a} & Z^{b} & (-1)^{k} T^{b} & (-1)^{i} Y^{a b} & (-1)^{i+k} S^{a c} & (-1)^{k} W^{b c} & (-1)^{i+k} U^{a b c} \\
Y & (-1)^{r} Z^{a} a & (-1)^{k} S^{b} & (-1)^{k} U^{b} & (-1)^{k+r} T^{a b} & (-1)^{k+r} W^{a c} & (-1)^{k} V^{b c} & (-1)^{k+r} X^{a b c} \\
Z & (-1)^{i+r} Y^{a b c} & (-1)^{k} T^{b} & (-1)^{k} W^{b} & (-1)^{i+k+r} S^{a b} & (-1)^{i+k+r} U^{a c} & (-1)^{k} X^{b c} & (-1)^{i+k+r} V^{a b c}
\end{array}\right]}
\end{aligned}
$$

Block-structure-preserving equivalences

Can we rearrange the blocks of H_{1}, \ldots, H_{4} preserving their structure?

$$
\begin{aligned}
& H_{1}=\mathcal{H}_{1}(S, T, U, V, W, X, Y, Z)^{a, b, c, i, k, r} \equiv \\
& {\left[\begin{array}{crrrrrrr}
T & (-1)^{i} S^{a} & W^{b} & X^{c} & (-1)^{i} U^{a b} & (-1)^{i} V^{a c} & Z^{b c} & (-1)^{i} Y^{a b c} \\
S & T^{a b c} & U^{b} & V^{c} & W^{a b} & Y^{b c} & Z^{a b c} \\
U & (-1)^{r} W^{a} & V^{b} & Y^{c} & (-1)^{r} X^{a b} & (-1)^{r} Z^{a c} & (-1)^{k} S^{b c} & (-1)^{k+r} T^{a b c} \\
V & X^{a} & Y^{b} & (-1)^{k} S^{c} & Z^{a b} & (-1)^{k} T^{a c} & (-1)^{k} U^{b c} & (-1)^{k} W^{a b c} \\
W & (-1)^{i+r} U^{a} & X^{b} & Z^{c} & (-1)^{i+r} V^{a b} & (-1)^{i+r} Y^{a c} & (-1)^{k} T^{b c} & (-1)^{i+k+r} S^{a b c} \\
X & (-1)^{i} V^{a} & Z^{b} & (-1)^{k} T^{b} & (-1)^{i} Y^{a b} & (-1)^{i+k} S^{a c} & (-1)^{k} W^{b c} & (-1)^{i+k} U^{a b c} \\
Y & (-1)^{r} Z^{a} a & (-1)^{k} S^{b} & (-1)^{k} U^{b} & (-1)^{k+r} T^{a b} & (-1)^{k+r} W^{a c} & (-1)^{k} V^{b c} & (-1)^{k+r} X^{a b c} \\
Z & (-1)^{i+r} Y^{a b c} & (-1)^{k} T^{b} & (-1)^{k} W^{b} & (-1)^{i+k+r} S^{a b} & (-1)^{i+k+r} U^{a c} & (-1)^{k} X^{b c} & (-1)^{i+k+r} V^{a b c}
\end{array}\right]}
\end{aligned}
$$

Block-structure-preserving equivalences

Can we rearrange the blocks of H_{1}, \ldots, H_{4} preserving their structure?

$$
\begin{aligned}
& H_{1}=\mathcal{H}_{1}(S, T, U, V, W, X, Y, Z)^{a, b, c, i, k, r} \equiv \\
& {\left[\begin{array}{rrrrrrrr}
T & (-1)^{i} S^{a} & W^{b} & X^{c} & (-1)^{i} U^{a b} & (-1)^{i} V^{a c} & Z^{a c} & Y^{b c} \\
S & T^{a} & U^{b} & V^{c} & W^{a b} & (-1)^{i} Y^{a b c} \\
W & (-1)^{i+r} U^{a} & X^{b} & Z^{c} & (-1)^{i+r} V^{a b} & (-1)^{i+r} Y^{a c} & (-1)^{k} T^{b c} & (-1)^{i+k+r} S^{a b c} \\
X & (-1)^{i} V^{a} & Z^{b} & (-1)^{k} T^{b} & (-1)^{i} Y^{a b} & (-1)^{i+k} S^{a c} & (-1)^{k} W^{b c} & (-1)^{i+k} U^{a b c} \\
U & (-1)^{r} W^{a} & V^{b} & Y^{c} & (-1)^{r} X^{a b} & (-1)^{r} Z^{a c} & (-1)^{k} S^{b c} & (-1)^{k+r} T^{a b c} \\
V & X^{a} & Y^{b} & (-1)^{k} S^{c} & Z^{a b} & (-1)^{k} T^{a c} & (-1)^{k} U^{b c} & (-1)^{k} W^{a b c} \\
Z & (-1)^{i+r} Y^{a} & (-1)^{k} T^{b} & (-1)^{k} W^{b} & (-1)^{i+k+r} S^{a b} & (-1)^{i+k+r} U^{a c} & (-1)^{k} X^{b c} & (-1)^{i+k+r} V^{a b c} \\
Y & (-1)^{r} Z^{a} a & (-1)^{k} S^{b} & (-1)^{k} U^{b} & (-1)^{k+r} T^{a b} & (-1)^{k+r} W^{a c} & (-1)^{k} V^{b c} & (-1)^{k+r} X^{a b c}
\end{array}\right]}
\end{aligned}
$$

Block-structure-preserving equivalences

Can we rearrange the blocks of H_{1}, \ldots, H_{4} preserving their structure?

$$
\begin{aligned}
& H_{1}=\mathcal{H}_{1}(S, T, U, V, W, X, Y, Z)^{a, b, c, i, k, r} \equiv \\
& {\left[\begin{array}{rrrrrrrr}
T & S^{a} & W^{b} & X^{c} & U^{a b} & V^{a c} & Z^{b c} & Y^{a b c} \\
S & (-1)^{i} T^{a} & U^{b} & V^{c} & (-1)^{i} W^{a b} & (-1)^{i} X^{a c} & Y^{b c} & (-1)^{a b c} \\
W & (-1)^{r} U^{a} & X^{b} & Z^{c} & (-1)^{r} V^{a b} & (-1)^{r} Y^{a c} & (-1)^{k} T^{b c} & (-1)^{k+r} S^{a b c} \\
X & V^{a} & Z^{b} & (-1)^{k} T^{b} & Y^{a b} & (-1)^{k} S^{a c} & (-1)^{k} W^{b c} & (-1)^{k} U^{a b c} \\
U & (-1)^{i+r} W^{a b} & V^{b} & Y^{c} & (-1)^{i+r} X^{a b} & (-1)^{i+r} Z^{a c} & (-1)^{k} S^{b c} & (-1)^{i+k+r} T^{a b c} \\
V & (-1)^{i} X^{a b} & Y^{b} & (-1)^{k} S^{c} & (-1)^{i} Z^{a b} & (-1)^{i+k} T^{a c} & (-1)^{k} U^{b c} & (-1)^{i+k} W^{a b c} \\
Z & (-1)^{r} Y^{a b} & (-1)^{k} T^{b} & (-1)^{k} W^{b} & (-1)^{k+r} S^{a b} & (-1)^{k+r} U^{a c} & (-1)^{k} X^{b c} & (-1)^{k+r} V^{a b c} \\
Y & (-1)^{i+r} Z^{a} a & (-1)^{k} S^{b} & (-1)^{k} U^{b} & (-1)^{i+k+r} T^{a b} & (-1)^{i+k+r} W^{a c} & (-1)^{k} V^{b c} & (-1)^{i+k+r} X^{a b c}
\end{array}\right]}
\end{aligned}
$$

Block-structure-preserving equivalences

Can we rearrange the blocks of H_{1}, \ldots, H_{4} preserving their structure?

$$
\begin{aligned}
& H_{1}=\mathcal{H}_{1}(S, T, U, V, W, X, Y, Z)^{a, b, c, i, k, r} \equiv \\
& {\left[\begin{array}{rrrrrrrr}
T & S^{a} & W^{b} & X^{c} & U^{a b} & V^{a c} & Z^{b c} & Y^{a b c} \\
S & (-1)^{i} T^{a} & U^{b} & V^{c} & (-1)^{i} W^{a b} & (-1)^{i} X^{a c} & Y^{b c} & (-1)^{a b c} \\
W & (-1)^{r} U^{a b} & X^{b} & Z^{c} & (-1)^{r} V^{a b} & (-1)^{r} Y^{a c} & (-1)^{k} T^{b c} & (-1)^{k+r} S^{a b c} \\
X & V^{a} & Z^{b} & (-1)^{k} T^{b} & Y^{a b} & (-1)^{k} S^{a c} & (-1)^{k} W^{b c} & (-1)^{k} U^{a b c} \\
U & (-1)^{i+r} W^{a} & V^{b} & Y^{c} & (-1)^{i+r} X^{a b} & (-1)^{i+r} Z^{a c} & (-1)^{k} S^{b c} & (-1)^{i+k+r} T^{a b c} \\
V & (-1)^{i} X^{a b} & Y^{b} & (-1)^{k} S^{c} & (-1)^{i} Z^{a b} & (-1)^{i+k} T^{a c} & (-1)^{k} U^{b c} & (-1)^{i+k} W^{a b c} \\
Z & (-1)^{r} Y^{a b} & (-1)^{k} T^{b} & (-1)^{k} W^{b} & (-1)^{k+r} S^{a b} & (-1)^{k+r} U^{a c} & (-1)^{k} X^{b c} & (-1)^{k+r} V^{a b c} \\
Y & (-1)^{i+r} Z^{a} a & (-1)^{k} S^{b} & (-1)^{k} U^{b} & (-1)^{i+k+r} T^{a b} & (-1)^{i+k+r} W^{a c} & (-1)^{k} V^{b c} & (-1)^{i+k+r} X^{a b c}
\end{array}\right]}
\end{aligned}
$$

Thus

$$
H_{1} \equiv \mathcal{H}_{1}(T, S, W, X, U, V, Z, Y)^{a, b, c, i, k, r}
$$

Block-structure-preserving equivalences

Proposition

$$
\begin{aligned}
H_{1} & \equiv \mathcal{H}_{1}(T, S, W, X, U, V, Z, Y)^{a, b, c, i, k, r} \\
H_{2} & \equiv \mathcal{H}_{2}(T, S, U, V, W, X, Y, Z)^{a, b, c, i, j, k, r, s, t} \equiv \mathcal{H}_{2}(U, W, V, Y, X, Z, S, T)^{a, b, c, c, i, j, k, r, s, t} \\
& \equiv \mathcal{H}_{2}(V, X, Y, S, Z, T, U, W)^{a, b, c, i, j, k, r, s, t} \equiv \mathcal{H}_{2}(W, X, Z, T, Y, S, W, U)^{a, b, c, i, j, k, r, s, t} \\
& \equiv \mathcal{H}_{2}(X, V, Z, T, Y, S, W, U)^{a, b, c, i, j, k, r, s, t} \equiv \mathcal{H}_{2}(Y, Z, S, U, T, W, V, X)^{a, b, c,, i, j, k, r, s, t} \\
& \equiv \mathcal{H}_{2}(Z, Y, T, W, S, U, X, V)^{a, b, c, i, j, k, r, s, t} \\
H_{3} & \equiv \mathcal{H}_{3}(T, S, W, X, U, V, Z, Y)_{\alpha}^{a, b, c, i, j, j, k, r, s, t} \\
H_{4} & \equiv \mathcal{H}_{4}(T, V, W, X, Y, S, Z, U)_{\varepsilon}^{a, b, c, i, r} \equiv \mathcal{H}_{4}(U, Z, V, Y, T, W, S, X)_{\varepsilon}^{a, b, c, c, i, r} \\
& \equiv \mathcal{H}_{4}(V, X, Y, S, Z, T, U, W)_{\varepsilon}^{a, b, c, i, r} \equiv \mathcal{H}_{4}(W, U, X, Z, V, Y, T, S)_{\varepsilon}^{a, b, c, i, i, r} \\
& \equiv \mathcal{H}_{4}(X, S, Z, T, U, V, W, Y)_{\varepsilon}^{a, b, c, i, r} \equiv \mathcal{H}_{4}(Y, W, S, U, X, Z, V, T)_{\varepsilon}^{a, b, c, i, r} \\
& \equiv \mathcal{H}_{4}(Z, Y, T, W, S, U, X, V)_{\varepsilon}^{a, b, c, i, r}
\end{aligned}
$$

Block-structure-preserving equivalences

So we know $H_{1} \equiv \mathcal{H}_{1}(T, S, W, X, U, V, Z, Y)^{a, b, c, i, k, r}$ but can we do any better?

Block-structure-preserving equivalences

So we know $H_{1} \equiv \mathcal{H}_{1}(T, S, W, X, U, V, Z, Y)^{a, b, c, i, k, r}$ but can we do any better?

Proposition

$$
\left.\begin{array}{rl}
\mathcal{H}_{1}(S, T, U, V, W, X, Y, Z)^{a, b, c, i, 0, r} & \equiv \mathcal{H}_{1}(T, S, W, X, U, V, Z, Y)^{a, b, c, i, 0, r} \equiv \\
\mathcal{H}_{1}(U, W, V, Y, X, Z, S, T)^{a, b, c, i, 0, r} & \equiv \mathcal{H}_{1}(V, X, Y, S, Z, T, U, W)^{a, b, c, i, 0, r} \equiv \\
\mathcal{H}_{1}(W, U, X, Z, V, Y, T, S)^{a, b, c, i, 0, r} & \equiv \mathcal{H}_{1}(X, V, Z, T, Y, S, W, U)^{a, b, c, i, 0, r} \equiv \\
\mathcal{H}_{1}(Y, Z, S, Y, T, W, V, X)^{a, b, c, i, 0, r} & \equiv \mathcal{H}_{1}(Z, Y, T, W, S, U, X, V)^{a, b, c, i, 0, r}
\end{array}\right\}
$$

Block-structure-preserving equivalences

So we know $H_{1} \equiv \mathcal{H}_{1}(T, S, W, X, U, V, Z, Y)^{a, b, c, i, k, r}$ but can we do any better?

Proposition

$$
\begin{aligned}
& \mathcal{H}_{1}(S, T, U, V, W, X, Y, Z)^{a, b, c, i, 0, r} \equiv \mathcal{H}_{1}(T, S, W, X, U, V, Z, Y)^{a, b, c, i, 0, r} \equiv \\
& \mathcal{H}_{1}(U, W, V, Y, X, Z, S, T)^{a, b, c, i, 0, r} \equiv \mathcal{H}_{1}(V, X, Y, S, Z, T, U, W)^{a, b, c, i, 0, r} \equiv \\
& \mathcal{H}_{1}(W, U, X, Z, V, Y, T, S)^{a, b, c, i, 0, r} \equiv \mathcal{H}_{1}(X, V, Z, T, Y, S, W, U)^{a, b, c, i, 0, r} \equiv \\
& \mathcal{H}_{1}(Y, Z, S, Y, T, W, V, X)^{a, b, c, i, 0, r} \equiv \mathcal{H}_{1}(Z, Y, T, W, S, U, X, V)^{a, b, c, i, 0, r}
\end{aligned}
$$

with $(i, r) \in\{(0,1),(1,0),(1,1)\}$.

There are more block-structure-preserving equivalences arising from the specialisation of the "actions" a, b, c, and the parameters i, j, k, r, s, t and α, ε.

Control of eigenvalues

Recall

$$
\begin{array}{ll}
H_{1}=\mathcal{H}_{1}(S, T, U, V, W, X, Y, Z)^{a, b, c, i, k, r} & H_{2}=\mathcal{H}_{2}(S, T, U, V, W, X, Y, Z)^{a, b, c, i, j, k, r, s, t} \\
H_{3}=\mathcal{H}_{3}(S, T, U, V, W, X, Y, Z)_{\alpha}^{a, b, c, i, j, k} & H_{4}=\mathcal{H}_{4}(S, T, U, V, W, X, Y, Z)_{\varepsilon}^{a, b, c, i, r}
\end{array}
$$

From the equation

$$
H_{i} H_{i}^{T}=8 p l_{8 p}
$$

for $i=1,2,3,4$, it follows that

$$
S S^{T}+\cdots+Z Z^{T}=8 p I_{p}
$$

Control of eigenvalues

Recall

$$
\begin{array}{ll}
H_{1}=\mathcal{H}_{1}(S, T, U, V, W, X, Y, Z)^{a, b, c, i, k, r} & H_{2}=\mathcal{H}_{2}(S, T, U, V, W, X, Y, Z)^{a, b, c, i, j, k, r, s, t} \\
H_{3}=\mathcal{H}_{3}(S, T, U, V, W, X, Y, Z)_{\alpha}^{a, b, c, i, j, k} & H_{4}=\mathcal{H}_{4}(S, T, U, V, W, X, Y, Z)_{\varepsilon}^{a, b, c, i, r}
\end{array}
$$

From the equation

$$
H_{i} H_{i}^{T}=8 p I_{8 p}
$$

for $i=1,2,3,4$, it follows that

$$
S S^{T}+\cdots+Z Z^{T}=8 p I_{p}
$$

The gramians $S S^{\top}, \ldots, Z Z^{\top}$ are symmetric and circulant, and hence polynomials in the permutation matrix P of the p-cycle $(1,2, \ldots, p)$.

Control of eigenvalues

Recall

$$
\begin{array}{ll}
H_{1}=\mathcal{H}_{1}(S, T, U, V, W, X, Y, Z)^{a, b, c, i, k, r} & H_{2}=\mathcal{H}_{2}(S, T, U, V, W, X, Y, Z)^{a, b, c, i, j, k, r, s, t} \\
H_{3}=\mathcal{H}_{3}(S, T, U, V, W, X, Y, Z)_{\alpha}^{a, b, c, i, j, k} & H_{4}=\mathcal{H}_{4}(S, T, U, V, W, X, Y, Z)_{\varepsilon}^{a, b, c, i, r}
\end{array}
$$

From the equation

$$
H_{i} H_{i}^{T}=8 p I_{8 p}
$$

for $i=1,2,3,4$, it follows that

$$
S S^{T}+\cdots+Z Z^{T}=8 p I_{p}
$$

The gramians $S S^{\top}, \ldots, Z Z^{\top}$ are symmetric and circulant, and hence polynomials in the permutation matrix P of the p-cycle $(1,2, \ldots, p)$.

The gramians $S S^{T}, \ldots, Z Z^{T}$ commute in pairs and are simultaneously diagonalisable.

Control of eigenvalues

For $i=1, \ldots, 8$ and $R \in\{S, \ldots, Z\}$, let

$$
\lambda_{i, R}
$$

denote the i-th eigenvalue of $R R^{T}$.

If $A \subset\{S, \ldots, Z\}$ then for $i=1, \ldots, 8$ we have

$$
\begin{equation*}
\sum_{R \in A} \lambda_{i, R} \leq 8 p \tag{7}
\end{equation*}
$$

These inequalities can help to trim the search spaces significantly.

Algorithm

This algorithm describes a method to classify all CHMs $H_{1}, H_{2}, H_{3}, H_{4}$ of order $8 p$ with $p>3$ prime up to equivalence.

Let s, \ldots, z the sums of the first rows of the blocks S, \ldots, Z, respectively.
Input: a prime $p>3$
Output: a list of all CHMs of order 8 p, up to equivalence
1: initialise L as an empty list
2: determine all decompositions $\mathcal{D}=\left\{(s, \ldots, z) \in \mathbb{Z}^{8} \mid s^{2}+\cdots+z^{2}=8 p\right\}$
3: discard the element of \mathcal{D} that produce equivalent matrices
4: for $(s, \ldots, z) \in \mathcal{D}$ do
5: \quad construct \mathcal{S} as the set of back-circulant matrices over ± 1 of order p with row
6: \quad sum s (that satisfy the eigenvalue constraint)
7: similarly, construct $\mathcal{T}, \mathcal{U}, \mathcal{V}, \mathcal{W}, \mathcal{X}, \mathcal{Y}, \mathcal{Z}$.
8: \quad for $(S, \ldots, Z) \in \mathcal{S} \times \cdots \times \mathcal{Z}$ satisfying the eigenvalue constraints do
9: construct $H_{1}, H_{2}, H_{3}, H_{4}$.
10: if H_{i} is Hadamard and $H \notin L$ up to equivalence then add H_{i} to L.
11: return L.
12:

Algorithm

This algorithm describes a method to classify all CHMs $H_{1}, H_{2}, H_{3}, H_{4}$ of order $8 p$ with $p>3$ prime up to equivalence.

Let s, \ldots, z the sums of the first rows of the blocks S, \ldots, Z, respectively.

Input: a prime $p>3$
Output: a list of all CHMs of order 8 p, up to equivalence
initialise L as an empty list
determine all decompositions $\mathcal{D}=\left\{(s, \ldots, z) \in \mathbb{Z}^{8} \mid s^{2}+\cdots+z^{2}=8 p\right\}$
discard the element of \mathcal{D} that produce equivalent matrices
for $(s, \ldots, z) \in \mathcal{D}$ do
construct \mathcal{S} as the set of back-circulant matrices over ± 1 of order p with row sum s (that satisfy the eigenvalue constraints)
similarly, construct $\mathcal{T}, \mathcal{U}, \mathcal{V}, \mathcal{W}, \mathcal{X}, \mathcal{Y}, \mathcal{Z}$.
for $(S, \ldots, Z) \in \mathcal{S} \times \cdots \times \mathcal{Z}$ satisfying the eigenvalue constraints do construct $H_{1}, H_{2}, H_{3}, H_{4}$.
10: if H_{i} is Hadamard and $H \notin L$ up to equivalence then add H_{i} to L.
11: return L.
12: print Thank you!

[^0]: $\dagger_{\text {Hadamard: Résolution d' une question relative aux déterminants (1893) }}$

[^1]: $\dagger_{\text {Hadamard: }}$ Résolution d' une question relative aux déterminants (1893)

[^2]: $\dagger^{\text {Hadamard: Résolution d' une question relative aux déterminants (1893) }}$

[^3]: $\ddagger_{\text {K. Horadam: }}$ Hadamard Matrices (2007)

[^4]: $\ddagger^{\mathrm{K} .}$. Horadam: Hadamard Matrices (2007)

[^5]: $\ddagger_{\text {K. Horadam: }}$ Hadamard Matrices (2007)

[^6]: $\ddagger_{\mathrm{K} .}$ Horadam: Hadamard Matrices (2007)

[^7]: ${ }^{\dagger}$ Spence: Classification of HMs of order 24 and 28 (1995)

[^8]: ${ }^{\dagger}$ Spence: Classification of HMs of order 24 and 28 (1995)
 ${ }^{\ddagger}$ H. Kharaghani \& B. Tayfeh-Rezaie: Hadamard matrices of oder 32 (2012)

[^9]: ${ }^{\dagger}$ Spence: Classification of HMs of order 24 and 28 (1995)
 ${ }^{\ddagger}$ H. Kharaghani \& B. Tayfeh-Rezaie: Hadamard matrices of oder 32 (2012)

[^10]: ${ }^{\dagger}$ Spence: Classification of HMs of order 24 and 28 (1995)
 ${ }^{\ddagger}$ H. Kharaghani \& B. Tayfeh-Rezaie: Hadamard matrices of oder 32 (2012)

[^11]: ${ }^{\ddagger}$ Up to equivalence of extensions, central extensions of A by G can be parameterised by the group $Z(G, A)=\{\psi: G \times G \rightarrow A \mid \psi(g, h) \psi(g h, k)=\psi(h, k) \psi(g, h k)$, for all $g, h, k \in G\}$

[^12]: $\dagger_{\text {Wallis: }}$ Combinatorial Design (1988)

[^13]: $\dagger_{\text {Wallis: }}$ Combinatorial Design (1988)

[^14]: $\dagger_{\text {de Le Laney, Flannery, and Horadam, Cocyclic Hadamard matrices and difference sets (2000) }}$

[^15]: $\dagger_{\text {De Launey }}$ and Flannery: Algebraic Design Theory (2011)

[^16]: †Ó Cathaín and Röder, The cocyclic Hadamard matrices of order less than 40 (2011) \ddagger

[^17]: †ó Cathaín and Röder, The cocyclic Hadamard matrices of order less than 40 (2011)

[^18]: †ó Cathaín and Röder, The cocyclic Hadamard matrices of order less than 40 (2011)
 $\ddagger_{\text {Ito, On Hadamard Groups (1994) }}$

[^19]: †ó Cathaín and Röder, The cocyclic Hadamard matrices of order less than 40 (2011)
 $\ddagger_{\text {Ito, On Hadamard Groups (1994) }}$

[^20]: †ó Cathaín and Röder, The cocyclic Hadamard matrices of order less than 40 (2011)
 $\ddagger_{\text {Ito, On Hadamard Groups (1994) }}$

[^21]: †ó Cathaín and Röder, The cocyclic Hadamard matrices of order less than 40 (2011)
 $\ddagger_{\text {Ito, On Hadamard Groups (1994) }}$

[^22]: †ó Cathaín and Röder, The cocyclic Hadamard matrices of order less than 40 (2011)
 $\ddagger_{\text {Ito, On Hadamard Groups (1994) }}$

[^23]: †ó Cathaín and Röder, The cocyclic Hadamard matrices of order less than 40 (2011)
 ${ }^{\ddagger}$ Barrera Acevedo, Ó Cathaín and Dietrich, Constructing Cocyclic Hadamard Matrices of order $4 p$ (2019)

[^24]: †ó Cathaín and Röder, The cocyclic Hadamard matrices of order less than 40 (2011)
 $\ddagger_{\text {Barrera Acevedo, Ó Cathaín and Dietrich, Constructing Cocyclic Hadamard Matrices of order } 4 p \text { (2019) }}$

[^25]: †ó Cathaín and Röder, The cocyclic Hadamard matrices of order less than 40 (2011)
 $\ddagger_{\text {Barrera Acevedo, Ó Cathaín and Dietrich, Constructing Cocyclic Hadamard Matrices of order } 4 p \text { (2019) }}$

[^26]: †ó Cathaín and Röder, The cocyclic Hadamard matrices of order less than 40 (2011)
 ${ }^{\ddagger}$ Barrera Acevedo, Ó Cathaín and Dietrich, Constructing Cocyclic Hadamard Matrices of order $4 p$ (2019)

