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Hadamard matrices

A Hadamard matrix (HM) of order n is an n × n matrix H with entries from {±1}
such that

HH⊺ = nIn (1)

where In is the identity of order n.

• Hadamard was interested in finding the maximal

determinant of square matrices of order n with

entries from the unit disc.†

• Hadamard showed that such maximal determinant,

nn/2, is achieved by matrices with entries from the

set {±1} if and only if they satisfy (1).

• Hadamard showed that the order of a HM is

necessarily 1, 2 or 4n for n ∈ N.

Jacques Salomon Hadamard

(Versailles 1865 – Paris 1963)

†

Hadamard: Résolution d’ une question relative aux déterminants (1893)
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Equivalence of Hadamard matrices

• A driving force behind HM research is the Hadamard Conjecture, which asserts

that for every positive integer n there exists a HM of order 4n.‡

• Since the number of HMs of order 4n appears to grow rapidly with n (which

contrasts with the Hadamard Conjecture), it is necessary to introduce an

equivalence relation on the set of HMs.

• The group Mon(n, {±1}) of all pairs of {±1}-monomial matrices (signed

permutation matrices) of order n acts on the set of {±1}-matrices of order n via

(P,Q) ·M = PMQ⊺. (2)

• Two HMs H and H′ are equivalent if they lie in the same Mon(n, {±1})-orbit.

‡K. Horadam: Hadamard Matrices (2007)
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Classification of Hadamard matrices

• The classification of HMs of orders less than 30, up to equivalence, was achieved

through the efforts of numerous mathematicians in the 1980s and 1990s†

n 1 2 3 4 5 6 7

# classes 1 1 1 5 3 60 487

• The classification of HMs of order 32,

up to equivalence, was achieved in

2012.‡.

• There are exactly 13, 710, 027 equiva-

lence classes of HMs.

• Given the profusion of equivalence

classes of HMs, even at small orders,

it makes sense to ask for classifications

of HMs of special types.

†Spence: Classification of HMs of order 24 and 28 (1995)
‡

H. Kharaghani & B. Tayfeh-Rezaie: Hadamard matrices of oder 32 (2012)
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Cocyclic Hadamard matrices

• Cocyclic Hadamard matrices (CHMs)

were introduced by de Launey and Ho-

radam as a class of HMs with additional

algebraic properties.

• Let G be a finite group and let A be a ZG -module. A 2-cocycle‡ (or simply

cocycle) with coefficients in A is a map

ψ : G × G → A such that

ψ(g , h)ψ(gh, k) = ψ(h, k)gψ(g , hk), for all g , h, k ∈ G . (3)

‡

Up to equivalence of extensions, central extensions of A by G can be parameterised by the group

Z(G , A) = {ψ : G × G → A | ψ(g, h)ψ(gh, k) = ψ(h, k)ψ(g, hk), for all g, h, k ∈ G}
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Cocyclic Hadamard matrices

• A coboundary is a cocycle of the form ψ(g , h) = ϕ(g)ϕ(h)ϕ(gh)−1 for a map

ϕ : G → A.

• In the following, let A = C2 = ⟨−1⟩ (with trivial ZG -action).

A HM H of order 4n is cocyclic with indexing group G = {g1, . . . , g4n} if there

exist a 2-cocycle ψ : G × G → ⟨−1⟩ and a map ϕ : G → ⟨−1⟩ such that

H ≡
[
ψ(gi , gj )ϕ(gigj )

]
i,j

(4)

• If ψ is trivial, then H is called group-developed.

• Group developed HMs are known to have square order.†

• Note H ≡ [ψ(gi , gj )ϕ(gh)ϕ(g)ϕ(h)]i,j ; we work with this matrix instead.

†

Wallis: Combinatorial Design (1988)
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Classification of Cocyclic Hadamard matrices

• In 2010, Ó Catháın and Röder reported

the classification of CHMs of order less

than 40.

• To achieve this, they used a known con-

nection between CHMs and certain semi-

regular (4n, 2, 4n, 2n) relative difference

sets in groups of order 8n.†

n 1 2 3 4 5 6 7 8 9

# classes 1 1 1 5 3 16 6 100 35

†

de Launey, Flannery, and Horadam, Cocyclic Hadamard matrices and difference sets (2000)
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Structure of cocyclic Hadamard matrices of order 4p

• de Launey and Flannery studied the struc-

ture of CHM of order 4p.

• They showed that such matrices have in-

dexing groups K ⋉ Cp , where |K | = 4,

and can be described by a set of block

arrays.

• Every CHM of order 4p and p > 3 prime

with indexing group K ⋉ Cp and cocycle

ψ is equivalent to a matrix


W X a Y b Zab

X (−1)rW a Zb (−1)rY ab

Y (−1)tZa (−1)sW b (−1)s+tX ab

Z (−1)r+tY a (−1)sXb (−1)r+s+tW ab


where (r , s, t) ∈ {(1, 0, 0), (0, 1, 0), (1, 1, 0), (1, 1, 1)} depends on ψ, the blocks

W ,X ,Y ,Z are back-circulant, and a block Mx is circulant if and only if

x ∈ {a, b, ab} ⊆ K acts by inversion on Cp .†

†

De Launey and Flannery: Algebraic Design Theory (2011)
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Classification of cocyclic Hadamard matrices of order 4p

• In 2019, Barrera Acevedo, Ó Catháın and

Dietrich recovered the aforementioned

4 × 4 block arrays via a group theoreti-

cal approach.

• They applied a construction algorithm to

obtain the classification of CHMs of or-

ders 4 · 11 and 4 · 13.

• They are currently exploring the idea of

using SAT-solvers to classify CHMs of or-

ders 4 · 17 and 4 · 19.

p 3 5 7 11 13

# classes 1 1 3 63 336

It is natural to ask whether CHMs of orders 8p and 4pq, for 2 < p < q primes, can be

described by a set of block arrays, as in the case 4p.
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Cocyclic Hadamard matrices of order 8p

• CHMs of oder 8 · 3 are classified; there are 16 classes of such matrices†.

• In the following, let H be a CHM of order 8p with p > 3 prime, indexing group G

and cocycle ψ.

The Sylow Theorems and Schur–Zassenhaus Lemma, in combination with results of

Ito‡ yield the following

• G ∼= K ⋉ N, where |K | = 8 and N ∼= Cp , except for G = C7 ⋉ C3
2 – However

there are no CHMs with indexing group C7 ⋉ C3
2 as H2(C7 ⋉ C3

2 ,C2) is trivial.

• Eψ = G ⋉ |ψ⟨−1⟩ = K̂ ⋉ N̂, where K̂ ∼= K ⋉ψ ⟨−1⟩ (here ψ denotes the

restriction of ψ : G × G → ⟨−1⟩ to K × K) and N̂ ∼= Cp .

• If K = C8 then K̂ = C16 or C8 × C2 (both which are disqualified due to Ito’s and

the fact that H is not group developed).

• K ∈ {C3
2 ,C4 × C2,D8,Q8} (all polycyclic groups).

†Ó Catháın and Röder, The cocyclic Hadamard matrices of order less than 40 (2011)
‡

Ito, On Hadamard Groups (1994)
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• G ∼= K ⋉ N, where |K | = 8 and N ∼= Cp , except for G = C7 ⋉ C3
2 – However

there are no CHMs with indexing group C7 ⋉ C3
2 as H2(C7 ⋉ C3

2 ,C2) is trivial.

• Eψ = G ⋉ |ψ⟨−1⟩ = K̂ ⋉ N̂, where K̂ ∼= K ⋉ψ ⟨−1⟩ (here ψ denotes the

restriction of ψ : G × G → ⟨−1⟩ to K × K) and N̂ ∼= Cp .

• If K = C8 then K̂ = C16 or C8 × C2 (both which are disqualified due to Ito’s and

the fact that H is not group developed).

• K ∈ {C3
2 ,C4 × C2,D8,Q8} (all polycyclic groups).

†Ó Catháın and Röder, The cocyclic Hadamard matrices of order less than 40 (2011)
‡Ito, On Hadamard Groups (1994)
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Cocyclic Hadamard matrices of order 8p

Combining ideas of Ó Catháın and Röder†, and Barrera Acevedo et al‡. we have the

following result.

Theorem

Let H be a CHM of order 8p with indexing group G = K ⋉ N and cocycle ψ. Then

H ≡
[
ψ(ki , kj )

[
ϕ
(
kikjn

kjm
)]

n,m∈N

]
ki ,kj∈K

(5)

where, by abuse of notation, ψ is the restriction to K and ϕ : N → ⟨−1⟩ is a map.

For fixed ki , kj each inner p × p block
[
ϕ
(
kikjn

kjm
)]

n,m∈N
is group developed over

N with respect to the action of K on N.

Every matrix of form (5) is also cocyclic.

†Ó Catháın and Röder, The cocyclic Hadamard matrices of order less than 40 (2011)
‡Barrera Acevedo, Ó Catháın and Dietrich, Constructing Cocyclic Hadamard Matrices of order 4p (2019)
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Combining ideas of Ó Catháın and Röder†, and Barrera Acevedo et al‡. we have the

following result.

Theorem

Let H be a CHM of order 8p with indexing group G = K ⋉ N and cocycle ψ. Then

H ≡
[
ψ(ki , kj )

[
ϕ
(
kikjn

kjm
)]

n,m∈N

]
ki ,kj∈K

(5)

where, by abuse of notation, ψ is the restriction to K and ϕ : N → ⟨−1⟩ is a map.

For fixed ki , kj each inner p × p block
[
ϕ
(
kikjn

kjm
)]

n,m∈N
is group developed over

N with respect to the action of K on N.

Every matrix of form (5) is also cocyclic.
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Cocyclic Hadamard matrices of order 8p

The isomorphism type of the central extension K̂ = K ⋉ψ ⟨−1⟩ is one of the following:

K Isomorphism type of K̂ GAP ID [16,#]

C4 × C2 C2 ⋉ (C4 × C2),C2
4 [16, 3], [16, 4]

C2 × C8,C2 ⋉ C8 [16, 5], [16, 6]

C2
2 × C4 [16, 10]

C3
2 C2 ⋉ (C4 × C2),D8 × C2 [16, 3], [16, 11]

C4
2 ,Q8 × C2 [16, 14], [16, 12]

D8 C2 ⋉ (C4 × C2),C2
4 [16, 3], [16, 4]

D16, SD16 [16, 7], [16, 8]

Q16,D8 × C2 [16, 9], [16, 11]

Q8 C2
4 ,Q8 × C2 [16, 4], [16, 12]

For each isomorphism type of K̂ we compute a representative cocycle.
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Cocycles

Let K = C4 × C2 and consider the presentation

K = ⟨a, b, c | a2 = 1, b2 = c, c2 = 1, ba = b, ca = c, cb = c⟩.

The possible central extensions of K by C2 are given by

K̂ = Li,k,r = ⟨a, b, c, z | a2 = z i , b2 = c, c2 = zk , ba = bz r , z2 = 1⟩

with (i , k, r) ∈ Z3
2.

From the central extension 1 → C2
ι−→ Li,k,r

π−→ K → 1 take a lift l : K → Li,k,r and

compute the 2–cocycle

ψi,k,r (u, v) = ι−1(l(u)l(v)l(uv)−1). (6)

[ψi,k,r (u, v)]u,v∈K =

1 (−1 (−1 (−1 (−1 (−1 (−1 (−1
1 (−1)i (−1 (−1 (−1)i (−1)i (−1 (−1)i

1 (−1)r (−1 (−1 (−1)r (−1)r (−1)k (−1)k+r

1 (−1 (−1 (−1)k (−1 (−1)k (−1)k (−1)k

1 (−1)i+r (−1 (−1 (−1)i+r (−1)i+r (−1)k (−1)i+k+r

1 (−1)i (−1 (−1)k (−1)i (−1)i+k (−1)k (−1)i+k

1 (−1)r (−1)k (−1)k (−1)k+r (−1)k+r (−1)k (−1)k+r

1 (−1)i+r (−1)k (−1)k (−1)i+k+r (−1)i+k+r (−1)k (−1)i+k+r


.
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Coboundaries

There is a choice in the calculation of the cocycle ψi,k,r , but two cocycles from the

same central extension differ by a coboundary.

The elements in the group of couboudaries B2(C4 × C2,C2) are determined as follows:

Cα,β,γ,δ,ε =



1 1 1 1 1 1 1 1

1 1 γ δ γ δ βγε γβε

1 γ α β αγδ γδε αβ αγε

1 δ β 1 ε δ β ε

1 γ αγδ ε α βγδ αβγ αε

1 δ γδε δ βγδ 1 βγδ γδε

1 βγε αβ β αβγ βγδ α αβγδε

1 βγε αγε ε αε γδε αβγδε α


,

where α, β, γ, δ, ε ∈ ⟨−1⟩.
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Block structure - Example

From the description

H ≡
[
ψ(ki , kj )

[
ϕ
(
kikjn

kjm
)]

n,m∈N

]
ki ,kj∈K .

Every CHM with indexing group G ≡ (C4 × C2) ⋉ Cp is equivalent to a matrix

H1(S,T ,U,V ,W ,X ,Y , Z)a,b,c,i,k,rα,β,γ,δ,ε =

S T a Ub V c W ab X ac Y bc Z abc

T (−1)iSa W b X c (−1)iUab (−1)iV ac Z bc (−1)iY abc

U (−1)rW a V b Y c (−1)rX ab (−1)rZ ac (−1)kSbc (−1)k+rT abc

V X a Y b (−1)kSc Z ab (−1)kT ac (−1)kUbc (−1)kW abc

W (−1)i+rUa X b Z c (−1)i+rV ab (−1)i+rY ac (−1)kT bc (−1)i+k+rSabc

X (−1)iV a Z b (−1)kT b (−1)iY ab (−1)i+kSac (−1)kW bc (−1)i+kUabc

Y (−1)rZ aa (−1)kSb (−1)kUb (−1)k+rT ab (−1)k+rW ac (−1)kV bc (−1)k+rX abc

Z (−1)i+rY a (−1)kT b (−1)kW b (−1)i+k+rSab (−1)i+k+rUac (−1)kX bc (−1)i+k+rV abc


⊙

(Cα,β,γ,δ,ε ⊗ Jp) ,

where C4 × C2 = ⟨a, b, c⟩, i , k, r ∈ {0, 1}, α, β, γ, δ, ε ∈ ⟨−1⟩, Jp denotes the all 1’s

matrix of size p × p, and ⊗ and ⊙ denote the Kronecker and Hadamard products of

matrices, respectively.
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Block structure

Theorem

Every CHM H of order 8p, with p > 3 prime, and indexing group G = K ⋉ N, where

|K | = 8 and N ∼= Cp , is equivalent to one of four block matrices:

H1 = H1(S ,T ,U,V ,W ,X ,Y ,Z)a,b,c,i,k,rα,β,γ,δ,ε for K = C4 × C2

H2 = H2(S ,T ,U,V ,W ,X ,Y ,Z)a,b,c,i,j,k,r,s,tα,β,γ,δ for K = C3
2

H3 = H3(S ,T ,U,V ,W ,X ,Y ,Z)a,b,c,i,j,kα,β,γ,δ,ε for K = D8

H4 = H4(S ,T ,U,V ,W ,X ,Y ,Z)a,b,c,i,rα,β,γ,δ,ε for K = Q8

where (C4 × C2) = ⟨a, b, c⟩, i , k, r ∈ {0, 1} and α, β, γ, δ, ε ∈ ⟨−1⟩.



Towards a classification algorithm

We aim to establish a construction algorithm to classify CHMs of order 8p.

Ideas to trim the search space:

• Reducing the coboundary space.

• Establishing Hadamard equivalences that preserve the block structures.

• Controlling eigenvalues of the block matrices.
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Towards a classification algorithm

We aim to establish a construction algorithm to classify CHMs of order 8p.

Ideas to trim the search space:

• Reducing the coboundary space.

• Establishing Hadamard equivalences that preserve the block structures.

• Controlling eigenvalues of the block matrices.



Coboundary space reduction

Can we get rid of coboundaries?

For example, let G ≡ (C3
2 ) ⋉ Cp .

H2(S, T, U, V ,W , X, Y , Z)
a,b,c,i,j,k,r,s,t
α,β,γ,δ

=



S Ta Ub Vc Wab Xac Ybc Zabc

T (-1)i Sa αWb βXc (-1)iαUab (-1)iβVac δZbc (-1)i δYabc

U (-1)rαWa (-1)j Sb γYc (-1)j+rαTab (-1)rαβδZac (-1)jγjV bc (-1)j+rβγδXabc

V (-1)sβXa (-1)tγYb (-1)k Sc (-1)s+tαγδZab (-1)k+sβTac (-1)k+tγUbc (-1)k+s+tαγδWabc

W (-1)i+rαUa (-1)jαTb αγδZc (-1)i+j+r Sab (-1)i+rαβγYac (-1)jαβγXbc (-1)i+j+rαγδVabc

X (-1)i+sβVa (-1)tβγδZb (-1)kβTc (-1)i+s+tαβγYab (-1)i+k+s Sac (-1)k+tαβγWbc (-1)m-j-rβγδUabc

Y (-1)r+sδZa (-1)j+tγVb (-1)kγUc (-1)m-i-kαβγXab (-1)k+r+sαβγWac (-1)j+k+t Sbc (-1)m-i δTabc

Z (-1)i+r+sδYa (-1)j+tβγδXb (-1)kαγδWc (-1)m-kαγδVab (-1)m-j-tβγδUac (-1)j+k+tδTbc (-1)mSabc



Hola
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Can we get rid of coboundaries?

For example, let G ≡ (C3
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Coboundary space reduction

Can we get rid of coboundaries?

For example, let G ≡ (C3
2 ) ⋉ Cp .

H2(S, T, U, V ,W , X, Y , Z)
a,b,c,i,j,k,r,s,t
α,β,γ,δ

≡



S Ta Ub γVc αWab βγXac Ybc δZabc

T (-1)i Sa αWb βγXc (-1)i Uab (−1)iγVac δZbc (-1)i Y abc

U (-1)rαWa (-1)j Sb Y c (-1)j+r Tab (-1)r δZac (-1)jγVbc (-1)j+rβγXabc

γV (-1)sβγXa (-1)t Y b (-1)k Sc (-1)s+tδZab (-1)k+s Tac (-1)k+t Ubc (-1)k+s+tαWabc

αW (-1)i+r Ua (-1)j Tb δZc (-1)i+j+r Sab (-1)i+r Y ac (-1)jβγXbc (-1)i+j+rγVabc

βγX (-1)i+sγVa (-1)tδZb (-1)kTc (-1)i+s+t Y ab (-1)i+k+s Sac (-1)k+tαWbc (-1)m-j-r Uabc

Y (-1)r+sδZa (-1)j+tγVb (-1)kUc (-1)m-i-kβγXab (-1)k+r+sαWac (-1)j+k+t Sbc (-1)m-i Tabc

δZ (-1)i+r+s Y a (-1)j+tβγXb (-1)kαWc (-1)m-kγVab (-1)m-j-t Uac (-1)j+k+t Tbc (-1)mSabc



Hence,

H2 = H2(S,T ,U,V ,W ,X ,Y , Z)a,b,c,i,j,k,r,s,tα,β,γ,δ ≡ H2(S,T ,U, γV, αW, βγX,Y , δZ)a,b,c,i,j,k,r,s,t1,1,1,1



Coboundary space reduction

Can we get rid of coboundaries?

For example, let G ≡ (C3
2 ) ⋉ Cp .

H2(S, T, U, V ,W , X, Y , Z)
a,b,c,i,j,k,r,s,t
α,β,γ,δ

≡



S Ta Ub γVc αWab βγXac Ybc δZabc
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U (-1)rαWa (-1)j Sb Y c (-1)j+r Tab (-1)r δZac (-1)jγVbc (-1)j+rβγXabc
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Y (-1)r+sδZa (-1)j+tγVb (-1)kUc (-1)m-i-kβγXab (-1)k+r+sαWac (-1)j+k+t Sbc (-1)m-i Tabc

δZ (-1)i+r+s Y a (-1)j+tβγXb (-1)kαWc (-1)m-kγVab (-1)m-j-t Uac (-1)j+k+t Tbc (-1)mSabc



Hence,

H2 = H2(S,T ,U,V ,W ,X ,Y , Z)a,b,c,i,j,k,r,s,tα,β,γ,δ ≡ H2(S,T ,U, γV, αW, βγX,Y , δZ)a,b,c,i,j,k,r,s,t1,1,1,1



Coboundary space reduction

Proposition

Let

H1 = H1(S,T ,U,V ,W ,X ,Y , Z)a,b,c,i,k,rα,β,γ,δ,ε H2 = H2(S,T ,U,V ,W ,X ,Y , Z)a,b,c,i,j,k,r,s,tα,β,γ,δ

H3 = H3(S,T ,U,V ,W ,X ,Y , Z)a,b,c,i,j,kα,β,γ,δ,ε H4 = H4(S,T ,U,V ,W ,X ,Y , Z)a,b,c,i,rα,β,γ,δ,ε.

Then
H1 ≡ H1(S,T ,U, αV , γW , αδX , αβY , αγεZ)a,b,c,i,k,r1,1,1,1,1

H2 ≡ H2(S,T ,U, γV , αW , βγX ,Y , δZ)a,b,c,i,j,k,r,s,t1,1,1,1

H3 ≡ H3(S,T , βεU,V ,W ,X , εγY , δZ)a,b,c,i,j,kα,1,1,1,1

H4 ≡ H4(S,T ,U, αV ,W , βX , γY , δZ)a,b,c,i,r1,1,1,1,ε.

In the following, let

H1 = H1(S,T ,U,V ,W ,X ,Y , Z)a,b,c,i,k,r1,1,1,1,1 H2 = H2(S,T ,U,V ,W ,X ,Y , Z)a,b,c,i,j,k,r,s,t1,1,1,1

H3 = H3(S,T ,U,V ,W ,X ,Y , Z)a,b,c,i,j,kα,1,1,1,1 H4 = H4(S,T ,U,V ,W ,X ,Y , Z)a,b,c,i,r1,1,1,1,ε.



Coboundary space reduction

Proposition

Let
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Coboundary space reduction

Proposition

Let

H1 = H1(S,T ,U,V ,W ,X ,Y , Z)a,b,c,i,k,rα,β,γ,δ,ε H2 = H2(S,T ,U,V ,W ,X ,Y , Z)a,b,c,i,j,k,r,s,tα,β,γ,δ

H3 = H3(S,T ,U,V ,W ,X ,Y , Z)a,b,c,i,j,kα,β,γ,δ,ε H4 = H4(S,T ,U,V ,W ,X ,Y , Z)a,b,c,i,rα,β,γ,δ,ε.

Then
H1 ≡ H1(S,T ,U, αV , γW , αδX , αβY , αγεZ)a,b,c,i,k,r1,1,1,1,1

H2 ≡ H2(S,T ,U, γV , αW , βγX ,Y , δZ)a,b,c,i,j,k,r,s,t1,1,1,1

H3 ≡ H3(S,T , βεU,V ,W ,X , εγY , δZ)a,b,c,i,j,kα,1,1,1,1

H4 ≡ H4(S,T ,U, αV ,W , βX , γY , δZ)a,b,c,i,r1,1,1,1,ε.

In the following, let

H1 = H1(S,T ,U,V ,W ,X ,Y , Z)a,b,c,i,k,r H2 = H2(S,T ,U,V ,W ,X ,Y , Z)a,b,c,i,j,k,r,s,t

H3 = H3(S,T ,U,V ,W ,X ,Y , Z)a,b,c,i,j,kα H4 = H4(S,T ,U,V ,W ,X ,Y , Z)a,b,c,i,rε .



Block-structure-preserving equivalences

Can we multiply rows/columns of H1, . . . ,H4 by −1 preserving their block structure?

H1 = H1(S,T ,U, V ,W , X , Y , Z)a,b,c,i,k,r =

S T a Ub V c W ab X ac Y bc Zabc

T (−1)iSa W b X c (−1)iUab (−1)iV ac Zbc (−1)iY abc

U (−1)rW a V b Y c (−1)rX ab (−1)rZac (−1)kSbc (−1)k+rT abc

V X a Y b (−1)kSc Zab (−1)kT ac (−1)kUbc (−1)kW abc

W (−1)i+rUa Xb Zc (−1)i+rV ab (−1)i+rY ac (−1)kTbc (−1)i+k+rSabc

X (−1)iV a Zb (−1)kTb (−1)iY ab (−1)i+kSac (−1)kW bc (−1)i+kUabc

Y (−1)rZaa (−1)kSb (−1)kUb (−1)k+rT ab (−1)k+rW ac (−1)kV bc (−1)k+rX abc

Z (−1)i+rY a (−1)kTb (−1)kW b (−1)i+k+rSab (−1)i+k+rUac (−1)kXbc (−1)i+k+rV abc



Thus,

H1 ≡ ±1 H1(−S ,T ,U,−V ,−W ,X ,Y ,−Z)a,b,c,i,k,r .



Block-structure-preserving equivalences

Can we multiply rows/columns of H1, . . . ,H4 by −1 preserving their block structure?

H1 = H1(S,T ,U, V ,W , X , Y , Z)a,b,c,i,k,r =

S T a Ub V c W ab X ac Y bc Zabc

T (−1)iSa W b X c (−1)iUab (−1)iV ac Zbc (−1)iY abc

U (−1)rW a V b Y c (−1)rX ab (−1)rZac (−1)kSbc (−1)k+rT abc

V X a Y b (−1)kSc Zab (−1)kT ac (−1)kUbc (−1)kW abc

W (−1)i+rUa Xb Z c (−1)i+rV ab (−1)i+rY ac (−1)kTbc (−1)i+k+rSabc

X (−1)iV a Zb (−1)kTb (−1)iY ab (−1)i+kSac (−1)kW bc (−1)i+kUabc
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Z (−1)i+rY a (−1)kTb (−1)kW b (−1)i+k+rSab (−1)i+k+rUac (−1)kXbc (−1)i+k+rV abc



Thus,

H1 ≡ ±1 H1(−S ,T ,U,−V ,−W ,X ,Y ,−Z)a,b,c,i,k,r .



Block-structure-preserving equivalences

Can we multiply rows/columns of H1, . . . ,H4 by −1 preserving their block structure?

H1 = H1(S,T ,U, V ,W , X , Y , Z)a,b,c,i,k,r ≡

−S T a Ub −V c −W ab X ac Y bc −Zabc

−T (−1)iSa W b −X c −(−1)iUab (−1)iV ac Zbc −(−1)iY abc

−U (−1)rW a V b −Y c −(−1)rX ab (−1)rZac (−1)kSbc −(−1)k+rT abc

−V X a Y b −(−1)kSc −Zab (−1)kT ac (−1)kUbc −(−1)kW abc

−W (−1)i+rUa Xb −Z c −(−1)i+rV ab (−1)i+rY ac (−1)kTbc −(−1)i+k+rSabc

−X (−1)iV a Zb −(−1)kTb −(−1)iY ab (−1)i+kSac (−1)kW bc −(−1)i+kUabc

−Y (−1)rZaa (−1)kSb −(−1)kUb −(−1)k+rT ab (−1)k+rW ac (−1)kV bc −(−1)k+rX abc

−Z (−1)i+rY a (−1)kTb −(−1)kW b −(−1)i+k+rSab (−1)i+k+rUac (−1)kXbc −(−1)i+k+rV abc



Thus,

H1 ≡ ±1 H1(−S,T ,U,−V ,−W , X , Y ,−Z)
a,b,c,i,k,r
1,1,1,1 .



Block-structure-preserving equivalences

Can we multiply rows/columns of H1, . . . ,H4 by −1 preserving their block structure?

H1 = H1(S,T ,U, V ,W , X , Y , Z)a,b,c,i,k,r ≡

−S T a Ub −V c −W ab X ac Y bc −Zabc

T −(−1)iSa −W b X c (−1)iUab −(−1)iV ac −Zbc (−1)iY abc

U −(−1)rW a −V b Y c (−1)rX ab −(−1)r−Zac −(−1)kSbc (−1)k+rT abc

−V X a Y b −(−1)kSc −Zab (−1)kT ac (−1)kUbc −(−1)kW abc

−W (−1)i+rUa Xb −Z c −(−1)i+rV ab (−1)i+rY ac (−1)kTbc −(−1)i+k+rSabc

X −(−1)iV a −Zb (−1)kTb (−1)iY ab −(−1)i+kSac −(−1)kW bc (−1)i+kUabc

Y −(−1)rZaa −(−1)kSb (−1)kUb (−1)k+rT ab −(−1)k+rW ac −(−1)kV bc (−1)k+rX abc

−Z (−1)i+rY a (−1)kTb −(−1)kW b −(−1)i+k+rSab (−1)i+k+rUac (−1)kXbc −(−1)i+k+rV abc



Thus,

H1 ≡ H1(−S ,T ,U,−V ,−W ,X ,Y ,−Z)a,b,c,i,k,r



Block-structure-preserving equivalences

Can we multiply rows/columns of H1, . . . ,H4 by −1 preserving their block structure?

H1 = H1(S,T ,U, V ,W , X , Y , Z)a,b,c,i,k,r ≡

−S T a Ub −V c −W ab X ac Y bc −Zabc

T −(−1)iSa −W b X c (−1)iUab −(−1)iV ac −Zbc (−1)iY abc

U −(−1)rW a −V b Y c (−1)rX ab −(−1)r−Zac −(−1)kSbc (−1)k+rT abc

−V X a Y b −(−1)kSc −Zab (−1)kT ac (−1)kUbc −(−1)kW abc

−W (−1)i+rUa Xb −Z c −(−1)i+rV ab (−1)i+rY ac (−1)kTbc −(−1)i+k+rSabc

X −(−1)iV a −Zb (−1)kTb (−1)iY ab −(−1)i+kSac −(−1)kW bc (−1)i+kUabc

Y −(−1)rZaa −(−1)kSb (−1)kUb (−1)k+rT ab −(−1)k+rW ac −(−1)kV bc (−1)k+rX abc

−Z (−1)i+rY a (−1)kTb −(−1)kW b −(−1)i+k+rSab (−1)i+k+rUac (−1)kXbc −(−1)i+k+rV abc



Thus,

H1 ≡ H1(−S ,T ,U,−V ,−W ,X ,Y ,−Z)a,b,c,i,k,r



Block-structure-preserving equivalences

Proposition

H1 ≡ ±1 H1(−S,T ,U,−V ,−W ,X ,Y ,−Z)a,b,c,i,k,r

H3 ≡ ±1H3(−S,T ,−U,−V ,W ,X ,−Y , Z)a,b,c,i,j,k,r,s,tα

H4 ≡ ±1 H4(−T ,−V ,W ,−X ,Y ,−S, Z ,U)a,b,c,i,rε ≡ ±1 H4(−T ,V ,−W ,−X ,Y , S,−Z ,U)a,b,c,i,rε

≡ ±1 H4(−T ,V ,W ,−X ,−Y , S, Z ,−U)a,b,c,i,rε ≡ ±1 H4(T ,−V ,−W ,X ,Y ,−S,−Z ,U)a,b,c,i,rε

≡ ±1 H4(T ,−V ,W ,X ,−Y ,−S, Z ,−U)a,b,c,i,rε ≡ ±1 H4(T ,V ,−W ,X ,−Y , S,−Z ,−U)a,b,c,i,rε

H2 ≡ ±1H2(e1S, e2T , e3U, e4V , e5W , e6X , e7Y , e8Z)a,b,c,i,j,k,r,s,t

where el ∈ {±1}, for l = 1, . . . , 8, and exactly three of e1, e2, e3, e4 and one of

e5, e6, e7, e8 are −1.



Block-structure-preserving equivalences

Can we rearrange the blocks of H1, . . . ,H4 preserving their structure?

H1 = H1(S,T ,U, V ,W , X , Y , Z)a,b,c,i,k,r =

S T a Ub V c W ab X ac Y bc Zabc

T (−1)iSa W b X c (−1)iUab (−1)iV ac Zbc (−1)iY abc

U (−1)rW a V b Y c (−1)rX ab (−1)rZac (−1)kSbc (−1)k+rT abc

V X a Y b (−1)kSc Zab (−1)kT ac (−1)kUbc (−1)kW abc

W (−1)i+rUa Xb Zc (−1)i+rV ab (−1)i+rY ac (−1)kTbc (−1)i+k+rSabc

X (−1)iV a Zb (−1)kTb (−1)iY ab (−1)i+kSac (−1)kW bc (−1)i+kUabc

Y (−1)rZaa (−1)kSb (−1)kUb (−1)k+rT ab (−1)k+rW ac (−1)kV bc (−1)k+rX abc

Z (−1)i+rY a (−1)kTb (−1)kW b (−1)i+k+rSab (−1)i+k+rUac (−1)kXbc (−1)i+k+rV abc



Thus

H1 ≡ H1(T , S ,W ,X ,U,V ,Z ,Y )a,b,c,i,k,r
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Y (−1)rZaa (−1)kSb (−1)kUb (−1)k+rT ab (−1)k+rW ac (−1)kV bc (−1)k+rX abc

Z (−1)i+rY a (−1)kTb (−1)kW b (−1)i+k+rSab (−1)i+k+rUac (−1)kXbc (−1)i+k+rV abc



Thus

H1 ≡ H1(T , S ,W ,X ,U,V ,Z ,Y )a,b,c,i,k,r



Block-structure-preserving equivalences

Can we rearrange the blocks of H1, . . . ,H4 preserving their structure?

H1 = H1(S,T ,U, V ,W , X , Y , Z)a,b,c,i,k,r ≡

S T a Ub V c W ab X ac Y bc Zabc

T (−1)iSa W b X c (−1)iUab (−1)iV ac Zbc (−1)iY abc

U (−1)rW a V b Y c (−1)rX ab (−1)rZac (−1)kSbc (−1)k+rT abc

V X a Y b (−1)kSc Zab (−1)kT ac (−1)kUbc (−1)kW abc

W (−1)i+rUa Xb Z c (−1)i+rV ab (−1)i+rY ac (−1)kTbc (−1)i+k+rSabc

X (−1)iV a Zb (−1)kTb (−1)iY ab (−1)i+kSac (−1)kW bc (−1)i+kUabc

Y (−1)rZaa (−1)kSb (−1)kUb (−1)k+rT ab (−1)k+rW ac (−1)kV bc (−1)k+rX abc

Z (−1)i+rY a (−1)kTb (−1)kW b (−1)i+k+rSab (−1)i+k+rUac (−1)kXbc (−1)i+k+rV abc



Thus

H1 ≡ H1(T ,S ,W ,X ,U,V ,Z ,Y )a,b,c,i,k,r
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Block-structure-preserving equivalences

Proposition

H1 ≡ H1(T , S,W ,X ,U,V , Z ,Y )a,b,c,i,k,r

H2 ≡ H2(T , S,U,V ,W ,X ,Y , Z)a,b,c,i,j,k,r,s,t ≡ H2(U,W ,V ,Y ,X , Z , S,T )a,b,c,i,j,k,r,s,t

≡ H2(V ,X ,Y , S, Z ,T ,U,W )a,b,c,i,j,k,r,s,t ≡ H2(W ,X , Z ,T ,Y , S,W ,U)a,b,c,i,j,k,r,s,t

≡ H2(X ,V , Z ,T ,Y , S,W ,U)a,b,c,i,j,k,r,s,t ≡ H2(Y , Z , S,U,T ,W ,V ,X )a,b,c,i,j,k,r,s,t

≡ H2(Z ,Y ,T ,W , S,U,X ,V )a,b,c,i,j,k,r,s,t

H3 ≡ H3(T , S,W ,X ,U,V , Z ,Y )a,b,c,i,j,k,r,s,tα

H4 ≡ H4(T ,V ,W ,X ,Y , S, Z ,U)a,b,c,i,rε ≡ H4(U, Z ,V ,Y ,T ,W , S,X )a,b,c,i,rε

≡ H4(V ,X ,Y , S, Z ,T ,U,W )a,b,c,i,rε ≡ H4(W ,U,X , Z ,V ,Y ,T , S)a,b,c,i,rε

≡ H4(X , S, Z ,T ,U,V ,W ,Y )a,b,c,i,rε ≡ H4(Y ,W , S,U,X , Z ,V ,T )a,b,c,i,rε

≡ H4(Z ,Y ,T ,W , S,U,X ,V )a,b,c,i,rε



Block-structure-preserving equivalences

So we know H1 ≡ H1(T , S ,W ,X ,U,V ,Z ,Y )a,b,c,i,k,r but can we do any better?

Proposition

H1(S ,T ,U,V ,W ,X ,Y ,Z)a,b,c,i,0,r ≡ H1(T , S,W ,X ,U,V ,Z ,Y )a,b,c,i,0,r ≡

H1(U,W ,V ,Y ,X ,Z , S ,T )a,b,c,i,0,r ≡ H1(V ,X ,Y , S ,Z ,T ,U,W )a,b,c,i,0,r ≡

H1(W ,U,X ,Z ,V ,Y ,T ,S)a,b,c,i,0,r ≡ H1(X ,V ,Z ,T ,Y , S,W ,U)a,b,c,i,0,r ≡

H1(Y ,Z ,S ,Y ,T ,W ,V ,X )a,b,c,i,0,r ≡ H1(Z ,Y ,T ,W , S,U,X ,V )a,b,c,i,0,r

with (i , r) ∈ {(0, 1), (1, 0), (1, 1)}.

There are more block-structure-preserving equivalences arising from the specialisation

of the “actions” a, b, c, and the parameters i , j , k, r , s, t and α, ε.
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Control of eigenvalues

Recall

H1 = H1(S,T ,U,V ,W ,X ,Y , Z)a,b,c,i,k,r H2 = H2(S,T ,U,V ,W ,X ,Y , Z)a,b,c,i,j,k,r,s,t

H3 = H3(S,T ,U,V ,W ,X ,Y , Z)a,b,c,i,j,kα H4 = H4(S,T ,U,V ,W ,X ,Y , Z)a,b,c,i,rε

From the equation

HiH
T
i = 8pI8p ,

for i = 1, 2, 3, 4, it follows that

SST + · · ·+ ZZT = 8pIp .

The gramians SST , . . . ,ZZT are symmetric and circulant, and hence polynomials in

the permutation matrix P of the p-cycle (1, 2, . . . , p).

The gramians SST , . . . ,ZZT commute in pairs and are simultaneously diagonalisable.
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Control of eigenvalues

For i = 1, . . . , 8 and R ∈ {S , . . . ,Z}, let

λi,R

denote the i-th eigenvalue of RRT .

If A ⊂ {S , . . . ,Z} then for i = 1, . . . , 8 we have

∑
R∈A

λi,R ≤ 8p. (7)

These inequalities can help to trim the search spaces significantly.



Algorithm

This algorithm describes a method to classify all CHMs H1,H2,H3,H4 of order 8p

with p > 3 prime up to equivalence.

Let s, . . . , z the sums of the first rows of the blocks S , . . . ,Z , respectively.

Input: a prime p > 3

Output: a list of all CHMs of order 8p, up to equivalence

1: initialise L as an empty list

2: determine all decompositions D = {(s, . . . , z) ∈ Z8 | s2 + · · ·+ z2 = 8p}
3: discard the element of D that produce equivalent matrices

4: for (s, . . . , z) ∈ D do

5: construct S as the set of back-circulant matrices over ±1 of order p with row

6: sum s (that satisfy the eigenvalue constraint)

7: similarly, construct T ,U ,V,W,X ,Y,Z.

8: for (S, . . . ,Z) ∈ S × · · · × Z satisfying the eigenvalue constraints do

9: construct H1,H2,H3,H4.

10: if Hi is Hadamard and H /∈ L up to equivalence then add Hi to L.

11: return L.

12:
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11: return L.

12: print Thank you!


