Department of Probability and Mathematical Statistics

FACULTY OF MATHEMATICS AND PHYSICS Charles University

Dominik Beck

Fourth moment of random determinants

RICCOTA 2023, Rijeka

•000000

- 2 General fourth moment
- 3 Gram fourth moment
- 4 Sixth moment (current work)

$$X_{ii}$$
 i.i.d.,

$$m_q = \mathbb{E}X_{ij}^q$$
,

$$A = (X_{ij})_{n \times n}$$

$$U=(X_{ij})_{n\times p},$$

$$f_k(n) = \mathbb{E}(\det A)^k$$

$$f_k(n,p) = \mathbb{E}(\det U^\top U)^{k/2}$$

$$F_k(t) = \sum_{n=0}^{\infty} \frac{t^n}{n!^2} f_k(n), \quad F_k(t, \omega) = \sum_{n=0}^{\infty} \sum_{p=0}^{n} \frac{t^p \omega^{n-p} (n-p)!}{n! p!} f_k(n, p).$$

0000000

$$X_{ii}$$
 i.i.d.,

$$m_q = \mathbb{E}X_{ij}^q$$
,

$$A = (X_{ii})_{n \times n}$$

$$U=(X_{ij})_{n\times p},$$

$$f_k(n) = \mathbb{E}(\det A)^k$$

$$f_k(n, p) = \mathbb{E}(\det U^\top U)^{k/2},$$

$$F_k(t) = \sum_{n=0}^{\infty} \frac{t^n}{n!^2} f_k(n), \quad F_k(t, \omega) = \sum_{n=0}^{\infty} \sum_{p=0}^{n} \frac{t^p \omega^{n-p} (n-p)!}{n! p!} f_k(n, p).$$

■ WLOG $m_2 = 1$.

Introduction

0000000

(2/2)3/39

Previously known results

NRR's formula on fourth determinant moment

Theorem. (1954 | Nyquist H., Rice S. O., Riordan J.¹)

For any distribution of X_{ij} with $m_1 = 0$ and $m_2 = 1$,

$$F_4(t) = \frac{e^{t(m_4-3)}}{(1-t)^3}.$$

Dominik Beck

¹Harry Nyquist, SO Rice, and J Riordan. "The distribution of random determinants". In: *Quarterly of Applied mathematics* 12.2 (1954), pp. 97–104

Previously known results

Dembo's formula on fourth Gram moment

Theorem. (1989 | Dembo A.²)

For any distribution of X_{ij} with $m_1 = 0$ and $m_2 = 1$,

$$F_4(t, \omega) = \frac{e^{t(m_4-3)}}{(1-t)^2(1-\omega-t)}.$$

²Amir Dembo. "On random determinants". In: *Quarterly of applied mathematics* 47.2 (1989), pp. 185–195

Our results

General fourth determinant moment

Theorem. $(5/2022 \mid B. D..^3)$

For any distribution of X_{ii} with $m_1 = 0$ and $\mu_2 = 1$, $F_4(t)$ equals

$$\frac{e^{t(\mu_4-3)}}{\left(1-t\right)^3} \left[\left(1+m_1\mu_3t\right)^4 + 6m_1^2t \frac{\left(1+m_1\mu_3t\right)^2}{1-t} + m_1^4t \frac{1+7t+4t^2}{\left(1-t\right)^2} \right],$$

where $\mu_2 = m_2 - m_1^2$, $\mu_3 = m_3 - 3m_1m_2 + 2m_1^3$ and $\mu_4 = m_4 - m_4 - m_4 = m_4 = m_4 - m_4 = m_$ $4m_1m_3 + 6m_1^2m_2 - 3m_1^4$

³Dominik Beck. "On the fourth moment of a random determinant". In: arXiv preprint arXiv:2207.09311 (2022)

0000000

General fourth Gram moment

Theorem. (7/2022 | B. D.⁴)

For any distribution of X_{ij} with $m_1=0$ and $\mu_2=1$ (μ_q as before),

$$\begin{split} F_4(t,\omega) = & \frac{e^{t(\mu_4 - 3)}}{(1 - t)^2 (1 - \omega - t)} \bigg[(1 + m_1 \mu_3 t)^4 + \frac{6m_1^2 t (1 + m_1 \mu_3 t)^2}{1 - t} \\ & + \frac{m_1^4 t (1 + 7t + 4t^2)}{(1 - t)^2} + \frac{\omega m_1^2 t}{1 - \omega - t} \left(\frac{2 (1 + m_1 \mu_3 t)^2}{1 - t} \right. \\ & + \frac{m_1^2 (1 + 5t + 2t^2)}{(1 - t)^2} \right) + \frac{2t^2 \omega^2 m_1^4}{(1 - \omega - t)^2 (1 - t)^2} \bigg] \, . \end{split}$$

⁴Dominik Beck. "On the fourth moment of a random determinant". In: arXiv preprint arXiv:2207.09311 (2022)

Random geometry

 V_d volume of random d-simplex picked from fixed d-simplex (\mathbb{R}^d) of unit content. For k even and $X_{ij} \sim \mathsf{Exp}(1)$, we have⁵

$$\mathbb{E}V_d^k = \left(\frac{d!}{(d+k)!}\right)^{d+1} f_k(d+1),$$

n	1	2	3	4		5	
f ₄ (n)	24	960	51840	3511872		287953920	
n		6		7	8		
<i>f</i> ₄ (<i>n</i>)	279	88001280	31813	25414400	418846663065600		

⁵William Reed. "Random points in a simplex". In: *Pacific Journal of Mathematics* 54.2 (1974), pp. 183–198

Dominik Beck

8 / 39

- 2 General fourth moment
 - Preliminaries
 - Marked tables
 - Structure of marked tables
 - Decomposition over even marked tables
 - Covering technique

- 1 Introduction
- 2 General fourth moment
 - Preliminaries
 - Marked tables
 - Structure of marked tables
 - Decomposition over even marked tables
 - Covering technique
- 3 Gram fourth moment
- 4 Sixth moment (current work)

Definitions II:

$$Y_{ij}=X_{ij}-m_1,$$

$$\mu_q = \mathbb{E} Y_{ij}^q,$$

$$B = (Y_{ij})_{n \times n}$$

$$V=(Y_{ij})_{n\times p}$$

$$g_k(n) = \mathbb{E}(\det B)^k$$

$$g_k(n, p) = \mathbb{E}(\det V^\top V)^{k/2}$$

$$G_k(t) = \sum_{n=0}^{\infty} \frac{t^n}{n!^2} g_k(n), \quad G_k(t, \omega) = \sum_{n=0}^{\infty} \sum_{p=0}^{n} \frac{t^p \omega^{n-p} (n-p)!}{n! p!} g_k(n, p).$$

$$Y_{ii} = X_{ii} - m_1$$

$$\mu_q = \mathbb{E} Y_{ij}^q$$
,

$$B = (Y_{ii})_{n \times n}$$

$$V = (Y_{ij})_{n \times p}$$

$$g_k(n) = \mathbb{E}(\det B)^k$$

$$g_k(n,p) = \mathbb{E}(\det V^\top V)^{k/2}$$

$$G_k(t) = \sum_{n=0}^{\infty} \frac{t^n}{n!^2} g_k(n), \quad G_k(t, \omega) = \sum_{n=0}^{\infty} \sum_{p=0}^{n} \frac{t^p \omega^{n-p} (n-p)!}{n! p!} g_k(n, p).$$

■ WLOG $\mu_2 = 1$.

For any distribution of X_{ij} with $\mu_2 = 1$,

$$G_k(t) = F_k(t)|_{m_q \to \mu_q}, \quad G_k(t, \omega) = F_k(t, \omega)|_{m_q \to \mu_q}, \quad q \geqslant 2$$

For any distribution of X_{ii} with $\mu_2 = 1$,

$$G_k(t) = F_k(t)|_{m_q \to \mu_q}, \quad G_k(t, \omega) = F_k(t, \omega)|_{m_q \to \mu_q}, \quad q \geqslant 2$$

$$G_4(t) = \frac{e^{t(\mu_4 - 3)}}{(1 - t)^3}$$

Lemma.

Introduction

For any distribution of X_{ij} with $\mu_2 = 1$,

$$G_k(t) = F_k(t)|_{m_q \to \mu_q}, \quad G_k(t, \omega) = F_k(t, \omega)|_{m_q \to \mu_q}, \quad q \geqslant 2$$

$$G_4(t) = \frac{e^{t(\mu_4 - 3)}}{(1 - t)^3}$$

$$G_4(t, \omega) = \frac{e^{t(\mu_4 - 3)}}{(1 - t)^2 (1 - \omega - t)}$$

- 2 General fourth moment
 - Preliminaries
 - Marked tables
 - Structure of marked tables
 - Decomposition over even marked tables
 - Covering technique
- 3 Gram fourth moment
- 4 Sixth moment (current work)

$$\det A = \det B + m_1 \sum_{ij} (-1)^{i+j} \det B_{ij}.$$

Lemma (Matrix determinant lemma).

$$\det A = \det B + m_1 \sum_{ij} (-1)^{i+j} \det B_{ij}.$$

Corollary. Denote $\pi \in T_n$ a permutation of order n and $\sigma \in T_n^{\times}$ a marked permutation formed from π by marking at most one of its numbers, then

$$\det A = \sum_{\pi \in T_n} \operatorname{sgn} \pi \prod_{i=1}^n X_{i\pi(i)} = \sum_{\sigma \in T_n^{\times}} \operatorname{sgn} \sigma \prod_{i=1}^n Y_{i\sigma(i)},$$

where sgn $\sigma = \operatorname{sgn} \pi$ and $Y_{i\sigma(i)} = m_1$ if i is marked and $Y_{i\sigma(i)} = Y_{i\pi(i)}$ otherwise.

Definition. We say t is a marked table k by n if its rows are marked permutations. $T_{k,n}^{\times}$ is the set of all such tables. We define weight of its i-th column as $\mathbb{E}\prod_{j=0}^k Y_{i\sigma_j(i)}$ and the weight w(t) of the whole table t as the product of weights of all of its columns. Also $\operatorname{sgn} t$ will be the product of signs of permutations of rows.

3	×	1	4	5	2	7	8	9
3	2	1	9	4	6	×	5	8
3	×	1	9	4	2	7	5	8
3	2		4	5	6	7	8	9

Example: $t \in T_{4,9}^{\times}$ with $w(t) = m_1^3 \mu_3 \mu_4^2$

$$f_k(n) = \sum_{t \in T_{k,n}^{\times}} w(t) \operatorname{sgn} t.$$

Definition. Let $T_{k,n}^r \subseteq T_{k,n}^{\times}$ be the subset of those tables which have exactly r marks.

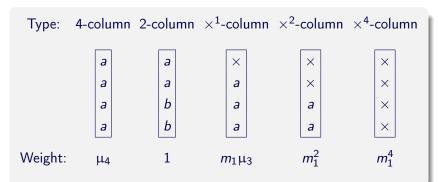
Definition.
$$f_k^{[r]}(n) = \sum_{t \in T'_{k,n}} w(t) \operatorname{sgn} t$$

Corollary.
$$f_k(n) = \sum_{r=0}^{k} f_k^{[r]}(n)$$

- 2 General fourth moment
 - Preliminaries
 - Marked tables
 - Structure of marked tables
 - Decomposition over even marked tables
 - Covering technique
- 3 Gram fourth moment
- 4 Sixth moment (current work)

Let a, b denote different numbers selected from $\{1, 2, 3, \ldots, n\}$. Up to permutation of rows, the only ways how the columns of 4 by n

tables with nonzero weight could look like are the following:



Dominik Beck

Charles University Prague

- 2 General fourth moment
 - Preliminaries
 - Marked tables
 - Structure of marked tables
 - Decomposition over even marked tables
 - Covering technique
- 3 Gram fourth moment
- 4 Sixth moment (current work)

Definition. Let $S_{4,n}^r \subseteq T_{4,n}^r$ be the subset of those tables with nonzero weight which lack \times^1 columns.

Definition.
$$s_4^{[r]}(n) = \sum_{t \in S_{4n}^r} w(t) \operatorname{sgn} t, \quad S_4^{[r]}(t) = \sum_{n=0}^{\infty} \frac{t^n}{n!} s_4^{[r]}(n).$$

Proposition.

$$F_4(t) = \sum_{r=0}^{4} (1 + m_1 \mu_3 t)^{4-r} S_4^{[r]}(t)$$

= $(1 + m_1 \mu_3 t)^4 S_4^{[0]}(t) + (1 + m_1 \mu_3 t)^2 S_4^{[2]}(t) + S_4^{[4]}(t)$.

Proof. Creating $t \in T^r_{4,n}$ from $t' \in S^{r-s}_{4,n-s}$ by adding $s \times 1$ -columns,

$$f_4^{[r]}(n) = \sum_{s=0}^r \binom{4-r+s}{s} \binom{n}{s}^2 s!^2 m_1^s \mu_3^s s_4^{[r-s]}(n-s)$$

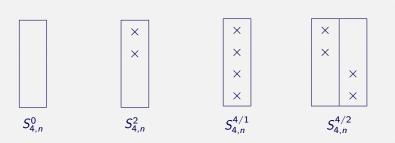
Example:
$$n = 9$$
, $r = 4$, $s = 2$

- 2 General fourth moment
 - Preliminaries
 - Marked tables
 - Structure of marked tables
 - Decomposition over even marked tables
 - Covering technique
- 3 Gram fourth moment
- 4 Sixth moment (current work)

bie types

Definition. We define tables $S_{4,n}^{r/s} \subseteq S_{4,n}^r$ such that their r marks occupy s columns. Accordingly, we define

$$s_4^{[r/s]}(n) = \sum_{t \in S^{r/s}} w(t) \operatorname{sgn}(t)$$
 and $S_4^{[r/s]}(t) = \sum_{n=0}^{\infty} \frac{t^n}{n!^2} s_4^{[r/s]}(n)$.



23 / 39

$$S_4^{[2]}(t) = m_1^2(6 - 2\mu_4) \frac{\partial S_4^{[0]}(t)}{\partial \mu_4} + 2m_1^2 t \frac{\partial S_4^{[0]}(t)}{\partial t}$$

$$S_4^{[2]}(t) = m_1^2(6 - 2\mu_4) \frac{\partial S_4^{[0]}(t)}{\partial \mu_4} + 2m_1^2 t \frac{\partial S_4^{[0]}(t)}{\partial t}$$

$$S_4^{[0]}(t) = G_4(t) = \frac{e^{t(\mu_4 - 3)}}{(1 - t)^3}$$

$$S_4^{[2]}(t) = m_1^2(6 - 2\mu_4) \frac{\partial S_4^{[0]}(t)}{\partial \mu_4} + 2m_1^2 t \frac{\partial S_4^{[0]}(t)}{\partial t}$$

$$S_4^{[0]}(t) = G_4(t) = \frac{e^{t(\mu_4 - 3)}}{(1 - t)^3}$$

Corollary.
$$S_4^{[2]}(t) = \frac{6m_1^2 t e^{t(\mu_4 - 3)}}{(1 - t)^4}$$

Proof. Let $t' \in S_{4,n}^0$ have c of 4-columns and thus n-c of 2-columns. Its weight is μ_4^c . From this t', we create $t \in S_{4,n}^2$ by covering two pairs of numbers in either 4-column or 2-column.

$$S_{4,n}^2 \leftarrow S_{4,n}^0: \begin{bmatrix} \times \\ \times \\ a \\ a \\ a \end{bmatrix} \leftarrow \begin{bmatrix} a \\ a \\ a \\ a \end{bmatrix} \qquad \begin{bmatrix} \times \\ \times \\ b \\ b \end{bmatrix} \leftarrow \begin{bmatrix} a \\ a \\ b \\ b \end{bmatrix}$$

$$6 \text{ ways} \qquad \qquad 2 \text{ ways}$$

The contribution of t' to $\sum_{t \in S_{A,n}^{[2]}} w(t) \operatorname{sgn} t$ is then

$$6cm_1^2\mu_4^{c-1} + 2(n-c)m_1^2\mu_4^c = m_1^2(6-2\mu_4)\frac{\partial\mu_4^c}{\partial\mu_4} + 2m_1^2n\mu_4^c. \quad \blacksquare$$

Dominik Beck

$$S_4^{[4/1]}(t) = m_1^4(1-\mu_4) \frac{\partial S_4^{[0]}(t)}{\partial \mu_4} + m_1^4 t \frac{\partial S_4^{[0]}(t)}{\partial t}$$

$$S_4^{[4/1]}(t) = m_1^4(1-\mu_4) \frac{\partial S_4^{[0]}(t)}{\partial \mu_4} + m_1^4 t \frac{\partial S_4^{[0]}(t)}{\partial t}$$

Corollary.
$$S_4^{[4/1]}(t) = \frac{m_1^4 t (1+2t)}{(1-t)^4} e^{t(\mu_4-3)}$$

$$S_{4,n}^{4/1} \leftarrow S_{4,n}^{0}: \begin{bmatrix} \times \\ \times \\ \times \\ \times \end{bmatrix} \leftarrow \begin{bmatrix} a \\ a \\ a \\ a \end{bmatrix} \qquad \begin{bmatrix} \times \\ \times \\ \times \\ \times \end{bmatrix} \leftarrow \begin{bmatrix} a \\ a \\ b \\ b \end{bmatrix}$$

The contribution of t' to $\sum_{t \in S_{4,n}^{[4/1]}} w(t) \operatorname{sgn} t$ is then

$$cm_1^4\mu_4^{c-1} + (n-c)m_1^4\mu_4^c = m_1^4(1-\mu_4)\frac{\partial \mu_4^c}{\partial \mu_4} + m_1^4n\mu_4^c.$$

Dominik Beck

Introduction

Charles University Prague

$$S_4^{[4/2]}(t) = (3 - \mu_4) \frac{\partial S_4^{[4/1]}(t)}{\partial \mu_4} + t \frac{\partial S_4^{[4/1]}(t)}{\partial t} - S_4^{[4/1]}(t)$$

Proposition.

Introduction

$$S_4^{[4/2]}(t) = (3 - \mu_4) \frac{\partial S_4^{[4/1]}(t)}{\partial \mu_4} + t \frac{\partial S_4^{[4/1]}(t)}{\partial t} - S_4^{[4/1]}(t)$$

Corollary.
$$S_4^{[4/2]}(t) = \frac{6m_1^4t^2(1+t)}{(1-t)^5}e^{t(\mu_4-3)}$$

$$S_4^{[4/2]}(t) = (3 - \mu_4) \frac{\partial S_4^{[4/1]}(t)}{\partial \mu_4} + t \frac{\partial S_4^{[4/1]}(t)}{\partial t} - S_4^{[4/1]}(t)$$

Corollary.
$$S_4^{[4/2]}(t) = \frac{6m_1^4t^2(1+t)}{(1-t)^5}e^{t(\mu_4-3)}$$

Corollary.

$$S_4^{[4]}(t) = S_4^{[4/1]}(t) + S_4^{[4/2]}(t) = \frac{m_1^4 t (1 + 7t + 4t^2)}{(1 - t)^5} e^{t(\mu_4 - 3)}$$

$$S_4^{[4/2]}(t) = (3 - \mu_4) \frac{\partial S_4^{[4/1]}(t)}{\partial \mu_4} + t \frac{\partial S_4^{[4/1]}(t)}{\partial t} - S_4^{[4/1]}(t)$$

Corollary.
$$S_4^{[4/2]}(t) = \frac{6m_1^4t^2(1+t)}{(1-t)^5}e^{t(\mu_4-3)}$$

Corollary.

$$S_4^{[4]}(t) = S_4^{[4/1]}(t) + S_4^{[4/2]}(t) = \frac{m_1^4 t (1 + 7t + 4t^2)}{(1 - t)^5} e^{t(\mu_4 - 3)}$$

Corollary. $F_4(t)$

Proof. Let $t' \in S_{4,n}^{\lfloor 4/1 \rfloor}$ have c of 4-columns and thus n-c-1 of 2-columns as now one column is a \times^4 -column. The weight of t' is $m_1^4 \mu_4^c$. From this t', we create $t \in S_{4,n}^{\lfloor 4/2 \rfloor}$ by **swapping** its two \times marks with pair of numbers in either 4-column or 2-column. By symmetry, each table in $S_{4,n}^{\lfloor 4/2 \rfloor}$ is counted twice.

$$S_{4,n}^{4/2} \leftarrow S_{4,n}^{4/1}: \begin{bmatrix} \times & a \\ \times & a \\ & \times & a \\ & a & \times \\ & a & \times \end{bmatrix} \leftarrow \begin{bmatrix} \times & a \\ \times & a \\ & \times & a \\ & \times & a \\ & \times & a \end{bmatrix} \quad \begin{bmatrix} \times & a \\ \times & a \\ & \times & a \\ & b & \times \\ & b & \times \end{bmatrix} \leftarrow \begin{bmatrix} \times & a \\ \times & a \\ & \times & b \\ & \times & b \end{bmatrix}$$

The contribution of t' to double of $\sum_{t \in S_{4,n}^{[4/2]}} w(t) \operatorname{sgn} t$ is then

$$6cm_1^4\mu_4^{c-1} + 2(n-c-1)m_1^4\mu_4^c = (6-2\mu_4)\frac{\partial(m_1^4\mu_4^c)}{\partial\mu_4} + 2nm_1^4\mu_4^c - 2m_1^4\mu_4^c. \blacksquare$$

Dominik Beck

Charles University Prague

- 2 General fourth moment
- 3 Gram fourth moment
- 4 Sixth moment (current work)

Definition. We say t is a paired marked table k by n (k even) if for $i=1,\ldots,k/2$, its (2i-1)-th and 2i-th row are marked permutations of selection $C_i\subseteq\{1,2,3,\ldots n\}$. Similarly, $T_{k,n,p}^\times$ is the set of all such tables and $S_{k,n,p}^\times$ the subset of those lacking \times^1 columns and having nonzero weight. We define generating functions of those subsets accordingly.

Proposition.

$$f_k(n,p) = \sum_{t \in \mathcal{T}_{k,n,p}^{\times}} w(t) \operatorname{sgn} t,$$

$$F_4(t,\omega) = \sum_{n=0}^{4} m_1^r (1 + m_1 \mu_3 t)^{4-r} S_4^{[r]}(t,\omega).$$

Per analogy, we must have for any distribution X_{ij} with $\mu_2 = 1$,

$$\begin{split} S_4^{[2]}(t,\omega) &= m_1^2 (6 - 2\mu_4) \frac{\partial S_4^{[0]}(t,\omega)}{\partial \mu_4} + 2m_1^2 t \frac{\partial S_4^{[0]}(t,\omega)}{\partial t}, \\ S_4^{[4/1]}(t,\omega) &= m_1^4 (1 - \mu_4) \frac{\partial S_4^{[0]}(t,\omega)}{\partial \mu_4} + m_1^4 t \frac{\partial S_4^{[0]}(t,\omega)}{\partial t}, \\ S_4^{[4/2]}(t,\omega) &= (3 - \mu_4) \frac{\partial S_4^{[4/1]}(t,\omega)}{\partial \mu_4} + t \frac{\partial S_4^{[4/1]}(t,\omega)}{\partial t} - S_4^{[4/1]}(t,\omega), \\ S_4^{[4]}(t,\omega) &= S_4^{[4/1]}(t,\omega) + S_4^{[4/2]}(t,\omega). \end{split}$$

Per analogy, we must have for any distribution X_{ij} with $\mu_2 = 1$,

$$\begin{split} S_4^{[2]}(t,\omega) &= m_1^2 (6 - 2\mu_4) \frac{\partial S_4^{[0]}(t,\omega)}{\partial \mu_4} + 2 m_1^2 t \, \frac{\partial S_4^{[0]}(t,\omega)}{\partial t}, \\ S_4^{[4/1]}(t,\omega) &= m_1^4 (1 - \mu_4) \frac{\partial S_4^{[0]}(t,\omega)}{\partial \mu_4} + m_1^4 t \, \frac{\partial S_4^{[0]}(t,\omega)}{\partial t}, \\ S_4^{[4/2]}(t,\omega) &= (3 - \mu_4) \frac{\partial S_4^{[4/1]}(t,\omega)}{\partial \mu_4} + t \frac{\partial S_4^{[4/1]}(t,\omega)}{\partial t} - S_4^{[4/1]}(t,\omega), \\ S_4^{[4]}(t,\omega) &= S_4^{[4/1]}(t,\omega) + S_4^{[4/2]}(t,\omega). \end{split}$$

 $S_4^{[0]}(t, \omega) = G_4(t, \omega).$

For any distribution of X_{ij} with $m_1=0$ and $\mu_2=1$ (μ_q as before),

$$\begin{split} F_4(t,\omega) = & \frac{e^{t(\mu_4 - 3)}}{(1 - t)^2 (1 - \omega - t)} \bigg[(1 + m_1 \mu_3 t)^4 + \frac{6m_1^2 t (1 + m_1 \mu_3 t)^2}{1 - t} \\ & + \frac{m_1^4 t (1 + 7t + 4t^2)}{(1 - t)^2} + \frac{\omega m_1^2 t}{1 - \omega - t} \left(\frac{2 (1 + m_1 \mu_3 t)^2}{1 - t} \right. \\ & + \frac{m_1^2 (1 + 5t + 2t^2)}{(1 - t)^2} \right) + \frac{2t^2 \omega^2 m_1^4}{(1 - \omega - t)^2 (1 - t)^2} \bigg] \, . \end{split}$$

Introduction

- 2 General fourth moment
- 3 Gram fourth moment
- 4 Sixth moment (current work)

Sixth moment

Theorem (12/2022 | B. D., Lv Zelin, Potechin Aaron⁶)

For any disribution X_{ij} with $m_1 = 0$ and $m_2 = 1$,

$$F_6(t) = \frac{(1+m_3^2t)^{10}e^{t(m_6-15m_4-10m_3^2+30)}}{48(1+3t-m_4t)^{15}} \sum_{n=0}^{\infty} \frac{(1+n)(2+n)(4+n)!t^n}{(1+3t-m_4t)^{3n}}.$$

Dominik Beck

⁶Dominik Beck, Zelin Lv, and Aaron Potechin. The Sixth Moment of Random Determinants. 2022. DOI: 10.48550/ARXIV.2206.11356. URL: https://arxiv.org/abs/2206.11356

Sixth moment

Theorem (12/2022 | B. D., Lv Zelin, Potechin Aaron⁶)

For any disribution X_{ij} with $m_1 = 0$ and $m_2 = 1$,

$$F_6(t) = \frac{(1+m_3^2t)^{10}e^{t(m_6-15m_4-10m_3^2+30)}}{48(1+3t-m_4t)^{15}} \sum_{n=0}^{\infty} \frac{(1+n)(2+n)(4+n)!t^n}{(1+3t-m_4t)^{3n}}$$

Corollary: Explicit formula for $f_6(n)$ and its asymptotics.

⁶Dominik Beck, Zelin Lv, and Aaron Potechin. The Sixth Moment of Random Determinants. 2022. DOI: 10.48550/ARXIV.2206.11356. URL: https://arxiv.org/abs/2206.11356

Gram Sixth moment

Theorem (6/2023 | B. D.)

For any disribution X_{ij} with $m_1 = 0$ and $m_2 = 1$,

$$F_{6}(t,\omega) = \frac{(1+m_{3}^{2}t)^{10}e^{t\left(m_{6}-15m_{4}-10m_{3}^{2}+30\right)}}{48\left(1+3t-m_{4}t\right)^{15}}$$
$$\sum_{n=0}^{\infty}\sum_{p=0}^{n}\frac{t^{p}\omega^{n-p}(n+2)!(n+4)!}{p!(n-p+2)!(n-p+4)!\left(1+3t-m_{4}t\right)^{3n}}.$$

For general distribution X_{ii} with $m_1 \neq 0$, determine

- \blacksquare $F_6(t)$
- \blacksquare $F_6(t, \omega)$

For general distribution X_{ii} with $m_1 \neq 0$, determine

- $F_6(t)$
- $\blacksquare F_6(t, \omega)$

As of 28 June, we know only the special case $m_1 \neq 0$, $\mu_3 = 0$.

Thank you for your attention!

References

- [NRR54] Harry Nyquist, SO Rice, and J Riordan. "The distribution of random determinants". In: *Quarterly of Applied mathematics* 12.2 (1954), pp. 97–104.
- [Ree74] William Reed. "Random points in a simplex". In: *Pacific Journal of Mathematics* 54.2 (1974), pp. 183–198.
- [Dem89] Amir Dembo. "On random determinants". In: *Quarterly of applied mathematics* 47.2 (1989), pp. 185–195.
- [Bec22] Dominik Beck. "On the fourth moment of a random determinant". In: arXiv preprint arXiv:2207.09311 (2022).
- [BLP22] Dominik Beck, Zelin Lv, and Aaron Potechin. The Sixth Moment of Random Determinants. 2022. DOI: 10.48550/ARXIV.2206.11356. URL: https://arxiv.org/abs/2206.11356.