Vertex-primitive *s*-arc-transitive digraphs of almost simple groups

Lei Chen

Monday 3rd July, 2023

Lei Chen Vertex-primitive s-arc-transitive digraphs of almost simple groups

• the vertex set V

Ξ.

- ${\scriptstyle \bullet}$ the vertex set V
- A is an antisymmetric irreflexive relation on V

< 同 > < 三 > < 三 > -

э

- the vertex set V
- A is an antisymmetric irreflexive relation on V
- Write $u \rightarrow v$ if $(u, v) \in A$, and $u \rightarrow v$ is called an arc (or a 1-arc)

.

э

- the vertex set V
- A is an antisymmetric irreflexive relation on V
- Write $u \rightarrow v$ if $(u, v) \in A$, and $u \rightarrow v$ is called an arc (or a 1-arc)
- An *s*-arc in Γ is $v_0 \rightarrow v_1 \rightarrow \ldots \rightarrow v_s$ for $s \geq 2$.

• • = • • = •

3

Digraph Γ

- the vertex set V
- A is an antisymmetric irreflexive relation on V
- Write $u \rightarrow v$ if $(u, v) \in A$, and $u \rightarrow v$ is called an arc (or a 1-arc)
- An *s*-arc in Γ is $v_0 \rightarrow v_1 \rightarrow \ldots \rightarrow v_s$ for $s \geq 2$.

 V_0

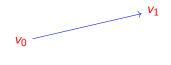
 A digraph Γ is said to be *s*-arc-transitive if Aut(Γ) acts transitively on the set of *s*-arcs of Γ.

 V_1

 V_2

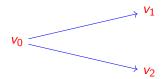
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シののや

- the vertex set V
- A is an antisymmetric irreflexive relation on V
- Write $u \rightarrow v$ if $(u, v) \in A$, and $u \rightarrow v$ is called an arc (or a 1-arc)
- An *s*-arc in Γ is $v_0 \rightarrow v_1 \rightarrow \ldots \rightarrow v_s$ for $s \geq 2$.
- A digraph Γ is said to be *s*-arc-transitive if Aut(Γ) acts transitively on the set of *s*-arcs of Γ.



 V_2

- the vertex set V
- A is an antisymmetric irreflexive relation on V
- Write $u \rightarrow v$ if $(u, v) \in A$, and $u \rightarrow v$ is called an arc (or a 1-arc)
- An *s*-arc in Γ is $v_0 \rightarrow v_1 \rightarrow \ldots \rightarrow v_s$ for $s \geq 2$.
- A digraph Γ is said to be *s-arc-transitive* if Aut(Γ) acts transitively on the set of *s*-arcs of Γ.



Primitive Groups

A transitive permutation group G on a set Ω called *primitive* if G does not preserve any non-trivial partitions of Ω .

4 3 6 4 3

Primitive Groups

A transitive permutation group G on a set Ω called *primitive* if G does not preserve any non-trivial partitions of Ω .

Lemma

A transitive permutation group G acting on a set Ω is primitive if and only if G_v is maximal for any vertex $v \in \Omega$.

Primitive Groups

A transitive permutation group G on a set Ω called *primitive* if G does not preserve any non-trivial partitions of Ω .

Lemma

A transitive permutation group G acting on a set Ω is primitive if and only if G_v is maximal for any vertex $v \in \Omega$.

Primitive Digraphs

A digraph Γ is called *G*-vertex-primitive if *G* acts primitively on the vertex set of Γ . Note that under this circumstance, G_v is maximal in *G* for any vertex $v \in \Gamma$.

- 4 周 ト 4 戸 ト 4 戸 ト

• Let G be a group and H be a maximal subgroup of G

- Let G be a group and H be a maximal subgroup of G
- Pick $g \in G$ such that $g \notin H$ and $g^{-1} \notin HgH$

- Let G be a group and H be a maximal subgroup of G
- Pick $g \in G$ such that $g \notin H$ and $g^{-1} \notin HgH$

•
$$V(\Gamma) = \{Hx : x \in G\}$$

- Let G be a group and H be a maximal subgroup of G
- Pick $g \in G$ such that $g \notin H$ and $g^{-1} \notin HgH$

•
$$V(\Gamma) = \{Hx : x \in G\}$$

•
$$(Hx, Hy) \in A(\Gamma)$$
 iff $yx^{-1} \notin HgH$.

- Let G be a group and H be a maximal subgroup of G
- Pick $g \in G$ such that $g \notin H$ and $g^{-1} \notin HgH$

•
$$V(\Gamma) = \{Hx : x \in G\}$$

- $(Hx, Hy) \in A(\Gamma)$ iff $yx^{-1} \notin HgH$.
- Cos(G, H, g) is $R_H(G)$ -arc-transitive.

Simple Group

A group G is called a simple group if it does not have any proper normal subgroup.

• • = • • = •

Simple Group

A group G is called a simple group if it does not have any proper normal subgroup.

Socle

For a group G, the socle of G is defined to be the product of all minimal normal subgroups of G. We denote it by Soc(G).

Simple Group

A group G is called a simple group if it does not have any proper normal subgroup.

Socle

For a group G, the socle of G is defined to be the product of all minimal normal subgroups of G. We denote it by Soc(G).

Almost Simple Group

A group G is said to be *almost simple* if Soc(G) is a non-abelian simple group.

| 4 周 ト 4 ヨ ト 4 ヨ ト

• Classical Groups

• • = • • = •

- Classical Groups
- Alternating Groups

• • = • • = •

- Classical Groups
- Alternating Groups
- Exceptional Groups of Lie Type

-∢ ≣ ▶

- Classical Groups
- Alternating Groups
- Exceptional Groups of Lie Type
- Sporadic Groups

For a set Ω and G acts on Ω , an orbital $\Gamma \subseteq \Omega^2$ of G is said to be *self-paired* if for any $(x, y) \in \Gamma$ we have $(y, x) \in \Gamma$. In other words, for each $(x, y) \in \Gamma$ there exists $g \in G$ such that $(x, y)^g = (y, x)$

For a set Ω and G acts on Ω , an orbital $\Gamma \subseteq \Omega^2$ of G is said to be *self-paired* if for any $(x, y) \in \Gamma$ we have $(y, x) \in \Gamma$. In other words, for each $(x, y) \in \Gamma$ there exists $g \in G$ such that $(x, y)^g = (y, x)$

Rank

The rank of a group G is the number of orbitals of G

周 ト イ ヨ ト イ ヨ ト

For a set Ω and G acts on Ω , an orbital $\Gamma \subseteq \Omega^2$ of G is said to be *self-paired* if for any $(x, y) \in \Gamma$ we have $(y, x) \in \Gamma$. In other words, for each $(x, y) \in \Gamma$ there exists $g \in G$ such that $(x, y)^g = (y, x)$

Rank

The rank of a group G is the number of orbitals of G

Remark

Diagonal orbitals are naturally self-paired.

・ 同 ト ・ ヨ ト ・ ヨ ト

For a set Ω and G acts on Ω , an orbital $\Gamma \subseteq \Omega^2$ of G is said to be *self-paired* if for any $(x, y) \in \Gamma$ we have $(y, x) \in \Gamma$. In other words, for each $(x, y) \in \Gamma$ there exists $g \in G$ such that $(x, y)^g = (y, x)$

Rank

The rank of a group G is the number of orbitals of G

Remark

Diagonal orbitals are naturally self-paired.

・ 同 ト ・ ヨ ト ・ ヨ ト

 G = PSL_n(q), PSp_{2n}(q), H is a maximal totally isotropic stabiliser (some maximal parabolic subgroup), then the orbitals of Cos(G : H) are self-paired.

- $G = PSL_n(q), PSp_{2n}(q), H$ is a maximal totally isotropic stabiliser (some maximal parabolic subgroup), then the orbitals of Cos(G : H) are self-paired.
- G = Sz(q), Ree(q), H is a maximal parabolic subgroup, then G acts 2-transitively on Cos(G : H).

Cameron (1999)

For a group G acts on a set Ω , all of the orbitals of G are self-paired if and only if each constituent of the permutation character π is real and has multiplicity 1.

Cameron (1999)

For a group G acts on a set Ω , all of the orbitals of G are self-paired if and only if each constituent of the permutation character π is real and has multiplicity 1.

Saxl (Unpublished)

For G = Sp(2n, q), $H \neq C_4$ -maximal subgroup of G, then for the action of G on Cos(G : H), the permutation character π is not multiplicity-free.

伺 ト イヨト イヨト

• Take $G = PSp_{12}(q)$ acting on $V = \langle e_i, f_i \rangle_{i=1}^6$.

伺 ト く ヨ ト く ヨ ト

- Take $G = PSp_{12}(q)$ acting on $V = \langle e_i, f_i \rangle_{i=1}^6$.
- $W_1 := \langle e_1, f_1, e_4, f_4, e_5 + f_3, f_5 + e_2, e_6, f_6 \rangle.$

- Take $G = PSp_{12}(q)$ acting on $V = \langle e_i, f_i \rangle_{i=1}^6$.
- $W_1 := \langle e_1, f_1, e_4, f_4, e_5 + f_3, f_5 + e_2, e_6, f_6 \rangle.$
- $W_2 := \langle e_1, f_1, e_2, f_2, e_3, f_3, e_6, f_6 \rangle.$

- Take $G = PSp_{12}(q)$ acting on $V = \langle e_i, f_i \rangle_{i=1}^6$.
- $W_1 := \langle e_1, f_1, e_4, f_4, e_5 + f_3, f_5 + e_2, e_6, f_6 \rangle.$
- $W_2 := \langle e_1, f_1, e_2, f_2, e_3, f_3, e_6, f_6 \rangle.$
- $W_1 \cap W_2^{\perp} = \langle e_4, f_4 \rangle, \ W_2 \cap W_1^{\perp} = \langle e_2, f_3 \rangle.$

- Take $G = PSp_{12}(q)$ acting on $V = \langle e_i, f_i \rangle_{i=1}^6$.
- $W_1 := \langle e_1, f_1, e_4, f_4, e_5 + f_3, f_5 + e_2, e_6, f_6 \rangle.$
- $W_2 := \langle e_1, f_1, e_2, f_2, e_3, f_3, e_6, f_6 \rangle.$
- $W_1 \cap W_2^{\perp} = \langle e_4, f_4 \rangle, \ W_2 \cap W_1^{\perp} = \langle e_2, f_3 \rangle.$
- No element in $Sp_{12}(q)$ swaps W_1 and W_2 .

Weiss(1981)

A graph of valency at least 3 is at most 7-arc-transitive.

< 同 ト < 三 ト < 三 ト

Weiss(1981)

A graph of valency at least 3 is at most 7-arc-transitive.

Praeger(1989)

For all $s \ge 2$, there are infinitely many *s*-arc-transitive digraphs that are not (s + 1)-arc-transitive..

伺 ト イヨト イヨト

Bounding s for Vertex-primitive Digraph

Praeger(1989)

Does there exist a vertex-primitive 2-arc-transitive digraph?

Giudici-Li-Xia(2018)

It is sufficient to determine s when G is almost simple.

Bounding s for Vertex-primitive Digraph

Praeger(1989)

Does there exist a vertex-primitive 2-arc-transitive digraph?

Giudici-Li-Xia(2018)

It is sufficient to determine s when G is almost simple.

Guess

All the vertex-primitive digraphs are at most 2-arc-transitive.

• Giudici-Li-Xia(2018): $s \leq 2$ when $Soc(G) = PSL_n(q)$.

• • = • • = •

э

- Giudici-Li-Xia(2018): $s \leq 2$ when $Soc(G) = PSL_n(q)$.
- Pan-Wu-Yin(2020): s ≤ 2 when Soc(G) = A_n except for one subcase remains open.

- Giudici-Li-Xia(2018): $s \leq 2$ when $Soc(G) = PSL_n(q)$.
- Pan-Wu-Yin(2020): s ≤ 2 when Soc(G) = A_n except for one subcase remains open.
- Chen-Giudici-Praeger(2023): s ≤ 1 when Soc(G) = Ree(q) or Sz(q).
- Chen-Giudici-Prager(Unpublished): $s \le 2$ when $(G) = PSp_{2n}(q), G_2(q), {}^3D_4(q), {}^2F_4(q).$

伺い イヨト イヨト

Giudici-Li-Xia (2018)

There exists an infinite family of *G*-vertex-primitive (G, 2)-arc-transitive digraph such that $Soc(G) = PSL_3(q)$ and $G_v \cap Soc(G) = A_6$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Giudici-Li-Xia (2018)

There exists an infinite family of *G*-vertex-primitive (G, 2)-arc-transitive digraph such that $Soc(G) = PSL_3(q)$ and $G_v \cap Soc(G) = A_6$.

Question

If there exists any *G*-vertex-primitive (G, 2)-arc-transitive digraph of almost simple group such that G_v is of geometric type?