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Throughout p will be a prime and q a power of p.

V (n,q): The n-dimensional vector space over GF(q).

PG(n,q): The n-dimensional projective space over GF(q), that
is, the geometry “at infinity” of V (n + 1,q).

We have the following connections (“Blow-up”):

PG(n,qk )→ V (n + 1,qk )→ V ((n + 1)k ,q)→
PG((n + 1)k − 1,q)
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Definition: A projective two-weight set S is a set of points in
PG(n,q) with the property that every hyperplane intersects S in
either a or b points with a < b.

Examples:
unitals in PG(2,q2);
hyperovals in PG(2,2k );
Baer-subspaces in PG(n,q2);
maxima arcs in PG(2,2k );
....
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We care because these are beautiful objects but also because
of the important connections as described in the celebrated
Calderbank-Kantor paper “The geometry of two-weight codes”:

Every projective two-weight set

↔

A linear two-weight code

↔

A strongly regular graph admitting an elementary abelian
Singer group
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The examples that inspired this work: maximal arcs.

Apart from the earlier mentioned connections maximal arcs
also yield partial geometries.

Definition: A maximal d-arc K in PG(2,q) is a non-empty set
of points with the property that every line intersects K in either
0 or 0 < d < q points. (d is necessarily a power of p)

A by now classical result (Ball, Blokhuis and Mazzocca) states
that necessarily q is even.
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The basic example is the hyper-conic (= conic plus its nucleus)
which is a maximal 2-arc.

The most important other examples are due to Denniston and
Mathon, the so-called Denniston-arcs and Mathon-arcs.

In both cases these maximal d-arcs are constructed as a union
of conics on a common nucleus.

What if q is odd?
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We can clearly not hope for a maximal arc. However:

PG(2,q2)→ V (3,q2)→ V (6,q)→ PG(5,q)

Two-weight sets in PG(2,q2) yield two-weight sets in PG(5,q).
Hence a maximal arc in PG(2,q2) yields two-weight sets in
PG(5,q) with certain specific parameters. (Other powers of q
yield examples in other dimensions.)

Do such two weight-sets exist when q is odd?
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As such sets yield strongly regular graphs, what better place
than Brouwer’s table to check what is known.

A couple of sporadic examples by Kohnert (computer
construction of codes) and Gulliver and a by now famous
example by Mathon in PG(5,3). The Mathon example is
particularly interesting in that it consists of a union of 21 lines
and hence also yields a partial geometry. It is the closest one
can hope to get to a “blow-up” of a non-existing maximal 3-arc
in PG(2,9).

Any general constructions?

A little surprise to come later on ....
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As (hyper-)conics seem to be at the basis of most constructions
of maximal arcs, the question becomes:

“How to generalize the hyper-conic to odd characteristic in
higher dimension?”

There are a gazillion wonderful properties the hyper-conic has,
and so I tried and failed a gazillion of times
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A property of interest:

The hyper-conic is stabilized by a group G that fixes the
nucleus, acts as a Singer group on the remaining q + 1 points
and also as a Singer group on a line of PG(2,q) (let’s call it the
line at infinity).

For peace of mind consider the situation in PG(2,q2) and
correspondingly in PG(5,q).
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In PG(5,q) the nucleus becomes a line and the line at infinity
becomes a 3-space. We can translate a Singer group on the
line at infinity to a Singer group of this 3-space. What about
fixing the nucleus?

With a little imagination the identity on a point is a Singer group
on that point, so why not making this into a Singer group on the
resulting line in PG(5,q).
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We can somewhat unconventionally coordinate PG(5,q) as
follows:

Let Π be a 3-space and L be a disjoint line (hence Π and L span
PG(5,q)). Now we coordinate the full space by a 2-tuple
(α, β) 6= (0,0) with α in GF(q4) and β in GF(q2) and (α, β)
determined up to a scalar λ in GF∗(q).

Here (α,0) represents Π and (0, β) represents L.
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We consider the following group:

G =< (γ, δ) > where γ is a primitive element of GF(q4) and δ is
a primitive element of GF(q2) acting naturally (multiplication) on
the points (α, β) of PG(5,q).

Then G induces a Singer group on Π and on L.

We now consider the stabilizer of a point of L:

< γ(q+1), δ(q+1) >.

What does this group generate in Π?
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With a little work one figures out that γ(q+1) generates an ovoid
(elliptic quadric) in Π (traced out q − 1 times). This is actually
well described by Ebert. Hence < γ(q+1) > yields a so-called
elliptic fibration of Π, that is a partition of the point set into q + 1
disjoint ovoids (see Ebert). Each of these ovoids naturally
corresponds to a point of L under G.



UD-Math-logo

Now consider the following “cones” Cp := pQp \ Qp where p is
a point on L and Qp is the ovoid corresponding to p as in the
previous slide.

Define S :=
⋃

p∈L Cp.

Theorem
The set S is a two-weight set in PG(5,q) with the same
parameters as would arise from the blow-up of a maximal q-arc
in PG(2,q2).
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What about higher dimensions?

Consider Π a PG(2n − 1,q) and L a PG(n − 1,q) spanning
PG(3n − 1,q).

Coordinate as before and consider the point stabilizer of a point
of L. Not that trivial, but Cossidente and Storme come to the
rescue!
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Theorem (C-S)
For every a ∈ F∗qn the set
Qa = {x ∈ PG(2n − 1,q) | Tr(axqn+1) = 0}, with Tr the usual
trace map from Fqn to Fq, is an elliptic quadric of PG(2n − 1,q)
and the elliptic quadrics Qa form, through the parameter a, a
projective space PG(n − 1,q). Any linear combination
λQa + µQb, λ, µ ∈ Fq, of two elliptic quadrics Qa and Qb
defines a new elliptic quadric Qλa+µb.
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Theorem (C-S)

Let ξ = β(q
n−1)/(q−1), with β a primitive element of Fq2n . Then

an orbit in PG(2n − 1,q) under < ξ > has size qn + 1 and is
either contained in or disjoint from Qa, a ∈ Fqn . Furthermore,
each such orbit is either a cap (when n is even) or a union of
disjoint lines (when n ≥ 3 is odd) that is the intersection of n− 1
linearly independent Qa.
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As a result we can view the elliptic quadrics Qa as the points of
a PG(n − 1,q) (see above) and the orbits under < ξ > as the
hyperplanes H of this projective space P.

Let δ be an anti-automorphism between P and L such that
hyperplane Hp gets mapped to point p.

Now consider the following “cones” Cp := pHp \Hp where p is a
point on L and Hp is the hyperplane δ(p).

Define S :=
⋃

p∈L Hp.

Theorem
The set S is a two-weight set in PG(3n − 1,q) with the same
parameters as would arise from the blow-up of a maximal q-arc
in PG(2,qn).
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The two-weight set S admits G =< γ, β > acting cyclicly on the
points of S \ L.

This allows for a nice group theoretic construction of our
two-weight sets that shows the direct connection with our initial
hyperconic property.
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The little surprise promised earlier, discovered by cleaning my
office and finding an unfortunately never read paper given to me
by Jurgen Bierbrauer: Bierbrauer and Edel constructed linear
two-weight codes with the same parameters using a rather
intricate coding theoretic construction in an unfortunate obscure
paper published in 1998! (Journal of Combinatorial Designs).

It is unclear to me if the two-weight sets constructed here are
isomorphic to those arising from the codes of Bierbrauer and
Edel. And this seems like a nice open problem.
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A key open question?

Can we use the two-weight sets constructed here as true
generalizations of hyper-conics? That is, can they be building
blocks of other interesting combinatorial structures, especially
in odd characteristic? For example, can we take unions of such
sets on the same “base” L to build larger two-weight sets? (I
am rather convinced the answer is yes.)
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THANKS!


