The Chromatic number of some generalized Kneser graphs
 Joint work with Klaus Metsch and Daniel Werner

Jozefien D’haeseleer
Riccota Conference 2023

GHENT UNIVERSITY

Overview

(1) Introduction
(2) Chromatic number line-plane flags in $\operatorname{PG}(4, q)$

- Examples of cocliques and colorings
- Strategy
- Results

3 Chromatic number of $\{d-1, d\}$-flags in $\operatorname{PG}(2 d, q)$

- Examples of cocliques and colorings
- Results

1 Table of Contents
(1) Introduction

2 Chromatic number line-plane flags in PG(4, q)

- Examples of cocliques and colorings
- Strategy
- Results

3 Chromatic number of $\{d-1, d\}$-flags in $\operatorname{PG}(2 d, q)$

- Examples of cocliques and colorings
- Results

Introduction

Notation.

- $\operatorname{PG}(n, q)$: the n-dimensional projective space over \mathbb{F}_{q}.
- $\left[\begin{array}{c}n+1 \\ k+1\end{array}\right]=\prod_{i=1}^{k+1} \frac{q^{n+1-i}-1}{q^{i}-1}$: the number of k-spaces in $\operatorname{PG}(n, q)$.
- $\theta_{n}=\left[\begin{array}{c}n+1 \\ 1\end{array}\right]=\frac{q^{n+1}-1}{q^{1}-1}$: the number of points in $\operatorname{PG}(n, q)$.

Definition.

A flag \mathcal{F} is a set of subspaces in $\operatorname{PG}(n, q)$, s.t.
$\forall U, V \in \mathcal{F}: U \subsetneq V \vee V \subsetneq U$.

Introduction

Definition.

A flag \mathcal{F} is a set of subspaces in $\operatorname{PG}(n, q)$, s.t.
$\forall U, V \in \mathcal{F}: U \subsetneq V \vee V \subsetneq U$.

- The type of \mathcal{F} is the set of dimensions of its subspaces.

Introduction

Definition.

A flag \mathcal{F} is a set of subspaces in $\operatorname{PG}(n, q)$, s.t.
$\forall U, V \in \mathcal{F}: U \subsetneq V \vee V \subsetneq U$.

- The type of \mathcal{F} is the set of dimensions of its subspaces.

$\{0,1\}$-flag
\{1, 3\}-flag
\{0,2\}-flag

We always use projective dimensions.

Introduction

Definition.

Two flags are in general position if
$\forall \pi_{U} \in U, \pi_{V} \in V: \pi_{U} \cap \pi_{V}=\emptyset \vee\left\langle\pi_{U}, \pi_{V}\right\rangle=\mathrm{PG}(n, q)$.

Two line-plane flags in $\operatorname{PG}(4, q)$ in general position.

Introduction

Definition.

Two flags are in general position if
$\forall \pi_{U} \in U, \pi_{V} \in V: \pi_{U} \cap \pi_{V}=\emptyset \wedge\left\langle\pi_{U}, \pi_{V}\right\rangle=\mathrm{PG}(n, q)$.

Introduction

Definition.

Two flags are in general position if

$$
\forall \pi_{U} \in U, \pi_{V} \in V: \pi_{U} \cap \pi_{V}=\emptyset \wedge\left\langle\pi_{U}, \pi_{V}\right\rangle=\mathrm{PG}(n, q)
$$

Definition.

A set S of flags such that no two flags in S are in general position, is called an $E K R$-set.

1
 Introduction

Definition.

Two flags are in general position if

$$
\forall \pi_{U} \in U, \pi_{V} \in V: \pi_{U} \cap \pi_{V}=\emptyset \wedge\left\langle\pi_{U}, \pi_{V}\right\rangle=\mathrm{PG}(n, q)
$$

Definition.

A set S of flags such that no two flags in S are in general position, is called an EKR-set.

line-plane flags in $\mathrm{PG}(4, q)$, not in general position.

Introduction

Definition.
 Two flags are in general position if
 $\forall \pi_{U} \in U, \pi_{V} \in V: \pi_{U} \cap \pi_{V}=\emptyset \wedge\left\langle\pi_{U}, \pi_{V}\right\rangle=\operatorname{PG}(n, q)$.

Definition.

A set S of flags such that no two flags in S are in general position, is called an $E K R$-set.

Definition.

The q-Kneser graph is the graph $q K_{n ; \Omega}$, with vertices the flags of type Ω in $\operatorname{PG}(n, q)$ and two flags are adjacent if they are in general position.

More definitions

Definition.

A coclique or independent set in a graph 「 is a set of pairwise non-adjacent vertices.

More definitions

Definition.

A coclique or independent set in a graph 「 is a set of pairwise non-adjacent vertices.

- For $\Gamma=q K_{n ; \Omega}$, it corresponds to an EKR-set of flags of type Ω in $\operatorname{PG}(n, q)$.

More definitions

Definition.

A coclique or independent set in a graph 「 is a set of pairwise non-adjacent vertices.

- For $\Gamma=q K_{n ; \Omega}$, it corresponds to an EKR-set of flags of type Ω in $\operatorname{PG}(n, q)$.
A coloring of a graph 「 is an assignment of colors to the vertices of the graph, such that no two adjacent vertices have the same color. The smallest number of colors needed to color a graph Γ is called its chromatic number $\chi(\Gamma)$.

More definitions

Definition.

A coclique or independent set in a graph 「 is a set of pairwise non-adjacent vertices.

- For $\Gamma=q K_{n ; \Omega}$, it corresponds to an EKR-set of flags of type Ω in $\operatorname{PG}(n, q)$.
A coloring of a graph Γ is an assignment of colors to the vertices of the graph, such that no two adjacent vertices have the same color. The smallest number of colors needed to color a graph Γ is called its chromatic number $\chi(\Gamma)$.
- For $\Gamma=q K_{n ; \Omega}$, a coloring corresponds with a covering of all flags with EKR-sets of flags.

Research questions

1. What is the chromatic number of these q-Kneser graphs?

Research questions

1. What is the chromatic number of these q-Kneser graphs?
2. What is the structure of the colorings attaining this bound?

Research questions

1. What is the chromatic number of these q-Kneser graphs?
2. What is the structure of the colorings attaining this bound?

Table of Contents

1. Introduction

(2) Chromatic number line-plane flags in $\operatorname{PG}(4, q)$

- Examples of cocliques and colorings
- Strategy
- Results
(3) Chromatic number of $\{d-1, d\}$-flags in $\operatorname{PG}(2 d, q)$
- Examples of cocliques and colorings
- Results

Point-based example
 Point-pencil of line-plane flags in $\operatorname{PG}(4, q)$ through P,

2

 Large examples of cocliques of flags
Point-based example

Point-pencil of line-plane flags in $\mathrm{PG}(4, q)$ through P, together with a set of flags, whose planes pairwise intersect in a line through $P .\left(\right.$ Size $\left.=q^{5}+3 q^{4}+4 q^{3}+4 q^{2}+2 q+1\right)$

Point-based example
Point-pencil of line-plane flags in $\mathrm{PG}(4, q)$ through P, together with a set of flags, whose planes pairwise intersect in a line through P. $\left(\right.$ Size $\left.=q^{5}+3 q^{4}+4 q^{3}+4 q^{2}+2 q+1\right)$

Hyperplane-based example

The dual of a point-based example. Large examples of cocliques of flags

Point-based example

Point-pencil of line-plane flags in $\mathrm{PG}(4, q)$ through P, together with a set of flags, whose planes pairwise intersect in a line through P. $\left(\right.$ Size $\left.=q^{5}+3 q^{4}+4 q^{3}+4 q^{2}+2 q+1\right)$

Hyperplane-based example

The dual of a point-based example.

Theorem ([BB17]).

Every EKR-set of line-plane flags of $P G(4, q)$, which is not a subset of one of the sets defined above, has cardinality at most

$$
4 q^{4}+9 q^{3}+4 q^{2}+q+1
$$

2

Example of a covering

1. All point-based examples with base point in a solid S.

Example of a covering

1. All point-based examples with base point in a solid S.
2. $q^{3}+q^{2}+1$ point-based examples with base point in a solid S. We use the special part of these sets to cover the remaining flags.

2

Example of a covering

1. All point-based examples with base point in a solid S.
2. $q^{3}+q^{2}+1$ point-based examples with base point in a solid S. We use the special part of these sets to cover the remaining flags.

We know that $\chi\left(q K_{4 ;\{1,2\}}\right) \leq q^{3}+q^{2}+1$.

1. Assume C is a coloring of size $\chi \leq q^{3}+q^{2}+1$.

Strategy

1. Assume C is a coloring of size $\chi \leq q^{3}+q^{2}+1$.
2. We use the stability result on large EKR-sets.

Strategy

1. Assume C is a coloring of size $\chi \leq q^{3}+q^{2}+1$.
2. We use the stability result on large EKR-sets.

Theorem ([BB17]).

Every EKR-set of line-plane flags of $\mathrm{PG}(4, q)$, which is not contained in a point-based or hyperplane-based example, has cardinality at most

$$
4 q^{4}+9 q^{3}+4 q^{2}+q+1
$$

Strategy

1. Assume C is a coloring of size $\chi \leq q^{3}+q^{2}+1$.
2. We use the stability result on large EKR-sets.
3. Using counting arguments, we find that C contains many large EKR-sets; so based on a point or hyperplane.

Strategy

1. Assume C is a coloring of size $\chi \leq q^{3}+q^{2}+1$.
2. We use the stability result on large EKR-sets.
3. Using counting arguments, we find that C contains many large EKR-sets; so based on a point or hyperplane.

Assumption: at least half of the large EKR-sets are based on a point

Strategy

1. Assume C is a coloring of size $\chi \leq q^{3}+q^{2}+1$.
2. We use the stability result on large EKR-sets.
3. Using counting arguments, we find that C contains many large EKR-sets; so based on a point or hyperplane.

Assumption: at least half of the large EKR-sets are based on a point
4. Crucial lemma on point sets.

Lemma on point sets

Lemma.

Suppose that M is a set of points in $\operatorname{PG}(4, q)$, and P_{1}, P_{2}, P_{3} are three non-collinear points such that the plane π they span has no point in M. Let m, n and d be positive real numbers such that the following hold:

- Each of the points P_{1}, P_{2}, P_{3} lies on at most $n q^{2}$ lines that meet M,
- $|M|=d q^{3}$,
- $q>32 n^{5} m / d^{5}$.

Then there exists a solid S on π with $|S \cap M| \geq m q^{2}$.

Strategy

1. Assume C is a coloring of size $\chi \leq q^{3}+q^{2}+1$.
2. We use the stability result on large EKR-sets.
3. Using counting arguments, we find that C contains many large EKR-sets; so based on a point or hyperplane.

Assumption: at least half of the large EKR-sets are based on a point
4. Crucial lemma on point sets, which defines the solid S.

Strategy

1. Assume C is a coloring of size $\chi \leq q^{3}+q^{2}+1$.
2. We use the stability result on large EKR-sets.
3. Using counting arguments, we find that C contains many large EKR-sets; so based on a point or hyperplane.

Assumption: at least half of the large EKR-sets are based on a point
4. Crucial lemma on point sets, which defines the solid S.
5. Using counting arguments and the crucial lemma, we find that all elements of C are point-based examples with base point contained in a solid S, and $|C|=q^{3}+q^{2}+1$.

Main result

Theorem.

For $q>160 \cdot 36^{5}$ the chromatic number of the Kneser graph $q K_{4 ;\{1,2\}}$ is $q^{3}+q^{2}+1$. Up to duality, each color class C of a minimum coloring is contained in a unique point-based example, and the base points of these point-based examples are $q^{3}+q^{2}+1$ distinct points of a solid.

Table of Contents

(2) Chromatic number line-plane flags in $\operatorname{PG}(4, q)$

- Examples of cocliques and colorings
- Strategy
- Results

3 Chromatic number of $\{d-1, d\}$-flags in $\operatorname{PG}(2 d, q)$

- Examples of cocliques and colorings
- Results

Large examples of cocliques of flags

Point-based example

Point-pencil of $\{d-1, d\}$-flags in $\operatorname{PG}(2 d, q)$ through P, together with a set of flags, whose d-spaces pairwise intersect in a line through P.

Large examples of cocliques of flags

Point-based example

Point-pencil of $\{d-1, d\}$-flags in $\operatorname{PG}(2 d, q)$ through P, together with a set of flags, whose d-spaces pairwise intersect in a line through P.

Large examples of cocliques of flags

Point-based example

Point-pencil of $\{d-1, d\}$-flags in $\operatorname{PG}(2 d, q)$ through P, together with a set of flags, whose d-spaces pairwise intersect in a line through P.

Hyperplane-based example
The dual of the point-based example.

Large examples of cocliques of flags

Point-based example

Point-pencil of $\{d-1, d\}$-flags in $\operatorname{PG}(2 d, q)$ through P, together with a set of flags, whose d-spaces pairwise intersect in a line through P.

Hyperplane-based example
The dual of the point-based example.

We need a stability result on large EKR-sets of flags.

- For $d=2$ and $d=3$ there is a result known.
- For $d>3$ there is no result known yet.
\Rightarrow We use a conjecture.

Example of a covering

1. $q^{d+1}+q^{d}+\cdots+q^{2}+1$ point-based examples with base point in a $(d+1)$-space S. We use the special part of these sets to cover the remaining flags.

Example of a covering

1. $q^{d+1}+q^{d}+\cdots+q^{2}+1$ point-based examples with base point in a $(d+1)$-space S. We use the special part of these sets to cover the remaining flags.

Example of a covering

1. $q^{d+1}+q^{d}+\cdots+q^{2}+1$ point-based examples with base point in a $(d+1)$-space S. We use the special part of these sets to cover the remaining flags.

We know that $\chi\left(q K_{2 d ;\{d-1, d\}}\right) \leq q^{d+1}+q^{d}+\cdots+q^{2}+1$.

Main result

Conjecture.

For $d \geq 2$ there is an integer $\rho(d)$ such that every maximal coclique of $q \Gamma_{2 d,\{d-1, d\}}$ contains a point-pencil, a dual point-pencil, or has at most $\rho(d) \cdot q^{d^{2}+d-2}$ elements.

Main result

Conjecture.

For $d \geq 2$ there is an integer $\rho(d)$ such that every maximal coclique of $q \Gamma_{2 d,\{d-1, d\}}$ contains a point-pencil, a dual point-pencil, or has at most $\rho(d) \cdot q^{d^{2}+d-2}$ elements.

This conjecture is true for $d=2$, see [BB17], and for $d=3$, see [MW20]

Main result

Conjecture.

For $d \geq 2$ there is an integer $\rho(d)$ such that every maximal coclique of $q \Gamma_{2 d,\{d-1, d\}}$ contains a point-pencil, a dual point-pencil, or has at most $\rho(d) \cdot q^{d^{2}+d-2}$ elements.

Theorem.

If the conjecture is true for some integer $d \geq 2$, then

$$
\chi\left(q \Gamma_{2 d,\{d-1, d\}}\right)=q^{d+1}+q^{d}+\cdots+q^{2}+1
$$

for sufficiently large q. Moreover, if \mathcal{F} is a family of this many maximal cocliques that cover the vertex set, then - up to duality - there exists a $(d+1)$-dimensional subspace U, such that all elements of \mathcal{F} are contained in point-based examples, based on a point in U.

References

[BB17] A. Blokhuis and A. E. Brouwer. Cocliques in the Kneser graph on line-plane flags in PG(4,q). Combinatorica, 37(5):795-804, 2017.
[BBS14] A. Blokhuis, A. E. Brouwer, and T. Szőnyi. Maximal cocliques in the kneser graph on point-plane flags in PG(4,q). European Journal of Combinatorics, 35:95-104, 2014.
[DMW21] J. D'haeseleer, K. Metsch, and D. Werner. On the chromatic number of two generalized kneser graphs. Submitted, 2021.
[MW20] K. Metsch and D. Werner. Maximal cocliques in the Kneser graph on plane-solid flags in PG(6, q). Innov. Incidence Geom., 18(1):39-55, 2020.

Thank you very much for your attention.

