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Introduction1

Notation.
▶ PG(n, q): the n-dimensional projective space over Fq.
▶

[
n+1
k+1

]
=

∏k+1
i=1

qn+1−i −1
qi −1

: the number of k-spaces in PG(n, q).

▶ θn =
[n+1

1
]

= qn+1−1
q1−1 : the number of points in PG(n, q).
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Introduction1

Definition.
A flag F is a set of subspaces in PG(n, q), s.t.
∀U, V ∈ F : U ⊊ V ∨ V ⊊ U.

▶ The type of F is the set of dimensions of its subspaces.

{0, 1}-flag {1, 3}-flag {0, 2}-flag

We always use projective dimensions.
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Introduction1

Definition.
Two flags are in general position if
∀πU ∈ U, πV ∈ V : πU ∩ πV = ∅ ∨ ⟨πU , πV ⟩ = PG(n, q).

PG(4, q)

Two line-plane flags in PG(4, q) in general position.
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Introduction1

Definition.
Two flags are in general position if
∀πU ∈ U, πV ∈ V : πU ∩ πV = ∅ ∧ ⟨πU , πV ⟩ = PG(n, q).

Definition.
A set S of flags such that no two flags in S are in general
position, is called an EKR-set.

Definition.
The q-Kneser graph is the graph qKn;Ω, with vertices the flags
of type Ω in PG(n, q) and two flags are adjacent if they are in
general position.
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Kneser graph qK3;1, q = 31

•• •••••••••• ••••••• •••• ••



More definitions1

Definition.
A coclique or independent set in a graph Γ is a set of pairwise
non-adjacent vertices.

▶ For Γ = qKn;Ω, it corresponds to an EKR-set of flags of
type Ω in PG(n, q).

A coloring of a graph Γ is an assignment of colors to the vertices
of the graph, such that no two adjacent vertices have the same
color. The smallest number of colors needed to color a graph Γ
is called its chromatic number χ(Γ).
▶ For Γ = qKn;Ω, a coloring corresponds with a covering of all

flags with EKR-sets of flags.
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Research questions1

1. What is the chromatic number of these q-Kneser
graphs?

2. What is the structure of the colorings attaining this
bound?

•• •••••••••• ••••••• •••• ••



Research questions1

1. What is the chromatic number of these q-Kneser
graphs?

2. What is the structure of the colorings attaining this
bound?

•• •••••••••• ••••••• •••• ••



Research questions1

1. What is the chromatic number of these q-Kneser
graphs?

2. What is the structure of the colorings attaining this
bound?

•• •••••••••• ••••••• •••• ••



Table of Contents2

1 Introduction

2 Chromatic number line-plane flags in PG(4, q)
• Examples of cocliques and colorings
• Strategy
• Results

3 Chromatic number of {d − 1, d}-flags in PG(2d , q)
• Examples of cocliques and colorings
• Results

•• •••••••••• ••••••• •••• ••



Large examples of cocliques of flags2

Point-based example
Point-pencil of line-plane flags in PG(4, q) through P,

together with a set of flags, whose planes pairwise intersect in a
line through P. (Size = q5 + 3q4 + 4q3 + 4q2 + 2q + 1)

P

Hyperplane-based example
The dual of a point-based example.

Theorem ([BB17]).
Every EKR-set of line-plane flags of PG(4, q), which is not a
subset of one of the sets defined above, has cardinality at most

4q4 + 9q3 + 4q2 + q + 1.
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Example of a covering2

1. All point-based examples with base point in a solid S.

2. q3 + q2 + 1 point-based examples with base point in a solid
S. We use the special part of these sets to cover the
remaining flags.

S
P1 P2 P3 . . .

We know that χ(qK4;{1,2}) ≤ q3 + q2 + 1.
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Strategy2

1. Assume C is a coloring of size χ ≤ q3 + q2 + 1.

2. We use the stability result on large EKR-sets.
3. Using counting arguments, we find that C contains many

large EKR-sets; so based on a point or hyperplane.

Assumption: at least half of the large EKR-sets are based on a
point

4. Crucial lemma on point sets.
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Lemma on point sets2

Lemma.
Suppose that M is a set of points in PG(4, q), and P1, P2, P3
are three non-collinear points such that the plane π they span
has no point in M. Let m, n and d be positive real numbers
such that the following hold:
▶ Each of the points P1, P2, P3 lies on at most nq2 lines that

meet M,
▶ |M| = dq3,
▶ q > 32n5m/d5.

Then there exists a solid S on π with |S ∩ M| ≥ mq2.
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large EKR-sets; so based on a point or hyperplane.
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5. Using counting arguments and the crucial lemma, we find
that all elements of C are point-based examples with base
point contained in a solid S, and |C | = q3 + q2 + 1.
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Main result2

Theorem.
For q > 160 · 365 the chromatic number of the Kneser graph
qK4;{1,2} is q3 + q2 + 1. Up to duality, each color class C of a
minimum coloring is contained in a unique point-based example,
and the base points of these point-based examples are
q3 + q2 + 1 distinct points of a solid.
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Large examples of cocliques of flags3

Point-based example
Point-pencil of {d − 1, d}-flags in PG(2d , q) through P,
together with a set of flags, whose d-spaces pairwise intersect in
a line through P.

Hyperplane-based example
The dual of the point-based example.

We need a stability result on large EKR-sets of flags.
▶ For d = 2 and d = 3 there is a result known.
▶ For d > 3 there is no result known yet.

⇒ We use a conjecture.
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Example of a covering3

1. qd+1 + qd + · · · + q2 + 1 point-based examples with base
point in a (d + 1)-space S. We use the special part of these
sets to cover the remaining flags.

S
P1 P2 P3 . . .

We know that χ(qK2d ;{d−1,d}) ≤ qd+1 + qd + · · · + q2 + 1.
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Main result3

Conjecture.
For d ≥ 2 there is an integer ρ(d) such that every maximal
coclique of qΓ2d ,{d−1,d} contains a point-pencil, a dual
point-pencil, or has at most ρ(d) · qd2+d−2 elements.

Theorem.
If the conjecture is true for some integer d ≥ 2, then

χ(qΓ2d ,{d−1,d}) = qd+1 + qd + · · · + q2 + 1

for sufficiently large q. Moreover, if F is a family of this many
maximal cocliques that cover the vertex set, then – up to duality
– there exists a (d + 1)-dimensional subspace U, such that all
elements of F are contained in point-based examples, based on
a point in U.
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Thank you very much for your
attention.
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