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Introducing complex generalized weighing matrices (CGWs).
Existence conditions.
Some known constructions, including recursive constructions.

Collecting the data (in progress).

An application to quantum error correcting codes.
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But first...
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Throughout this talk...

@ n and k are positive integers, g is a prime power;

2my/—1

o (x=e K isa primitive k' root of unity;

° (k) ={¢ : 0<j<k-1}

o Uy = (Ck) U{0};

o Fg is the finite field of order g;

e M, (k) is the set of n x n matrices with entries in U;

o M,(FF) is the set of n x n matrices with entries in a field F;
o If M is a matrix, M* is the complex conjugate transpose.

@ For0#AxcTF, x* =x"1and 0*=0.

@ I, and J, denote the n x n identity and all ones matrices.
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Definition

Let W € M,(k). Then W is a complex generalized weighing matrix with
parameters CGW(n, w; k) if

WW* = wi,.

It follows that |det(W)| = w2. Equivalently, W e CGW(n,w;k), if
the rows/columns of W all have precisely w non-zero entries, and distinct
rows/columns are orthogonal. The parameter w is the weight of the matrix.

The matrix
01 1 1 1
101 GA3E
110 ¢ G
163G 01
1¢ G 10

isa CGW(5,4;3).
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Equivalence

Let W € CGW(n, w; k), and let P and Q be monomial matrices in M, (k).
Any matrix
W = PWQ*

is also a CGW(n, w; k), and is said to be equivalent to W.

Any CGW (n, w; k) can be normalized so that the first non-zero entry in any
row or column is 1.
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Special cases

e A CGW(n, n; k) is a Butson Hadamard matrix. These are reasonably well
studied, but usually with restrictions on k being a prime power, or quite
small. Classifications are hard, but there are lots of constructions.

e A CGW(n, w;2) is a weighing matrix. Quite well studied: numerous clas-
sifications at small orders and weights, well known existence conditions, lots
of constructions.

e A CGW(n,n;2) is a Hadamard matrix. Literature is enormous: The
Hadamard conjecture well known; constructions up order 664 and at infinitely
many orders besides; classified up to order 32; various extra conditions con-
sidered, i.e., group developed, cocyclic, symmetric, skew-symmetric, etc.
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An important related case

Let G be a finite group. A n x n matrix W with entries from {0} U G such
that

Www* = wi,
over Z[G]/ZG is a generalized weighing matrix, GW(n, w; G).

Let k be prime. Since

k—1

E aj{{:O <~ dag9=ay =+ = adk—1,
Jj=0

when k is prime, we know that a GW(n, w; ((x)) is also a CGW(n, w; k).
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One more useful definition

Let M € Mp(k). Let S be the matrix obtained by replacing all non-zero
entries of M with 1. This matrix S is called the support matrix of M, and
we say that S supports M.

We will also say that S lifts to M.

Lifting Problem: Given an n x n (0,1)-matrix S of weight w, does S lift
to a CGW(n, w; k)?
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Another diversion
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Existence Conditions
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Existence conditions

Many of the most significant barriers to the existence of a CGW(n, w; k)
stem from a condition on vanishing sums of roots of unity due to Lam and
Leung.

Theorem (Lam, Leung, 2000)

/fzj’f:—ol ch{; = 0 for non-negative integers cy,...,Ck_1, and p1,...,p, are
the primes dividing k, then Zf:_ol ¢ =Y 1 dipe where di, ..., dy are non-

negative integers.

Most significantly, when k = p” is a prime power, the non-zero entries in any
pair of distinct rows must coincide in mp positions for some non-negative
integer m.

T.Y. Lam, K. H. Leung, On vanishing sums of roots of unity, J. Algebra, 224, 1,
91-109, 2000.
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Existence conditions

For k prime, non-existence conditions for GW(n, w; ((x)), due mostly to de
Launey, can be applied.

Theorem (de Launey, 84)

If there exists a CGW (n, w; k) with n # w and k a prime, then the following
must hold:

Q@ w(w —1)=0mod k.
Q@Q(n—wP—(n—w)>o(n—1) where 0 < 0 < k—1and o0 =
n—2w mod k.

© /fnisoddand k =2, then w is a square.

W. de Launey. On the nonexistence of generalised weighing matrices. Ars Combin.,
17(A):117-132, 1984.
Ronan Egan RICCOTA2023 July 7, 2023



Sketch proof of part 1

e Suppose W € CGW(n, w; k).

@ In each of the w columns such that there is a non-zero entry in the first
row of W, there are w — 1 non-zero entries in subsequent rows.

o It follows that the sum of the inner products of row 1 with the n —1
remaining rows has w(w — 1) terms.

@ This sum is zero only if w(w — 1) =0 mod k.

There is no CGW(n, w; 3) if w =2 mod 3. \
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de Launey continued

Theorem (de Launey, 84)

Suppose there exists a CGW (n, w; k) with n odd and k a prime. Suppose

that m £ 0 mod k is an integer dividing the square free part of w. Then
the order of m modulo k is odd.

As de Launey observed, this eliminated the possible existence of
CGW(19,10;5), which was not previously known at the time.
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Block designs

Let n, w and A be integers where n > w > XA > 0. Let X be a set of size
n. A symmetric balanced incomplete block design SBIBD(n, w, \) is a set
of n subsets of X of size w, called blocks such that each unordered pair of
distinct elements of X are contained in exactly A blocks. If A is the incidence
matrix of the SBIBD(n, w, A), then

AAT = wiy + A(Jn — ).
It is a well known necessary condition that a SBIBD(n, w, A) exists only if

An—1)=w(w —1).
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Specialised non-existence results

Proposition
A CGW(11,5;4) does not exist.

Proof (sketch):

@ Suppose W € CGW(11,5;4) and let S be the support matrix. The
inner product of any two rows of S must be even, so must be 0, 2 or 4.

@ It can be shown that the only possibility is for such a matrix S is for
the inner product of every distinct pair of rows to be 2.

@ This means that S is the incidence matrix of a (11,5,2)-design. This
exists, but there is only one up to equivalence.

@ Show that this S cannot lift to a CGW(11,5; 4) (can be done easily by
hand).
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Something more general for k = 4

Theorem (Turyn, 70)

If there exists a CGW(n, w; 4) then there exists a CGW(2n,2w; 2).

Theorem (Seberry, 79)

If n =2 mod 4 and there exists W € CGW(n, w; 2), then w is the sum of
two integer squares.

R. J. Turyn, Complex Hadamard matrices. In Combinatorial Structures and their
Applications (Proc. Calgary Internat. Conf., Calgary, Alta., 1969), pages 435-437.
Gordon and Breach, New York, 1970.

J. Seberry. Orthogonal designs. Springer, Cham, 2017. Hadamard matrices,
quadratic forms and algebras, Revised and updated edition of the 1979 original.
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If n is odd and there exists W € CGW(n,w;4), then w is the sum of two
integer squares. Equivalently, by the Sum of Two Squares Theorem, the
square free part of w is not divisible by any prime p =3 mod 4.

There is no CGW(11,6;4) or CGW(11,7,4).
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Examples for composite k

Proposition (Szoll&si, 11)
There is no CGW(n, w; 6) when n is odd and w =2 mod 3.

Proof: Suppose W € CGW(n, w;6). Then |det(W)[2 = w". Since any
element of Us can be written in the form a + b(3 for integers a and b, it
follows that there are integers a and b such that

w" = |det(W)|? = |a+ b(3|> = a® + b? — ab.

It is not possible that a®> + b> — ab =2 mod 3, and so it cannot be that n
is odd and w =2 mod 3. O

F. Sz6ll8si. Construction, classification and parametrization of complex Hadamard

matrices. ArXiv math/1150.5590.
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One for composite k

Proposition
There is no CGW(n, w; 6) when n is odd and w =2 mod 4.

The proof is similar to begin with, but need to show that there is no solution

to
(2m)" = 2% + b* — ab,

for odd m and n. (A little more work, but not much).

Ronan Egan RICCOTA2023 July 7, 2023



It's hot here!
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Constructions
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Generalized Paley construction

The most famous constructions of an infinite family of Hadamard matrices
are due to Paley. There are two constructions yielding what are now known
as the type | and type |l Paley Hadamard matrices.

Both constructions are built on circulant cores, obtained by applying the
quadratic character to the elements of a finite field F4.

The following bears a strong enough resemblance that we refer to this as a
generalized Paley construction.
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Generalized Paley construction

Let p and g be primes, with ¢ = 1 mod p. Let « be a multiplicative
generator of the non-zero elements of Z,. Consider the map ¢ : Zq —

(Cp) U {0} defined by setting ¢(ad) = C{, for all 1 <j < g —1, and setting
#(0) = 0. Then ¢ has the following two properties:

o P(xy) = d(x)p(y) for all x,y € Zg; and

° P(x*) = P(x)* for all x € Zj.

Let C = circ([¢p(x) : 0 <x < qg—1]). Then CC* = qlq — .
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Generalized Paley construction

Theorem
Let C = circ([¢(x) : 0 < x < g —1]). Then the matrix

01
w- el

isa CGW(g+1,q;p).

W

All parameters are in some way restricted by this construction, but it is quite
simple to build.
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Berman's construction

Berman's construction is the most general direct construction we know of -
it relies heavily on finite geometry.

It builds a CGW on a support matrix that corresponds to a type of incidence
structure of build from points and hyperplanes in ..
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Berman's construction

Let p, n, t, d and r be any positive integers such that p is prime, d | r,
and r | (p" — 1). Then there exists a matrix W in
CGW((p* —1)/r, pl=D)"; d).

Berman's construction gives a CGW with plenty of freedom to choose the
parameters. The main restriction is on the weight, which is necessarily a
prime power.

Examples include the CGW(5,4;3) we have seen, and a CGW/(26, 25;6)
where n=2,t=2, p=5,d =6 and r = 24.

G. Berman. Families of generalized weighing matrices. Canad. J. Math.,
30(5):1016-1028, 1978.
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Complementary sequences

For any « € Uy, define the a-circulant matrix

o O O
O O
o = O
o O O
o O O

000 01
6 00 - 00]
The a-phased periodic autocorrelation function of a Uy-sequence a of length
v and shift s to be

PAF,s(a) = a-aCg.

R. Egan, Generalizing pairs of complementary sequences and a construction of
combinatorial structures. Discrete Math., 343(5):111795, 10, 2020.
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Complementary sequences

Let (a, b) be a pair of Uy-sequences. Let w, denote the weight of a sequence
a, and let w = w, + wj, be the weight of a pair (a, b).

A pair of sequences (a, b) is a weighted a-phased periodic Golay pair
(WPGP (U, v, a, w)) if

PAF, <(a) + PAF, <(b) = 0.

foralll1<s<v-—1.
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Complementary sequences

Theorem (E, 20)

Let (a,b) € WPGP (U, v, o, w) and let A and B be the a-circulant matrices
with first row a and b respectively. Then

A B
W:|:_B* A*:|a

is a CGW(2v, w; 2k) if k is odd, and W is a CGW (2v, w; k) if k is even.

4

A CGW(10,6;4) can be constructed from a WPGP(Us,5,1,6) where
a=(1,(s,1,0,0) and b= (1,—1,—1,0,0). There is no CGW(10,6;2).
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Complementary sequences

A ternary Golay pair of is a pair of (0, £1)-sequences (a, b) of length n such
that
n—1-s
D djajrs + bibjys =0
j=0

foralll1<s<n-—1.

Theorem (E, 20)

Let (a, b) be a ternary Golay pair of length n and weight w. Then
(a, b) € WPGP (U, n, a, w) for any even k, and any o € (().

Given (a, b) we can construct several distinct matrices in CGW(2n, w; k)
that are not equivalent to a CGW(2n, w; 2).

R. Craigen and C. Koukouvinos. A theory of ternary complementary pairs. J.
Combin. Theory Ser. A, 96(2):358-375, 2001.
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Seberry-Whiteman construction

The Seberry and Whiteman construction is fairly specialized. It constructs
a CGW(g+1,q,4) where g =1 mod 8 is a prime power.

It's really an example of a construction of complementary sequences (r,s) €
WPGP(Uy, n,1,q) where n = qTH. The CGW(q + 1, q,4) is constructed
as before.

J. Seberry and A. L. Whiteman. Complex weighing matrices and orthogonal designs.
Ars Combin., 9:149-162, 1980.
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Recursive constructions
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Direct sum type

We define the direct sum of an m x m matrix A and a n x n matrix B to be

A Omn
aos=[ %],

Proposition

IfAe CGW(m,w; ky) and B € CGW(n,w; kz), then A®& B € CGW(m+
n,w; k) where k = lem(ki, k).
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A familiar block construction

Proposition

Let A€ CGW(n,wi; k1) and B € CGW(n, ws; kp) be such that
AB = BA. Then the matrix
A B
—B* A*

is a CGW(2n, w; k) where w = wy + wy and k = lem(kq, k2, 2).

W

The a-circulant matrices generated by complementary sequences meet this
condition.
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Tensor product type

The Kronecker product of A and B is defined to be the block matrix

Proposition

Let A€ CGW(ny,wy; ki) and B € CGW(ny, wa; ky). Then
A® B € CGW(n,w; k) where n = niny, w = wiwy and k = lem(ki, k2).
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Dita type

For this construction we require a matrix A € CGW(n, w,; k;) and a set of
matrices {Bi, ..., By} with each B € CGW(m, wyp, j; kp ;).

Proposition
Let A, By, ..., B, be as described above. Then

anB1 ai2B: -+ auB,
D az1B1 a2B: -+ anBa
anl Bl an2 B2 c++ ann Bn

is a CGW(mn, w; k) where w = w, (37w ;) and
k= lcm(ka, kb71, ooy kb,n)-

P. Dit3. Some results on the parametrization of complex Hadamard matrices. J.
Phys. A, 37(20):5355-5374, 2004.
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Weaving

The idea of weaving is to knit together weighing matrices of different orders
to form a larger one, without relying on a tensor product type construction
that forces the order to be the product of the orders of its constituents.

Theorem (Craigen, 95)

Let M = (mj;) be a m x n (0,1)-matrix with row sums ri,...,rn and
column sums ci,...,c,. If for fixed integers a and b there are matrices
Ai € CGW(rj, a; k1) and B; € CGW(cj, by ko) forl <i<mandl <j<n,
then there is a CGW (o (M), ab; k) where

O’(M) = ZI’,‘ = ch’
i=1 j=1

and k = lem(ky, ky).

R. Craigen. Constructing weighing matrices by the method of weaving. J. Combin.
Des., 3(1):1-13, 1995.
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0000012ww wlwlzw
0000012ww 12w2ww1
colococol—=" 3= 3~ 3
0012ww2w1w 2w1000
0012wwwzw1 — 3|l oo
0012ww1w2w w2w000
333 7 3|33 30co0co0jcoo
% 3|3~y looojlcoo
2ww1wzw111 o olo oo
wzwo_wzwszOO o o wzwl
33|33 3)ccocjococofy— 3
w2w111000 001w2w
—“HloocolocoofyRY3 33
— |00 o|lo oo wwzwzwzw
HHoo oo o|H A H|H A~

is a CGW(15,9;3). A CGW(15,9; 3) cannot be obtained by a Tensor

product.
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Existence data

n\W 1 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13 | 14 | 15

1 E

2 E| E

3 E|N|N

4 E|E|E|E

5 E|IN|NJ|E|N

6 E|E|N|E|E]|N

7 EIN|NJ|E|NJ|NI|N

8 E|E|E|E|E|E|E|E

9 EIN|N|N|N|N|N|N|N

10 E|E|N|E|E|N|N|E]|E N

11 EIN|N|E|N|N|N|N|N N N

12 E|E|E|E|E|E|E|E]|E E E E

13 EIN|N|E|N|N|N|N|E N N N N

14 E|IE|N|E|E|N|N|E]|E E N N E N

15 EIN|N|E|N|N|N|N|E N N N N N N
Table: k=2

M. Harada and A. Munemasa. On the classification of weighing matrices and
self-orthogonal codes. J. Combin. Des., 20(1):40-57, 2012.
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The carnival in Rijeka
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Towards quantum codes
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Hermitian self-orthogonal codes

Let C be a [n, k]2 code. The Hermitian inner product of codewords x,y € C
is defined by

n—1
(y)=>_ xiyf.
i=0
The Hermitian Dual of C is the code
CH={xeC | (x,y)=0VyeC}.

The code C is Hermitian self-orthogonal if C C CH. and Hermitian self-dual
if ¢ =cH.
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Quantum codes

Calderbank an Shor define a quantum error-correcting code to be a unitary
mapping (encoding) of k qubits into a subspace of the quantum state space
of n qubits such that if any t of the qubits undergo arbitrary decoherence,
not necessarily independently, the resulting n qubits can be used to faithfully
reconstruct the original quantum state of the k encoded qubits.

Quantum codes are typically linear. For a quantum code with parameters n,
k and d, we typically denote it as an [[n, k, d]]4-code.

A. R. Calderbank and P. W. Shor. Good quantum error-correcting codes exist. Phys
Rev A., 54(2):1098-1105, 1996.
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Quantum codes

Calderbank, Rains, Shor and Sloane prove that given a Hermitian self-
orthogonal [n, k]4-linear code C such that no codeword in CH\ C has weight
less than d, one can construct a quantum [[n, n — 2k, d]]>-code.

If there exists a linear Hermitian self-orthogonal [n, k]2 code C such that
the minimum weight of C'' is d, then there exists an [[n,n — 2k, > d]],
quantum code.

A quantum code can be 0O-dimensional, and so it is possible to construct a
quantum [[n, 0, d]]4-code given a Hermitian self-dual [n, n/2, d] > code.

A. R. Calderbank and P. W. Shor. Good quantum error-correcting codes exist. Phys
Rev A., 54(2):1098-1105, 1996.
A. Ketkar, A. Klappenecker, S. Kumar, and P. K. Sarvepalli. Nonbinary stabilizer
codes over finite fields. IEEE Trans. Inform. Theory, 52(11):4892-4914, 2006.
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Quantum codes

We want to build Hermitian self-orthogonal codes over F.. With some re-

strictions, complex generalized Hadamard matrices provide the perfect tool.

To begin, observe that when k = g+ 1, we can translate the set of k't roots
of unity into IF2, because k divides g% — 1.

Proposition

Let q be a prime power, let k = q + 1 and let a be a primitive k' root of
unity in F 2. Define the homomorphism f : Ui — F 2 so that f(0) =0 and

f(d;) =of forj=0,1,...,q. Let x be a Uy-vector of length n and let
f(x) = [f(xi)]o<i<n—1. Then for any Uy-vectors x and y,

() =0 = (f(x),f(y))n =0
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Quantum codes

Proposition

Let W be a CGW(n, w; g+1) for some prime power q and let f be the homo-
morphism defined in the previous Proposition, with f(W) = [f(Wj;)]i<ij.<n-
If w is divisible by the characteristic of F 2, then f(W) generates a Hermitian
self-orthogonal F2-code.

As a consequence we can use a CGW(n, w; k) with appropriate weight to
build quantum codes for any k = g + 1 where g is a prime power, which
includes any k € {3,4,5,6,8,9,10}.
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Some early results

New [[n, k]]q code | Best known [[n, k]]2 || New [[n, k]]q code | Best known [[n, k]]2
[[67074]]3 [[67074]]2 [[2072’6]]4 [[207276]]2
[[97155]]; [[971’3]]2 [[207476”3 [[207456]]2
[[107074]]3 [[107074]]2 [[2171573]]2 [[217 1573]]2
[[1070’5]]; [[107074]]2 [[2470’9]]3 [[247078]]2
[[10, 0, 6]]; [[10, 0, 4]]2 [[25.7, 6]]s [[25.7, 5]]2
[[127076]]5 [[127076]]2 [[2671676]]; [[267 1674]]2
([14, 0, 8]]: [[14,0, 6]]- (30,0, 12]]> ([30, 0, 12]]2
(18,0, 8] (18,0, 8]] (36,0, 12]2 (36,0, 12]]-
[[2070a8]]5 [[207078]]2 [[42707 14]]3 [[42707 12]]2

Table: Some new quantum codes

M. Grassl. Bounds on the minimum distance of linear codes and quantum codes.
http://www.codetables.de.
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Open problems

o Complete/extend the tables of CGWs.
@ Develop a database of CGWs.

@ Build lots Hermitian self-orthogonal codes and related quantum codes.
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Hvalal!
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