ERDÖS-KO-RADO THEOREMS FOR FINITE GENERAL LINEAR GROUPS

Alena ERNST
Joint work with Kai-Uwe Schmidt
Department of Mathematics
Paderborn University
5 JULY 2023

INTERSECTING k-SETS OF [n]

INTERSECTING k-SETS OF [n]

INTERSECTING k-SETS OF [n]

Theorem (Wilson 1984)

For n sufficiently large compared to k and t, a t-intersecting family of k-subsets of $[n]$ has size at most $\binom{n-t}{k-t}$. If equality holds, then all members of the family contain a fixed t-subset of $[n]$.

INTERSECTING SETS IN \mathcal{S}_{n}

INTERSECTING SETS IN S_{n}

INTERSECTING SETS IN S_{n}

INTERSECTING SETS IN S_{n}

INTERSECTING SETS IN S_{n}

INTERSECTING SETS IN \mathcal{S}_{n}

intersecting set in \mathcal{S}_{5}

INTERSECTING SETS IN \mathcal{S}_{n}

intersecting set in \mathcal{S}_{5}

INTERSECTING SETS IN \mathcal{S}_{n}

intersecting set in \mathcal{S}_{5}

INTERSECTING SETS IN \mathcal{S}_{n}

intersecting set in \mathcal{S}_{5}

intersecting set in \mathcal{S}_{5}

INTERSECTING SETS IN \mathcal{S}_{n}

intersecting set in \mathcal{S}_{5}

intersecting set in \mathcal{S}_{5}

Example

A coset of the stabiliser of an element in $[n]$ is intersecting and has size ($n-1$)!.

INTERSECTING SETS IN \mathcal{S}_{n}

Theorem (Deza, Frankl 1977)
The size of an intersecting set in \mathcal{S}_{n} is at most $(n-1)!$.

INTERSECTING SETS IN \mathcal{S}_{n}

Theorem (Deza, Frankl 1977)

The size of an intersecting set in \mathcal{S}_{n} is at most $(n-1)!$.

Theorem (Cameron, Ku 2003; Larose, Malvenuto 2004)

If an intersecting set in \mathcal{S}_{n} is of maximal size, then it is a coset of the stabiliser of a point in [n].

2-intersecting set in \mathcal{S}_{5}.

t-INTERSECTING SETS IN \mathcal{S}_{n}

2-intersecting set in \mathcal{S}_{5}.

Example

A coset of the stabiliser of t distinct elements of [n] is t-intersecting of size $(n-t)$!.

t-INTERSECTING SETS IN \mathcal{S}_{n}

Conjecture (Deza, Frankl 1977)

If n is sufficiently large compared to t, then a t-intersecting set Y in \mathcal{S}_{n} has size at most $(n-t)$!.
If equality holds, then Y is a coset of the stabiliser of t distinct elements of $[n]$.

t-INTERSECTING SETS IN \mathcal{S}_{n}

Conjecture (Deza, Frankl 1977)

If n is sufficiently large compared to t, then a t-intersecting set Y in \mathcal{S}_{n} has size at most $(n-t)$!.
If equality holds, then Y is a coset of the stabiliser of t distinct elements of $[n]$.

Theorem (Ellis, Friedgut, Pilpel 2011)
The conjecture is true.

$t-$ INTERSECTING SETS IN GL($n, q)$

$$
\mathbb{F}_{2}^{3}=\langle\bigcirc, \bigcirc, \bigcirc\rangle=\{\bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc\}
$$

$t-$ INTERSECTING SETS IN GL($n, q)$

$$
\mathbb{F}_{2}^{3}=\langle\bigcirc, \bigcirc, \bigcirc\rangle=\{\bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc\}
$$

$t-$ INTERSECTING SETS IN GL($n, q)$

$$
\mathbb{F}_{2}^{3}=\langle\bigcirc, \bigcirc, \bigcirc\rangle=\{\bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc
$$

$t-$ INTERSECTING SETS IN GL($n, q)$

$$
\mathbb{F}_{2}^{3}=\langle\bigcirc, \bigcirc, \bigcirc\rangle=\{\bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc\}
$$

$t-$ INTERSECTING SETS IN GL($n, q)$

$$
\mathbb{F}_{2}^{3}=\langle\bigcirc, \bigcirc, \bigcirc\rangle=\{\bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc\}
$$

$$
\mathbb{F}_{2}^{3}=\langle\bigcirc, \bigcirc, \bigcirc\rangle=\{\bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc\}
$$

equal on q^{2} elements

$$
\mathbb{F}_{2}^{3}=\langle\bigcirc, \bigcirc, \bigcirc\rangle=\{\bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc\}
$$

equal on q^{2} elements
2-intersecting in $\mathrm{GL}(3,2)$

$t-$ INTERSECTING SETS IN GL($n, q)$

A coset of the stabiliser of t linearly independent elements of \mathbb{F}_{q}^{n} is called t-coset.

$t-$ INTERSECTING SETS IN GL($n, q)$

A coset of the stabiliser of t linearly independent elements of \mathbb{F}_{q}^{n} is called t-coset.

Example

A t-coset is t-intersecting of size

$$
\prod_{i=t}^{n-1}\left(q^{n}-q^{i}\right)
$$

KNOWN RESULTS

Theorem (M. Ahanjideh, N. Ahanjideh 2014)
The size of a 1 -intersecting set in $\mathrm{GL}(n, q)$ is at most

$$
\prod_{i=1}^{n-1}\left(q^{n}-q^{i}\right)
$$

KNOWN RESULTS

Theorem (M. Ahanjideh, N. Ahanjideh 2014)

The size of a 1-intersecting set in $\operatorname{GL}(n, q)$ is at most

$$
\prod_{i=1}^{n-1}\left(q^{n}-q^{i}\right)
$$

Theorem (Maegher, Razafimahatratra 2021)

The characteristic vector of a 1-intersecting set of maximal size in $\mathrm{GL}(2, q)$ is spanned by the characteristic vectors of 1 -cosets.

MAIN THEOREM (1)

Theorem (E., Schmidt 2023)

Let Y be a t-intersecting set in $\operatorname{GL}(n, q)$. If n is sufficiently large compared to t, then

$$
|Y| \leq \prod_{i=t}^{n-1}\left(q^{n}-q^{i}\right)
$$

and, in case of equality, the characteristic vector of Y is spanned by the characteristic vectors of t-cosets.

MAIN THEOREM (1)

Theorem (E., Schmidt 2023)

Let Y be a t-intersecting set in $\operatorname{GL}(n, q)$. If n is sufficiently large compared to t, then

$$
|Y| \leq \prod_{i=t}^{n-1}\left(q^{n}-q^{i}\right)
$$

and, in case of equality, the characteristic vector of Y is spanned by the characteristic vectors of t-cosets.

The bound (\%) was recently and independently obtained by Ellis, Kindler, and Lifshitz with completely different techniques.

EXTREMAL t-INTERSECTING SETS IN $G L(n, q)$

Are the t-cosets the only t-intersecting sets in $G L(n, q)$ of maximal size?

EXTREMAL t-INTERSECTING SETS IN $G L(n, q)$

Are the t-cosets the only t-intersecting sets in $G L(n, q)$ of maximal size? No!

EXTREMAL t-INTERSECTING SETS IN $G L(n, q)$

Are the t-cosets the only t-intersecting sets in $G L(n, q)$ of maximal size? No! If Y is t-intersecting, then Y^{\top} is as well.

EXTREMAL t-INTERSECTING SETS IN $G L(n, q)$

Are the t-cosets the only t-intersecting sets in $\operatorname{GL}(n, q)$ of maximal size? No! If Y is t-intersecting, then Y^{\top} is as well.

Theorem (Ahanjideh 2022)
A 1-intersecting set of $\mathrm{GL}(2, q)$ of maximal size is a 1-coset or the transpose of a 1-coset.

EXTREMAL t-INTERSECTING SETS IN $\mathrm{GL}(n, q)$

Are the t-cosets the only t-intersecting sets in $\mathrm{GL}(n, q)$ of maximal size? No! If Y is t-intersecting, then Y^{\top} is as well.

Theorem (Ahanjideh 2022)
A 1-intersecting set of $\mathrm{GL}(2, q)$ of maximal size is a 1 -coset or the transpose of a 1 -coset.

Conjecture

Let Y be t-intersecting in $\mathrm{GL}(n, q)$ of maximal size. If n is sufficiently large compared to t, then Y or Y^{\top} is a t-coset.

EXTREMAL t-INTERSECTING SETS IN $\mathrm{GL}(n, q)$

Are the t-cosets the only t-intersecting sets in $\mathrm{GL}(n, q)$ of maximal size? No! If Y is t-intersecting, then Y^{\top} is as well.

Theorem (Ahanjideh 2022)
A 1-intersecting set of $\mathrm{GL}(2, q)$ of maximal size is a 1 -coset or the transpose of a 1 -coset.

Conjecture

Let Y be t-intersecting in $\mathrm{GL}(n, q)$ of maximal size. If n is sufficiently large compared to t, then Y or Y^{\top} is a t-coset.

This conjecture was recently proved by Ellis, Kindler, and Lifshitz.

2-set-intersecting set in \mathcal{S}_{5}.

t-SET-INTERSECTING SETS IN \mathcal{S}_{n}

2-set-intersecting set in \mathcal{S}_{5}.

Example

A coset of the stabiliser of a t-set of [n] is t-set-intersecting of size $t!(n-t)!$.

t-SET-INTERSECTING SETS IN \mathcal{S}_{n}

Theorem (Ellis 2012)
If n is sufficiently large compared to t, then a t-set-intersecting set Y in \mathcal{S}_{n} has size at most $t!(n-t)$!. If equality holds, then Y is a coset of the stabiliser of a t-set of $[n]$.

$$
\begin{aligned}
\mathbb{F}_{2}^{3}=\langle\bullet, \bigcirc, \bigcirc\rangle & =\{\bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc\} \\
\langle\bullet, \bigcirc\rangle & =\{\bigcirc, \bigcirc, \bigcirc, \bigcirc\}
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{F}_{2}^{3}=\langle\bigcirc, \bigcirc, \bigcirc\rangle & =\{\bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc\} \\
\langle\bigcirc, \bigcirc\rangle & =\{\bigcirc, \bigcirc, \bigcirc, \bigcirc\}
\end{aligned}
$$

t-SPACE-INTERSECTING SETS IN GL (n, q)

$$
\begin{aligned}
\mathbb{F}_{2}^{3}=\langle\bigcirc, \bigcirc, \bigcirc\rangle & =\{\bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc\} \\
\langle\bigcirc, \bigcirc\rangle & =\{\bigcirc, \bigcirc, \bigcirc, \bigcirc\}
\end{aligned}
$$

t-SPACE-INTERSECTING SETS IN GL (n, q)

$$
\begin{aligned}
\mathbb{F}_{2}^{3}=\langle\bigcirc, \bigcirc, \bigcirc\rangle & =\{\bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc\} \\
\langle\bigcirc, \bigcirc\rangle & =\{\bigcirc, \bigcirc, \bigcirc, \bigcirc\}
\end{aligned}
$$

t-SPACE-INTERSECTING SETS IN GL (n, q)

$$
\begin{aligned}
\mathbb{F}_{2}^{3}=\langle\bigcirc, \bigcirc, \bigcirc\rangle & =\{\bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc\} \\
\langle\bigcirc, \bigcirc\rangle & =\{\bigcirc, \bigcirc, \bigcirc, \bigcirc\}
\end{aligned}
$$

t-SPACE-INTERSECTING SETS IN GL (n, q)

$$
\begin{aligned}
\mathbb{F}_{2}^{3}=\langle\bigcirc, \bigcirc, \bigcirc\rangle & =\{\bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc\} \\
\langle\bigcirc, \bigcirc\rangle & =\{\bigcirc, \bigcirc, \bigcirc, \bigcirc\}
\end{aligned}
$$

t-SPACE-INTERSECTING SETS IN GL (n, q)

$$
\begin{aligned}
\mathbb{F}_{2}^{3}=\langle\bigcirc, \bigcirc, \bigcirc\rangle & =\{\bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc\} \\
\langle\bigcirc, \bigcirc\rangle & =\{\bigcirc, \bigcirc, \bigcirc, \bigcirc\}
\end{aligned}
$$

t-SPACE-INTERSECTING SETS IN GL (n, q)

$$
\begin{aligned}
\mathbb{F}_{2}^{3}=\langle\bigcirc, \bigcirc, \bigcirc\rangle & =\{\bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc\} \\
\langle\bigcirc, \bigcirc\rangle & =\{\bigcirc, \bigcirc, \bigcirc, \bigcirc\}
\end{aligned}
$$

equal on a 2 -space

equal on a 2 -space
2-space-intersecting in $\operatorname{GL}(3,2)$

t-SPACE-INTERSECTING SETS IN GL (n, q)

$$
\begin{aligned}
\mathbb{F}_{2}^{3}=\langle\bigcirc, \bigcirc, \bigcirc\rangle & =\{\bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc\} \\
\langle\bigcirc, \bigcirc\rangle & =\{\bigcirc, \bigcirc, \bigcirc, \bigcirc\}
\end{aligned}
$$

equal on a 2 -space
2-space-intersecting in $\operatorname{GL}(3,2)$

t-SPACE-INTERSECTING SETS IN GL (n, q)

Example

A coset of the stabiliser of a t-space is t-space-intersecting of size

$$
\left(\prod_{i=0}^{t-1}\left(q^{t}-q^{i}\right)\right)\left(\prod_{i=t}^{n-1}\left(q^{n}-q^{i}\right)\right) .
$$

t-SPACE-INTERSECTING SETS IN GL (n, q)

Example

A coset of the stabiliser of a t-space is t-space-intersecting of size

$$
\left(\prod_{i=0}^{t-1}\left(q^{t}-q^{i}\right)\right)\left(\prod_{i=t}^{n-1}\left(q^{n}-q^{i}\right)\right) .
$$

Theorem (Meagher, Spiga 2011)

A 1-space-intersecting set in $\mathrm{GL}(n, q)$ has size at most

$$
(q-1) \prod_{i=1}^{n-1}\left(q^{n}-q^{i}\right)
$$

MAIN THEOREM (2)

Theorem (E., Schmidt 2023)

Let Y be t-space-intersecting in $\mathrm{GL}(n, q)$. If n is sufficiently large compared to t, then

$$
|Y| \leq\left(\prod_{i=0}^{t-1}\left(q^{t}-q^{i}\right)\right)\left(\prod_{i=t}^{n-1}\left(q^{n}-q^{i}\right)\right)
$$

and, in case of equality, the characteristic vector of Y is spanned by the characteristic vectors of cosets of stabilisers of t-spaces.

EXTREMAL t-SPACE-INTERSECTING SETS IN GL (n, q)

Are the cosets of stabilisers of t-spaces the only t-space-intersecting sets in $\mathrm{GL}(n, q)$ of maximal size?

EXTREMAL t-SPACE-INTERSECTING SETS IN GL (n, q)

Are the cosets of stabilisers of t-spaces the only t-space-intersecting sets in $\mathrm{GL}(n, q)$ of maximal size?
No!

EXTREMAL t-SPACE-INTERSECTING SETS IN GL (n, q)

Are the cosets of stabilisers of t-spaces the only t-space-intersecting sets in $\mathrm{GL}(n, q)$ of maximal size?
No! If Y is t-space-intersecting, then Y^{\top} is as well.

EXTREMAL t-SPACE-INTERSECTING SETS IN GL (n, q)

Are the cosets of stabilisers of t-spaces the only t-space-intersecting sets in $\mathrm{GL}(n, q)$ of maximal size? No! If Y is t-space-intersecting, then Y^{\top} is as well.

Theorem (Meagher, Spiga 2011, 2014; Spiga 2019)
A 1-space-intersecting set in $\mathrm{GL}(n, q)$ of maximal size is a coset of the stabiliser of a 1-space or a coset of the stabiliser of an ($n-1$)-space.

ExTREMAL t-SPACE-INTERSECTING SETS IN $\operatorname{GL}(n, q)$

Are the cosets of stabilisers of t-spaces the only t-space-intersecting sets in $\mathrm{GL}(n, q)$ of maximal size?
No! If Y is t-space-intersecting, then Y^{\top} is as well.
Theorem (Meagher, Spiga 2011, 2014; Spiga 2019)
A 1-space-intersecting set in $\mathrm{GL}(n, q)$ of maximal size is a coset of the stabiliser of a 1-space or a coset of the stabiliser of an ($n-1$)-space.

Conjecture

Let Y be t-space-intersecting in $\operatorname{GL}(n, q)$ of maximal size. If n is sufficiently large compared to t, then Y or Y^{\top} is a coset of the stabiliser of a t-space.

WeIghted version of Hoffman bound

Theorem (Ellis, Friedgut, Pilpel 2011)

Let $\Gamma=(X, E)$ be a graph and $\Gamma_{0}, \Gamma_{1}, \ldots, \Gamma_{r}$ be regular spanning subgraphs of Γ with common eigenvectors $\left\{1, v_{1}, \ldots, v_{n-1}\right\}$.

Weighted version of Hoffman bound

Theorem (Ellis, Friedgut, Pilpel 2011)

Let $\Gamma=(X, E)$ be a graph and $\Gamma_{0}, \Gamma_{1}, \ldots, \Gamma_{r}$ be regular spanning subgraphs of Γ with common eigenvectors $\left\{1, v_{1}, \ldots, v_{n-1}\right\}$. Let $P_{i}(k)$ be the eigenvalue of v_{k} in Γ_{i} and $P(k)=\sum_{i=0}^{r} \omega_{i} P_{i}(k)$, where $\omega_{i} \in \mathbb{R}$.

Weighted version of Hoffman bound

Theorem (Ellis, Friedgut, Pilpel 2011)

Let $\Gamma=(X, E)$ be a graph and $\Gamma_{0}, \Gamma_{1}, \ldots, \Gamma_{r}$ be regular spanning subgraphs of Γ with common eigenvectors $\left\{1, v_{1}, \ldots, v_{n-1}\right\}$. Let $P_{i}(k)$ be the eigenvalue of v_{k} in Γ_{i} and $P(k)=\sum_{i=0}^{r} \omega_{i} P_{i}(k)$, where $\omega_{i} \in \mathbb{R}$. If $Y \subseteq X$ is an independent set in Γ, then

$$
\frac{|Y|}{|X|} \leq \frac{\left|P_{\min }\right|}{P(\mathrm{O})+\left|P_{\min }\right|},
$$

where $P_{\text {min }}=\min _{k \neq 0} P(k)$.

Weighted version of Hoffman bound

Theorem (Ellis, Friedgut, Pilpel 2011)

Let $\Gamma=(X, E)$ be a graph and $\Gamma_{0}, \Gamma_{1}, \ldots, \Gamma_{r}$ be regular spanning subgraphs of Γ with common eigenvectors $\left\{1, v_{1}, \ldots, v_{n-1}\right\}$. Let $P_{i}(k)$ be the eigenvalue of v_{k} in Γ_{i} and $P(k)=\sum_{i=0}^{r} \omega_{i} P_{i}(k)$, where $\omega_{i} \in \mathbb{R}$. If $Y \subseteq X$ is an independent set in Γ, then

$$
\frac{|Y|}{|X|} \leq \frac{\left|P_{\min }\right|}{P(\mathrm{O})+\left|P_{\min }\right|},
$$

where $P_{\text {min }}=\min _{k \neq 0} P(k)$. If equality holds, then

$$
1_{Y} \in\left\langle\{1\} \cup\left\{v_{k}: P(k)=P_{\min }\right\}\right\rangle
$$

Application of weighted Hoffman bound

Conjugacy classes and irr. characters of $\mathrm{GL}(n, q)$ are indexed by $\underline{\sigma}:\{$ monic irr. polynomials $\} \backslash\{X\} \rightarrow$ Partitions such that $n=\sum_{f}|\underline{\underline{q}}(f)| \operatorname{deg}(f)$.

Application of weighted Hoffman bound

Conjugacy classes and irr. characters of $\mathrm{GL}(n, q)$ are indexed by $\underline{\sigma}:\{$ monic irr. polynomials $\} \backslash\{X\} \rightarrow$ Partitions such that $n=\sum_{f}|\underline{\underline{q}}(f)| \operatorname{deg}(f)$.

- Let Γ_{σ} be the graph with vertex set $\mathrm{GL}(n, q)$ and adjacency matrix

$$
A_{\underline{\sigma}}(x, y)= \begin{cases}1 & \text { for } x^{-1} y \in C_{\underline{\sigma}} \cup C_{\underline{\sigma}}^{-1} \\ 0 & \text { otherwise }\end{cases}
$$

whose eigenvalues are determined by the character table.

Application of weighted Hoffman bound

Conjugacy classes and irr. characters of $\mathrm{GL}(n, q)$ are indexed by $\underline{\sigma}:\{$ monic irr. polynomials $\} \backslash\{X\} \rightarrow$ Partitions such that $n=\sum_{f}|\underline{\underline{\mid}}(f)| \operatorname{deg}(f)$.

■ Let Γ_{σ} be the graph with vertex set $\mathrm{GL}(n, q)$ and adjacency matrix

$$
A_{\underline{\sigma}}(x, y)= \begin{cases}1 & \text { for } x^{-1} y \in C_{\underline{\sigma}} \cup \cup_{\underline{\sigma}}^{-1} \\ 0 & \text { otherwise }\end{cases}
$$

whose eigenvalues are determined by the character table.

- We take carefully chosen conjugacy classes $C_{\underline{\sigma}}$ only consisting of elements not fixing a t-dimensional subspace (pointwise).

Application of weighted Hoffman bound

Conjugacy classes and irr. characters of $\mathrm{GL}(n, q)$ are indexed by $\underline{\sigma}:\{$ monic irr. polynomials $\} \backslash\{X\} \rightarrow$ Partitions such that $n=\sum_{f}|\underline{\underline{\mid}}(f)| \operatorname{deg}(f)$.

■ Let $\Gamma_{\underline{\sigma}}$ be the graph with vertex set $\mathrm{GL}(n, q)$ and adjacency matrix

$$
A_{\underline{\sigma}}(x, y)= \begin{cases}1 & \text { for } x^{-1} y \in C_{\underline{\sigma}} \cup \cup_{\underline{\sigma}}^{-1} \\ 0 & \text { otherwise }\end{cases}
$$

whose eigenvalues are determined by the character table.

- We take carefully chosen conjugacy classes $C_{\underline{\sigma}}$ only consisting of elements not fixing a t-dimensional subspace (pointwise). Let Γ be the union of the corresponding $\Gamma_{\underline{\sigma}}$.

Application of weighted Hoffman bound

Conjugacy classes and irr. characters of $\mathrm{GL}(n, q)$ are indexed by $\underline{\sigma}:\{$ monic irr. polynomials $\} \backslash\{X\} \rightarrow$ Partitions such that $n=\sum_{f}|\underline{\underline{\mid}}(f)| \operatorname{deg}(f)$.

■ Let $\Gamma_{\underline{\sigma}}$ be the graph with vertex set $\mathrm{GL}(n, q)$ and adjacency matrix

$$
A_{\underline{\sigma}}(x, y)= \begin{cases}1 & \text { for } x^{-1} y \in C_{\underline{\sigma}} \cup \cup_{\underline{\sigma}}^{-1} \\ 0 & \text { otherwise }\end{cases}
$$

whose eigenvalues are determined by the character table.

- We take carefully chosen conjugacy classes C_{σ} only consisting of elements not fixing a t-dimensional subspace (pointwise). Let Γ be the union of the corresponding $\Gamma_{\underline{\sigma}}$.
- Determine $\omega_{\underline{\underline{q}}}$ such that the sums $\sum_{\underline{q}} \omega_{\underline{q}} P_{\underline{\sigma}}(\underline{\lambda})$ have the required properties.

HVALA!

