ERDŐS-KO-RADO THEOREMS FOR FINITE GENERAL LINEAR GROUPS

ALENA ERNST

JOINT WORK WITH KAI-UWE SCHMIDT

DEPARTMENT OF MATHEMATICS PADERBORN UNIVERSITY

5 JULY 2023

Theorem (Wilson 1984)

For n sufficiently large compared to k and t, a t-intersecting family of k-subsets of [n] has size at most $\binom{n-t}{k-t}$. If equality holds, then all members of the family contain a fixed t-subset of [n].

intersecting set in \mathcal{S}_5

intersecting set in \mathcal{S}_5

intersecting set in \mathcal{S}_5

intersecting set in \mathcal{S}_5

intersecting set in \mathcal{S}_5

intersecting set in \mathcal{S}_5

Example

A coset of the stabiliser of an element in [n] is intersecting and has size (n-1)!.

Theorem (Deza, Frankl 1977)

The size of an intersecting set in S_n is at most (n-1)!.

Theorem (Deza, Frankl 1977)

The size of an intersecting set in S_n is at most (n-1)!.

Theorem (Cameron, Ku 2003; Larose, Malvenuto 2004)

If an intersecting set in S_n is of maximal size, then it is a coset of the stabiliser of a point in [n].

t-intersecting sets in \mathcal{S}_n

t-intersecting sets in \mathcal{S}_n

2-intersecting set in S_5 .

2-intersecting set in S_5 .

Example

A coset of the stabiliser of t distinct elements of [n] is t-intersecting of size (n-t)!.

t-INTERSECTING SETS IN \mathcal{S}_n

Conjecture (Deza, Frankl 1977)

If n is sufficiently large compared to t, then a t-intersecting set Y in S_n has size at most (n-t)!.

If equality holds, then Y is a coset of the stabiliser of t distinct elements of [n].

t-intersecting sets in \mathcal{S}_n

Conjecture (Deza, Frankl 1977)

If n is sufficiently large compared to t, then a t-intersecting set Y in S_n has size at most (n-t)!.

If equality holds, then Y is a coset of the stabiliser of t distinct elements of [n].

Theorem (Ellis, Friedgut, Pilpel 2011)

The conjecture is true.

t-INTERSECTING SETS IN GL(n,q)

$$\mathbb{F}_2^3 = \langle \bullet, \bullet, \bullet \rangle = \{ \bullet, \bullet, \bullet, \bullet, \bullet, \bullet, \bullet, \bullet, \bullet \rangle$$

$$\mathbb{F}_{2}^{3} = \langle \bullet, \bullet, \bullet \rangle = \{ \bullet, \bullet, \bullet, \bullet, \bullet, \bullet, \bullet, \bullet, \bullet \}$$

t-INTERSECTING SETS IN GL(n,q)

equal on q^2 elements

equal on q^2 elements 2-intersecting in GL(3,2)

A coset of the stabiliser of t linearly independent elements of \mathbb{F}_q^n is called t-coset.

A coset of the stabiliser of t linearly independent elements of \mathbb{F}_q^n is called t-coset.

Example

A t-coset is t-intersecting of size

$$\prod_{i=t}^{n-1} (q^n - q^i).$$

KNOWN RESULTS

Theorem (M. Ahanjideh, N. Ahanjideh 2014)

The size of a 1-intersecting set in GL(n, q) is at most

$$\prod_{i=1}^{n-1} (q^n - q^i).$$

KNOWN RESULTS

Theorem (M. Ahanjideh, N. Ahanjideh 2014)

The size of a 1-intersecting set in GL(n,q) is at most

$$\prod_{i=1}^{n-1} (q^n - q^i).$$

Theorem (Maegher, Razafimahatratra 2021)

The characteristic vector of a 1-intersecting set of maximal size in GL(2, q) is spanned by the characteristic vectors of 1-cosets.

MAIN THEOREM (1)

Theorem (E., Schmidt 2023)

Let Y be a t-intersecting set in GL(n, q). If n is sufficiently large compared to t, then

$$|Y| \le \prod_{i=t}^{n-1} (q^n - q^i) \tag{\circledast}$$

and, in case of equality, the characteristic vector of Y is spanned by the characteristic vectors of *t*-cosets.

9 | 18

MAIN THEOREM (1)

Theorem (E., Schmidt 2023)

Let Y be a t-intersecting set in GL(n, q). If n is sufficiently large compared to t, then

$$|Y| \le \prod_{i=t}^{n-1} (q^n - q^i) \tag{\circledast}$$

and, in case of equality, the characteristic vector of Y is spanned by the characteristic vectors of *t*-cosets.

The bound (*) was recently and independently obtained by Ellis, Kindler, and Lifshitz with completely different techniques.

Are the t-cosets the only t-intersecting sets in GL(n, q) of maximal size?

Are the t-cosets the only t-intersecting sets in GL(n, q) of maximal size? No!

Are the t-cosets the only t-intersecting sets in GL(n, q) of maximal size? No! If Y is t-intersecting, then Y^T is as well.

Are the *t*-cosets the only *t*-intersecting sets in GL(n,q) of maximal size? No! If Y is *t*-intersecting, then Y^T is as well.

Theorem (Ahanjideh 2022)

A 1-intersecting set of GL(2, q) of maximal size is a 1-coset or the transpose of a 1-coset.

Are the t-cosets the only t-intersecting sets in GL(n,q) of maximal size? No! If Y is t-intersecting, then Y^T is as well.

Theorem (Ahanjideh 2022)

A 1-intersecting set of GL(2, q) of maximal size is a 1-coset or the transpose of a 1-coset.

Conjecture

Let Y be t-intersecting in GL(n,q) of maximal size. If n is sufficiently large compared to t, then Y or Y^T is a t-coset.

Are the *t*-cosets the only *t*-intersecting sets in GL(n,q) of maximal size? No! If Y is *t*-intersecting, then Y^T is as well.

Theorem (Ahanjideh 2022)

A 1-intersecting set of GL(2, q) of maximal size is a 1-coset or the transpose of a 1-coset.

Conjecture

Let Y be t-intersecting in GL(n,q) of maximal size. If n is sufficiently large compared to t, then Y or Y^T is a t-coset.

This conjecture was recently proved by Ellis, Kindler, and Lifshitz.

0 | 18

t-set-intersecting sets in \mathcal{S}_n

2-set-intersecting set in S_5 .

t-set-intersecting sets in \mathcal{S}_n

2-set-intersecting set in S_5 .

Example

A coset of the stabiliser of a *t*-set of [n] is *t*-set-intersecting of size t!(n-t)!.

1 | 18

Theorem (Ellis 2012)

If n is sufficiently large compared to t, then a t-set-intersecting set Y in S_n has size at most t!(n-t)!.

If equality holds, then Y is a coset of the stabiliser of a t-set of [n].

$$\mathbb{F}_{2}^{3} = \langle \bullet, \bullet, \bullet \rangle = \{ \bullet, \bullet, \bullet, \bullet, \bullet, \bullet, \bullet, \bullet, \bullet \}$$

$$\langle \bullet, \bullet \rangle = \{ \bullet, \bullet, \bullet, \bullet, \bullet \}$$

$$\mathbb{F}_{2}^{3} = \langle \bullet, \bullet, \bullet \rangle = \{ \bullet, \bullet, \bullet, \bullet, \bullet, \bullet, \bullet, \bullet, \bullet \}$$

$$\langle \bullet, \bullet \rangle = \{ \bullet, \bullet, \bullet, \bullet, \bullet \}$$

$$\mathbb{F}_{2}^{3} = \langle \bullet, \bullet, \bullet \rangle = \{ \bullet, \bullet, \bullet, \bullet, \bullet, \bullet, \bullet, \bullet, \bullet \}$$

$$\langle \bullet, \bullet \rangle = \{ \bullet, \bullet, \bullet, \bullet, \bullet \}$$

equal on a 2-space

$$\mathbb{F}_{2}^{3} = \langle \bullet, \bullet, \bullet \rangle = \{ \bullet, \bullet, \bullet, \bullet, \bullet, \bullet, \bullet, \bullet, \bullet \}$$

$$\langle \bullet, \bullet \rangle = \{ \bullet, \bullet, \bullet, \bullet, \bullet \}$$

$$\rightarrow \bullet \bullet \bullet \bullet \bullet \bullet \bullet$$

$$\rightarrow \bullet \bullet \bullet \bullet \bullet \bullet \bullet$$

equal on a 2-space 2-space-intersecting in GL(3, 2)

$$\mathbb{F}_{2}^{3} = \langle \bullet, \bullet, \bullet \rangle = \{ \bullet, \bullet, \bullet, \bullet, \bullet, \bullet, \bullet, \bullet, \bullet \}$$

$$\langle \bullet, \bullet \rangle = \{ \bullet, \bullet, \bullet, \bullet, \bullet \}$$

equal on a 2-space 2-space-intersecting in GL(3, 2)

Example

A coset of the stabiliser of a *t*-space is *t*-space-intersecting of size

$$\left(\prod_{i=0}^{t-1}(q^t-q^i)\right)\left(\prod_{i=t}^{n-1}(q^n-q^i)\right).$$

Example

A coset of the stabiliser of a *t*-space is *t*-space-intersecting of size

$$\left(\prod_{i=0}^{t-1}(q^t-q^i)\right)\left(\prod_{i=t}^{n-1}(q^n-q^i)\right).$$

Theorem (Meagher, Spiga 2011)

A 1-space-intersecting set in GL(n,q) has size at most

$$(q-1)\prod_{i=1}^{n-1}(q^n-q^i).$$

MAIN THEOREM (2)

Theorem (E., Schmidt 2023)

Let Y be t-space-intersecting in GL(n,q). If n is sufficiently large compared to t, then

$$|Y| \le \left(\prod_{i=0}^{t-1} (q^t - q^i)\right) \left(\prod_{i=t}^{n-1} (q^n - q^i)\right)$$

and, in case of equality, the characteristic vector of Y is spanned by the characteristic vectors of cosets of stabilisers of *t*-spaces.

Are the cosets of stabilisers of t-spaces the only t-space-intersecting sets in GL(n,q) of maximal size?

Are the cosets of stabilisers of t-spaces the only t-space-intersecting sets in GL(n,q) of maximal size?

EXTREMAL t-SPACE-INTERSECTING SETS IN GL(n,q)

Are the cosets of stabilisers of t-spaces the only t-space-intersecting sets in GL(n,q) of maximal size? No! If Y is t-space-intersecting, then Y^T is as well.

EXTREMAL t-SPACE-INTERSECTING SETS IN GL(n,q)

Are the cosets of stabilisers of t-spaces the only t-space-intersecting sets in GL(n,q) of maximal size? No! If Y is t-space-intersecting, then Y^T is as well.

Theorem (Meagher, Spiga 2011, 2014; Spiga 2019)

A 1-space-intersecting set in GL(n,q) of maximal size is a coset of the stabiliser of a 1-space or a coset of the stabiliser of an (n-1)-space.

EXTREMAL t-SPACE-INTERSECTING SETS IN GL(n,q)

Are the cosets of stabilisers of t-spaces the only t-space-intersecting sets in GL(n,q) of maximal size? No! If Y is t-space-intersecting, then Y^T is as well.

Theorem (Meagher, Spiga 2011, 2014; Spiga 2019)

A 1-space-intersecting set in GL(n,q) of maximal size is a coset of the stabiliser of a 1-space or a coset of the stabiliser of an (n-1)-space.

Conjecture

Let Y be t-space-intersecting in GL(n,q) of maximal size. If n is sufficiently large compared to t, then Y or Y^T is a coset of the stabiliser of a t-space.

Theorem (Ellis, Friedgut, Pilpel 2011)

Let $\Gamma = (X, E)$ be a graph and $\Gamma_0, \Gamma_1, \dots, \Gamma_r$ be regular spanning subgraphs of Γ with common eigenvectors $\{1, v_1, \dots, v_{n-1}\}$.

18

Theorem (Ellis, Friedgut, Pilpel 2011)

Let $\Gamma = (X, E)$ be a graph and $\Gamma_0, \Gamma_1, \dots, \Gamma_r$ be regular spanning subgraphs of Γ with common eigenvectors $\{1, v_1, \dots, v_{n-1}\}$. Let $P_i(k)$ be the eigenvalue of v_k in Γ_i and $P(k) = \sum_{i=0}^r \omega_i P_i(k)$, where $\omega_i \in \mathbb{R}$.

18

Theorem (Ellis, Friedgut, Pilpel 2011)

Let $\Gamma = (X, E)$ be a graph and $\Gamma_0, \Gamma_1, \dots, \Gamma_r$ be regular spanning subgraphs of Γ with common eigenvectors $\{1, v_1, \dots, v_{n-1}\}$. Let $P_i(k)$ be the eigenvalue of v_k in Γ_i and $P(k) = \sum_{i=0}^r \omega_i P_i(k)$, where $\omega_i \in \mathbb{R}$.

If $Y \subseteq X$ is an independent set in Γ , then

$$\frac{|Y|}{|X|} \le \frac{|P_{\mathsf{min}}|}{P(\mathsf{O}) + |P_{\mathsf{min}}|},$$

where $P_{\min} = \min_{k \neq 0} P(k)$.

Theorem (Ellis, Friedgut, Pilpel 2011)

Let $\Gamma=(X,E)$ be a graph and $\Gamma_0,\Gamma_1,\ldots,\Gamma_r$ be regular spanning subgraphs of Γ with common eigenvectors $\{1,v_1,\ldots,v_{n-1}\}$. Let $P_i(k)$ be the eigenvalue of v_k in Γ_i and $P(k)=\sum_{i=0}^r \omega_i P_i(k)$, where $\omega_i\in\mathbb{R}$.

If $Y \subseteq X$ is an independent set in Γ , then

$$\frac{|Y|}{|X|} \le \frac{|P_{\min}|}{P(O) + |P_{\min}|},$$

where $P_{\min} = \min_{k \neq 0} P(k)$. If equality holds, then

$$1_{Y} \in \langle \{1\} \cup \{v_{k} \colon P(k) = P_{\min}\} \rangle.$$

Conjugacy classes and irr. characters of $\mathrm{GL}(n,q)$ are indexed by $\underline{\sigma}\colon\{\text{ monic irr. polynomials}\}\setminus\{X\}\to \mathrm{Partitions}$ such that $n=\sum_f|\underline{\sigma}(f)|\deg(f)$.

Conjugacy classes and irr. characters of $\mathrm{GL}(n,q)$ are indexed by $\underline{\sigma}\colon\{\text{ monic irr. polynomials}\}\setminus\{X\}\to \mathrm{Partitions}$ such that $n=\sum_f|\underline{\sigma}(f)|\deg(f)$.

■ Let $\Gamma_{\underline{\sigma}}$ be the graph with vertex set GL(n,q) and adjacency matrix

$$A_{\underline{\sigma}}(x,y) = \begin{cases} 1 & \text{for } x^{-1}y \in C_{\underline{\sigma}} \cup C_{\underline{\sigma}}^{-1}, \\ 0 & \text{otherwise} \end{cases}$$

whose eigenvalues are determined by the character table.

Conjugacy classes and irr. characters of $\mathrm{GL}(n,q)$ are indexed by $\underline{\sigma}\colon\{\text{ monic irr. polynomials}\}\setminus\{X\}\to \mathrm{Partitions}$ such that $n=\sum_f|\underline{\sigma}(f)|\deg(f)$.

■ Let $\Gamma_{\underline{\sigma}}$ be the graph with vertex set GL(n,q) and adjacency matrix

$$A_{\underline{\sigma}}(x,y) = \begin{cases} 1 & \text{for } x^{-1}y \in C_{\underline{\sigma}} \cup C_{\underline{\sigma}}^{-1}, \\ 0 & \text{otherwise} \end{cases}$$

whose eigenvalues are determined by the character table.

■ We take carefully chosen conjugacy classes $C_{\underline{\sigma}}$ only consisting of elements not fixing a t-dimensional subspace (pointwise).

Conjugacy classes and irr. characters of $\mathrm{GL}(n,q)$ are indexed by $\underline{\sigma}\colon \{ \text{ monic irr. polynomials} \}\setminus \{X\} \to \mathrm{Partitions}$ such that $n=\sum_f |\underline{\sigma}(f)| \deg(f)$.

■ Let $\Gamma_{\underline{\sigma}}$ be the graph with vertex set GL(n,q) and adjacency matrix

$$A_{\underline{\sigma}}(x,y) = \begin{cases} 1 & \text{for } x^{-1}y \in C_{\underline{\sigma}} \cup C_{\underline{\sigma}}^{-1}, \\ 0 & \text{otherwise} \end{cases}$$

whose eigenvalues are determined by the character table.

■ We take carefully chosen conjugacy classes $C_{\underline{\sigma}}$ only consisting of elements not fixing a t-dimensional subspace (pointwise). Let Γ be the union of the corresponding $\Gamma_{\underline{\sigma}}$.

Conjugacy classes and irr. characters of $\mathrm{GL}(n,q)$ are indexed by $\underline{\sigma}\colon \{ \text{ monic irr. polynomials} \}\setminus \{X\} \to \text{ Partitions}$ such that $n=\sum_f |\underline{\sigma}(f)| \deg(f)$.

■ Let $\Gamma_{\underline{\sigma}}$ be the graph with vertex set GL(n,q) and adjacency matrix

$$A_{\underline{\sigma}}(x,y) = \begin{cases} 1 & \text{for } x^{-1}y \in C_{\underline{\sigma}} \cup C_{\underline{\sigma}}^{-1}, \\ 0 & \text{otherwise} \end{cases}$$

whose eigenvalues are determined by the character table.

- We take carefully chosen conjugacy classes $C_{\underline{\sigma}}$ only consisting of elements not fixing a t-dimensional subspace (pointwise). Let Γ be the union of the corresponding $\Gamma_{\underline{\sigma}}$.
- Determine $\omega_{\underline{\sigma}}$ such that the sums $\sum_{\underline{\sigma}} \omega_{\underline{\sigma}} P_{\underline{\sigma}}(\underline{\lambda})$ have the required properties.

