On the trivial T-module

Rijeka conference on combinatorial objects and their applications

July 3-7, 2023, University of Rijeka Rijeka, Croatia

Blas Fernández
blas.fernandez@famnit.upr.si

UP FAMNIT I University of Primorska

Every graph $\Gamma=(X, \mathscr{R})$ mentioned in this work is considered to be

 finite, non-trivial, simple, undirected and connected.
EXAMPLE

$$
\begin{aligned}
& \text { Let } \Gamma=(X, \mathscr{R}) \text { be the simple graph with } X=\{1,2,3,4,5,6,7\} \text { and } \\
& \qquad \mathcal{R}=\{\{1,2\},\{1,3\},\{1,4\},\{2,5\},\{3,5\},\{4,6\},\{4,7\}\} .
\end{aligned}
$$

MOTIVATION

Main Motivation

Let Γ be a graph and let G denote a certain algebraic object.

Question

What could we say about the combinatorial properties of Γ, if we know that G has certain algebraic properties?

Main Motivation

QUESTION

What could we say about the algebraic properties of G, if we know that Γ has certain combinatorial properties?

The algebraic object

Terwilliger algebra of a graph

PRELIMINARIES

Terminology and Notations

Let $\Gamma=(X, \mathscr{R})$ be a graph and let $x, y \in X$.

- The distance between x and y, denoted $\partial(x, y)$, is the length of a shortest $x y$-path.
- The eccentricity of x is the greatest distance between x and any other vertex. That is, $\epsilon(x):=\max _{z \in X} \partial(x, z)$.
- For $i \in \mathbb{Z}$, the collection of all vertices which are at distance i from vertex x is represented by $\Gamma_{i}(x)$. We abbreviate $\Gamma(x)=\Gamma_{1}(x)$.
- The collection of all the subsets $\Gamma_{i}(x)$, for $0 \leq i \leq \epsilon(x)$, makes up a partition of the vertex set X which is called the distance partition of \lceil relative to x.

Terminology and Notations

Let $\Gamma=(X, \mathscr{R})$ be a graph and let \mathbb{C} denote the complex number field.

- The \mathbb{C}-algebra consisting of all matrices whose rows and columns are indexed by X and whose entries are in \mathbb{C} is denoted by Mat $X(\mathbb{C})$
- The standard module, indicated by $V=\mathbb{C}^{X}$, is the vector space over \mathbb{C} consisting of column vectors whose coordinates are indexed by X and whose entries are in \mathbb{C}.
- The vector space V is endowed with the Hermitian inner product $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{C}$ that satisfies $\langle u, v\rangle=u^{t} \bar{v}$ for $u, v \in V$, where t means transpose and ${ }^{-}$symbolises complex conjugation.
- For $y \in X$, let $\hat{y} \in V$ be the vector with a 1 in the y-coordinate and zeros everywhere else.
- Note that the set $\{\hat{y}: y \in X\}$ is an orthonormal basis for V.
\mathbb{C} - ALGEBRA OF ALL 7×7 matrices

$$
\operatorname{Mat}_{x}(\mathbb{C})=\operatorname{Ma+}_{7}(\mathbb{C})=\mathbb{C}^{7 \times 7}
$$

Standard Module

$$
V=\mathbb{C}^{7}
$$

1
2
3
4
5
6
7 $\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]$

The dual idempotents of Γ

Terminology and Notations

Let $\Gamma=(X, \mathscr{R})$ be a graph and let \mathbb{C} denote the complex number field.

- Fix $x \in X$. For every integer $i, 0 \leq i \leq \epsilon(x)$, the i-th dual idempotent of Γ with respect to x is the diagonal matrix $E_{i}^{*}:=E_{i}^{*}(x) \in \operatorname{Mat}_{x}(\mathbb{C})$ with (y, y)-entry given as follows:

$$
\left(E_{i}^{*}\right)_{y y}=\left\{\begin{array}{lll}
1 & \text { if } & \partial(x, y)=i \\
0 & \text { if } & \partial(x, y) \neq i
\end{array}\right.
$$

- The adjacency matrix of Γ is the matrix $A:=A(\Gamma) \in \operatorname{Mat}_{x}(\mathbb{C})$ where, for every $x, y \in X$, the (x, y)-entry is defined as follows:

$$
A_{x y}=\left\{\begin{array}{lll}
1 & \text { if } & \partial(x, y)=1 \\
0 & \text { if } & \partial(x, y) \neq 1
\end{array}\right.
$$

Terminology and Notations

Definition (TERWILLIGER, 1992.)

The Terwilliger algebra of Γ with respect to x is considered to be the subalgebra $T:=T(x)$ of $\operatorname{Mat} x(\mathbb{C})$ generated by the adjacency matrix A of Γ and the dual idempotents of Γ with respect to x :

$$
T:=\left\langle A, E_{0}^{*}, \cdots, E_{i}^{*}, \cdots, E_{\epsilon(x)}^{*}\right\rangle
$$

Algebra T is finite dimensional and semisimple.

$$
A=\left(\begin{array}{lllllll}
0 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}\right)
$$

Terwilliger algebra of Γ

 with respect to 1$$
T(1)=\left\langle A, E_{0}^{*}(1), E_{1}^{*}(1), E_{2}^{*}(1)\right\rangle
$$

Terminology and Notations

Let Γ be a graph and let $T:=T(x)$ the Terwilliger algebra of Γ with respect to x.

- A T-module is a subspace W of V which is B-invariant for every $B \in T$.
- A T-module W is irreducible whenever W is non-zero and W contains no T-modules other than 0 and W.
- It turns out that any T-module is orthogonal direct sum of irreducible T-modules.

Terminology and Notations

Let Γ be a graph and let $T:=T(x)$ the Terwilliger algebra of Γ with respect to x.

- Each irreducible T-module W is orthogonal direct sum of the nonvanishing subspaces $E_{i}^{*} W$, where $0 \leq i \leq \epsilon(x)$:

$$
W=E_{0}^{*} W+\cdots+E_{i}^{*} W+\cdots+E_{\epsilon(x)}^{*} W
$$

- A scalar $r:=r(W)$ is the endpoint of W if

$$
r=\min \left\{i: 0 \leq i \leq \epsilon(x), E_{i}^{*} W \neq 0\right\} .
$$

- The T-module W is called thin whenever the dimension of $E_{i}^{*} W$ is at most 1 for $0 \leq i \leq \epsilon(x)$.

IRREDUCIBLE T-MODULES WITH ENDPOINT 0

The trivial T-module

Let T be the Terwilliger algebra of Γ with respect to x. Let W denote an irreducible T-module with endpoint 0 . Then,

- There exists a nonzero vector $w \in E_{0}^{*} W$.

THEN $W=E_{o}^{*} \boldsymbol{j}$ for Some $\Sigma \in W$. therefore,

$$
E_{0}^{*} W=E_{0}^{*} E_{0}^{*} N=E_{0}^{*} N=W \quad\left(E_{0}^{*} E_{0}^{*}=E_{0}^{*}\right)
$$

- We know that $w=\sum_{y \in X} \alpha_{y} \widehat{y}$ for some scalars $\alpha_{y} \in \mathbb{C}$.

$$
w=E_{0}^{*} w=\sum_{y \in x} \alpha_{y} \cdot E_{0}^{*} \hat{y}=\alpha_{x} \cdot E_{0}^{*} \hat{x}=\alpha_{x} \cdot \hat{x}
$$

- We thus have $w=E_{0}^{*} w=\alpha_{x} \widehat{x}$ with $\alpha_{x} \neq 0$.
- This shows $\widehat{x}=\alpha_{x}^{-1} E_{0}^{*} W$ and so, $\widehat{x} \in E_{0}^{*} W \subseteq W$.

$$
\hat{x}=E_{0}^{*}(\underbrace{\frac{1}{\alpha_{x}} \cdot w}_{\epsilon W}) \in E_{0}^{*} W
$$

- since W is a T-module, W is B-invariant for every $B \in T$.

$$
\hat{x} \in W \Rightarrow B \hat{x} \in W \quad \text { FOR } A L L \quad B \in T
$$

- This implies that $B \widehat{x} \in W$ for every matrix $B \in T$.
- The set $T \hat{x}:=\{B \hat{x}: B \in T\} \subseteq W$ is a non-zero T-module.

THEREFORE

$$
T \hat{x}=W .
$$

DEFINITION

The trivial T-module is the unique irreducible T-module with endpoint 0 . Namely, the set $T \hat{x}:=\{B \hat{x}: B \in T\}$.

The lowering, flat and raising matrices

Let $\Gamma=(X, \mathscr{R})$ be a graph. Fix $x \in X$ and consider the Terwilliger Algebra T of Γ with respect to x. Let $d=\epsilon(x)$.

DEFINITION

Define matrices $L=L(x), F=F(x)$ and $R=R(x)$ in Mat $x(\mathbb{C})$ by

$$
L=\sum_{i=1}^{d} E_{i-1}^{*} A E_{i}^{*}, \quad F=\sum_{i=0}^{d} E_{i}^{*} A E_{i}^{*}, \quad R=\sum_{i=0}^{d-1} E_{i+1}^{*} A E_{i}^{*} .
$$

We refer to L, F and R as the lowering, the flat and the raising matrix with respect to x, respectively. Note that $L, F, R \in T$. Moreover, we have that $F=F^{\top}, R=L^{\top}$ and $A=L+F+R$.

The lowering, flat and raising matrices

$$
F=E_{0}^{*} \cdot A \cdot E_{0}^{*}+E_{1}^{*} \cdot A \cdot E_{1}^{*}+E_{0}^{*} \cdot A \cdot \epsilon_{2}^{*}
$$

$$
R=E_{1}^{*} \cdot A \cdot E_{0}^{\star}+E_{2}^{*} \cdot A \cdot E_{1}^{*}
$$

$$
F=\left(\begin{array}{l|lll|lll}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

$R=\left(\begin{array}{l|lll|lll}0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0\end{array}\right)$

$$
\begin{aligned}
& A=\underbrace{\left(\begin{array}{llll|lll}
0 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 \\
\Gamma_{1}(1)
\end{array}\right\} \underbrace{0}_{\Gamma_{2}(1)} 0}_{\Gamma_{0}(1)}\} \begin{array}{l}
\Gamma_{0}(1) \\
\Gamma_{1}(1) \\
r_{2}(1) \\
\end{array} \\
& L=E_{0}^{*} \cdot A \cdot E_{1}^{*}+E_{1}^{*} \cdot A \cdot E_{2}^{*} \\
& L=\left(\begin{array}{lllll|lll}
0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \\
& A=L+F+R
\end{aligned}
$$

Example: study the module $T \hat{\jmath}$

Vectors $R^{i \widehat{1}}$

$$
\begin{aligned}
& R^{0}=\left(\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) \quad R=\left(\begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}\right) \\
& R^{2}=\left(\begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
2 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \quad R^{m}=\left(\begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \\
&
\end{aligned}
$$

Vectors $R^{\hat{1}}(0 \leq i \leq 2)$
Let W denote the subspace of \mathbb{C}^{7} generated by the vectors $\mathrm{R}^{i} \hat{\imath}(0 \leq i \leq 2)$

$$
\begin{aligned}
& \hat{\imath}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right) \quad R \hat{\imath}=\left(\begin{array}{l}
0 \\
1 \\
1 \\
1 \\
0 \\
0 \\
0
\end{array}\right) \quad R^{2} \hat{\imath}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1 \\
1
\end{array}\right) \\
& W=\operatorname{span}\left\{\hat{\imath}, R \hat{\imath}, R^{2} \hat{\imath}\right\} \subseteq T \hat{\imath}
\end{aligned}
$$

Recall that $T \hat{\imath}=\{B \hat{\imath}: B \in T\}$
$E_{i}^{*} W \subseteq W(0 \leq i \leq 2)$ and $A W \subseteq W$

$$
\begin{array}{lll}
W=\operatorname{span}\left\{\hat{\imath}, R \hat{\imath}, R^{2} \hat{\imath}\right\} & \subseteq T \hat{\imath} \\
E_{0}^{*} \hat{\imath}=\hat{\imath} & E_{0}^{*} R \hat{\imath}=0 & E_{0}^{*} R^{2} \hat{\imath}=0 \\
E_{1}^{*} \hat{\imath}=0 & E_{1}^{*} R \hat{\imath}=R \hat{\imath} & E_{1}^{*} R^{2} \hat{\imath}=0 \\
E_{2}^{*} \hat{\imath}=0 & E_{2}^{*} R \hat{\imath}=0 & E_{2}^{*} R^{2} \hat{\imath}=R^{2} \hat{\imath} \\
E_{i}^{*} W \subseteq W \text { (0SiS2) } \\
A R \hat{\imath}=R \hat{\imath}=3 \cdot \hat{\imath}+R^{2} \hat{\imath} & A W \subseteq W & \\
A R^{2} \hat{\imath}=2 \cdot R \hat{\imath} &
\end{array}
$$

Example: study the module $T \widehat{1}$

We thus have $E_{i}^{*} W \subseteq W \quad(0 \leqslant i \leq 2)$
$A W \subseteq W$
This shows that W is a T-module
SINCE $W \neq 0$ AND $W \subseteq T \hat{}$
WE MUST HAVE $W=T \hat{\imath}$.
therefore, W is the unique IRREDUCIBLE T-MODULE WITH ENDPOINT O.

Example: study the module $T \widehat{1}$

$$
\begin{aligned}
& W=\operatorname{span}\left\{\hat{\imath}, R \hat{\imath}, R^{2} \hat{\imath}\right\}=T \hat{\imath} \\
& E_{i}^{*} W=\operatorname{span}\left\{E_{i}^{*} \hat{\imath}, E_{i}^{*} R \hat{\imath}, E_{i}^{*} R^{2} \hat{\imath}\right\} \\
& E_{0}^{*} \hat{\imath}=\hat{\imath} \quad E_{0}^{*} R \hat{\imath}=0 \quad E_{0}^{*} R^{2} \hat{\imath}=0 \\
& E_{1}^{*} \hat{\imath}=0 \quad E_{1}^{*} R \hat{\imath}=R \hat{\imath} \quad E_{1}^{*} R^{2} \hat{\imath}=0 \\
& E_{2}^{*} \hat{\imath}=0 \quad E_{2}^{*} R \hat{\imath}=0 \quad E_{2}^{*} R^{2} \hat{\imath}=R^{2} \hat{\imath} \\
& E_{0}^{*} W=\operatorname{span}\{\hat{\imath}\} \\
& \left.E_{1}^{*} W=\operatorname{span}\left\{R_{\hat{\imath}}\right\}\right\} \operatorname{dim}\left(E_{i}^{*} W\right)=1(0 \leq i \leq 2) \\
& E_{2}^{*} W=\operatorname{sPam}\left\{R^{2} \hat{\imath}\right\} \quad W \text { is THiN}
\end{aligned}
$$

Let $\Gamma=(X, \mathscr{R})$ be a graph. Fix $x \in X$ and consider the Terwilliger Algebra T of Γ with respect to x.

Question

How the module structure of T and certain combinatorial properties of Γ are related?

Let $\Gamma=(X, \mathscr{R})$ be a graph. Fix $x \in X$ and consider the Terwilliger Algebra T of Γ with respect to X.

Question

Is there any way to study the trivial module $T \widehat{x}$ from a combinatorial point of view?

Local Distance-Regularity

Local Distance-Regularity

Pick $x \in X$. Suppose that $y \in \Gamma_{i}(x)$ for some $0 \leq i \leq \epsilon(x)$. Then, the following numbers are defined:

$$
\begin{gathered}
a_{i}(x, y):=\left|\Gamma_{i}(x) \cap \Gamma_{1}(y)\right|, \quad b_{i}(x, y):=\left|\Gamma_{i+1}(x) \cap \Gamma_{1}(y)\right|, \\
c_{i}(x, y):=\left|\Gamma_{i-1}(x) \cap \Gamma_{1}(y)\right| .
\end{gathered}
$$

Definition (Godsil and Shawe-Taylor, 1987.)

A vertex $x \in X$ is distance-regularized (or Γ is distance-regular around x), if for $x \in X$, the numbers $a_{i}(x, y), b_{i}(x, y)$ and $c_{i}(x, y)$ do not depend on the choice of $y \in \Gamma_{i}(x)$ for every $0 \leq i \leq \epsilon(x)$.

In this case, the numbers $a_{i}(x, y), b_{i}(x, y)$ and $c_{i}(x, y)$ are simply denoted by $a_{i}(x), b_{i}(x)$ and $c_{i}(x)$ respectively, and are called the intersection numbers of x.

Local Distance-Regularity

DEFINITION

- A distance-regularized graph is considered to be a connected graph in which every vertex is distance-regularized.
- A distance-regular graph is a distance-regularized graph where all its vertices have the same intersection numbers.
- A distance-regularized graph is said to be distance-biregular if the following hold:
- It is bipartite.
- Vertices in the same color partition have the same intersection numbers.
- Vertices in different color partitions have different intersection numbers.

THEOREM (GODSIL AND SHAWE-TAYLOR, 1985)
Every distance-regularized graph is either distance-regular or distance-biregular.

Let $\Gamma=(X, \mathscr{R})$ be a graph. Fix $x \in X$ and consider the Terwilliger Algebra T of Γ with respect to x.

Question

Is there any relation between local distance-regularity and the trivial T-modules of Γ ?

Let $\Gamma=(X, \mathscr{R})$ be a graph. Fix $x \in X$ and consider the Terwilliger Algebra T of Γ with respect to x.

THEOREM (TERWILLIGER, 1993)

If Γ is distance-regular around x then the T-module $T \hat{x}$ is thin.

Let $\Gamma=(X, \mathscr{R})$ be a graph. Fix $x \in X$ and consider the Terwilliger Algebra T of Γ with respect to x.

Question

If the trivial T-module $T \hat{x}$ is thin, is Γ distance-regular around x ?

EXAMPLE

Let $\Gamma=(X, \mathscr{R})$ be the simple graph with $X=\{1,2,3,4,5,6,7\}$ and

$$
\mathcal{R}=\{\{1,2\},\{1,3\},\{1,4\},\{2,5\},\{3,5\},\{4,6\},\{4,7\}\} .
$$

The trivial $T \widehat{1}$ is thin. However, Γ is not distance-regular around 1 .

Let $\Gamma=(X, \mathscr{R})$ be a graph. Fix $x \in X$ and consider the Terwilliger Algebra T of Γ with respect to x.

Theorem (TERWILLIGER, 1993)

The following statements are equivalent:

1. Γ is distance-regularized.
2. For every $x \in X$, the collection of all the vectors

$$
s_{i}(x)=\sum_{y \in \Gamma_{i}(x)} \widehat{y} \quad(0 \leq i \leq \epsilon(x))
$$

is a basis of the trivial $T(x)$-module.
3. For every $x \in X$, the trivial $T(x)$-module is thin.

If the above conditions hold, then Γ is either distance-regular or distance-biregular.

Main Motivation

Problem

Find a combinatorial property of Γ which is equivalent to the property that the trivial T-module $T \hat{x}$ is thin.

Local Pseudo Distance-Regularity

Let $\Gamma=(X, \mathscr{R})$ be a graph. Fix $x \in X$ and consider the Terwilliger Algebra T of Γ with respect to x.

Theorem (FIOL, GARRIGA, 1999)

The trivial T-module $T \hat{x}$ is thin if and only if Γ is pseudo distance-regular around x.

Local Pseudo Distance-Regularity

Let $v=\left(v_{x}, \ldots, v_{y}, \ldots, v_{z}\right)^{t}$ be a Perron-Frobenius vector of A.

Local Pseudo Distance-Regularity

$$
v=\left(v_{x}, \ldots, v_{y}, \ldots, v_{z}\right)^{t}
$$

$\Gamma_{i-1}(x)$
$\Gamma_{i}(x)$
$\Gamma_{i+1}(x)$
$\Gamma_{d}(x)$

$$
a_{i}^{*}(x, y):=\sum_{z \in \Gamma_{1}(y) \cap \Gamma_{i}(x)} \frac{v_{z}}{v_{y}}
$$

Local Pseudo Distance-Regularity

$$
v=\left(v_{x}, \ldots, v_{y}, \ldots, v_{z}\right)^{t}
$$

Local Pseudo Distance-Regularity

$$
u=\left(v_{x}, \ldots, v_{y}, \ldots, v_{z}\right)^{t}
$$

Local Pseudo Distance-Regularity

Pick $x \in X$. Suppose that $y \in \Gamma_{i}(x)$ for some $0 \leq i \leq \epsilon(x)$. Then, the following numbers are defined:

$$
\begin{aligned}
& a_{i}^{*}(x, y):= \sum_{z \in \Gamma_{1}(y) \cap \Gamma_{i}(x)} \frac{v_{z}}{v_{y}}, \quad b_{i}^{*}(x, y):=\sum_{z \in \Gamma_{1}(y) \cap \Gamma_{i+1}(x)} \frac{v_{z}}{v_{y}}, \\
& c_{i}^{*}(x, y):=\sum_{z \in \Gamma_{1}(y) \cap \Gamma_{i-1}(x)} \frac{v_{z}}{v_{y}} .
\end{aligned}
$$

Definition (FIOL, Garriga and Yebra, 1996.)

A vertex $x \in X$ is pseudo-distance-regularized (or Γ is pseudo-distance-regular around x), if for $x \in X$, the numbers $a_{i}^{*}(x, y), b_{i}^{*}(x, y)$ and $c_{i}^{*}(x, y)$ do not depend on the choice of $y \in \Gamma_{i}(x)$ for every $0 \leq i \leq \epsilon(x)$.

Example

Consider $v=(3 \sqrt{5} \sqrt{5} \sqrt{5} 211)^{t}$. Let's find the value $b_{1}^{*}(1)$.

$$
\begin{gathered}
b_{1}^{*}(1,2):=\frac{v_{5}}{v_{2}}=\frac{2}{\sqrt{5}}, \\
b_{1}^{*}(1,4):=\frac{v_{6}+v_{7}}{v_{4}}=\frac{2}{\sqrt{5}} . \\
b_{1}^{*}(1)=\frac{2}{\sqrt{5}}
\end{gathered}
$$

EXAMPLE

$$
\begin{aligned}
& \text { Let } \Gamma=(X, \mathcal{R}) \text { be the simple graph with } X=\{1,2,3,4,5,6,7\} \text { and } \\
& \qquad \mathcal{R}=\{\{1,2\},\{1,3\},\{1,4\},\{2,5\},\{3,5\},\{4,6\},\{4,7\}\} .
\end{aligned}
$$

Γ is pseudo distance-regular around 1. The trivial module $\widehat{1}$ is thin.
Γ is not distance-regular around 1.

THEOREM (FIOL, GARRIGA, 1999)

The trivial T-module $T \hat{x}$ is thin if and only if Γ is pseudo distance-regular around x.

Let $\Gamma=(X, \mathcal{R})$ be a graph. Fix $x \in X$ and consider the Terwilliger Algebra T of Γ with respect to x.

Problem

Find a PURELY combinatorial property of Γ which is equivalent to the property that the trivial T-module $T \hat{x}$ is thin.

The shape of a walk with respect to a given vertex

Let $\Gamma=(X, \mathscr{R})$ denote a finite, simple and connected graph.

DEFINITION

Pick $x, y, z \in X$ and let $P=\left[y=x_{0}, x_{1}, \ldots, x_{j}=z\right]$ denote a $y z$-walk. The shape of P with respect to x is a sequence of symbols $t_{1} t_{2} \ldots t_{j}$, where $t_{i} \in\{f, \ell, r\}$, and such that

$$
t_{i}=\left\{\begin{array}{lll}
r & \text { if } \quad \partial\left(x, x_{i}\right)=\partial\left(x, x_{i-1}\right)+1, \\
f & \text { if } \partial\left(x, x_{i}\right)=\partial\left(x, x_{i-1}\right), \\
\ell & \text { if } \partial\left(x, x_{i}\right)=\partial\left(x, x_{i-1}\right)-1,
\end{array} \quad(1 \leq i \leq j) .\right.
$$

We use exponential notation for shapes containing several consecutive identical symbols. For instance, instead of rrrrfffler we simply write

$$
r^{4} f^{3} \ell^{2} r .
$$

The lowering, flat and raising matrices

Let $\Gamma=(X, \mathscr{R})$ be a graph. Fix $x \in X$ and consider the Terwilliger Algebra T of Γ with respect to x. Let $d=\epsilon(x)$.

DEFINITION

Define matrices $L=L(x), F=F(x)$ and $R=R(x)$ in Mat $x(\mathbb{C})$ by

$$
L=\sum_{i=1}^{d} E_{i-1}^{*} A E_{i}^{*}, \quad F=\sum_{i=0}^{d} E_{i}^{*} A E_{i}^{*}, \quad R=\sum_{i=0}^{d-1} E_{i+1}^{*} A E_{i}^{*} .
$$

We refer to L, F and R as the lowering, the flat and the raising matrix with respect to x, respectively. Note that $L, F, R \in T$. Moreover, we have that $F=F^{\top}, R=L^{\top}$ and $A=L+F+R$.

Walks of a certain shape

A $y z$-walk in Γ of shape $\ell r^{2} \ell f r$ with respect to x.

Walks of a certain shape

For an integer $i(0 \leq i \leq d)$ and $y \in \Gamma_{i}(x)$, let $r^{i+1} \ell(y)$ denote the number of $x y$-walks in Γ of shape $r^{i+1} \ell$ with respect to x.

Walks of a certain shape

For an integer $i(0 \leq i \leq d)$ and $y \in \Gamma_{i}(x)$, let $r^{i} f(y)$ denote the number of $x y$-walks in Γ of shape $r^{i} f$ with respect to x.

Walks of a certain shape

For an integer $i(0 \leq i \leq d)$ and $y \in \Gamma_{i}(x)$, let $r^{i}(y)$ denote the number of $x y$-walks in Γ of shape r^{i} with respect to x.

$$
\sqrt{\frac{1}{2}=}=
$$

A combinatorial condition

For every integer $i(0 \leq i \leq d)$ there exist scalars α_{i}, such that for every

$$
y \in \Gamma_{i}(x) \text { we have } r^{i+1} \ell(y)=\alpha_{i} r^{i}(y) .
$$

A combinatorial condition

For every integer $i(0 \leq i \leq d)$ there exist scalars β_{i}, such that for every

$$
y \in \Gamma_{i}(x) \text { we have } r^{i} f(y)=\beta_{i} r^{i}(y) .
$$

The result we wanted!

Theorem 1 (FernÁndez, MIKLAVIČ, 2022)

Let $\Gamma=(X, \mathcal{R})$ be a graph. Fix $x \in X$ and let $d=\epsilon(x)$. Consider the Terwilliger Algebra T of Γ with respect to x. The following (1)-(3) are equivalent:

1. $T \hat{x}$ is thin.
2. Γ is pseudo distance-regular around x.
3. For every integer $i(0 \leq i \leq d)$ there exist scalars α_{i}, β_{i}, such that for every $y \in \Gamma_{i}(x)$ the following hold:

$$
r^{i+1} \ell(y)=\alpha_{i} r^{i}(y), \quad r^{i} f(y)=\beta_{i} r^{i}(y) .
$$

In particular, if the above equivalent conditions (1)-(3) hold, then the set

$$
\left\{R^{i} \widehat{x} \mid 0 \leq i \leq d\right\} \text { is a basis of } T \widehat{x}
$$

EXAMPLE

Let $\Gamma=(X, \mathscr{R})$ be the simple graph with $X=\{1,2,3,4,5,6,7\}$ and

$$
\mathcal{R}=\{\{1,2\},\{1,3\},\{1,4\},\{2,5\},\{3,5\},\{4,6\},\{4,7\}\} .
$$

The trivial module $T \widehat{1}$ is thin.

REMARK

The combinatorial condition

$$
r^{i+1} \ell(y)=\alpha_{i} r^{i}(y), \text { for every } y \in \Gamma_{i}(x)(0 \leq i \leq 2)
$$

holds with $\alpha_{0}=3, \alpha_{1}=2$ and $\alpha_{3}=0$.
Therefore, the trivial T-module $T \hat{1}$ is thin.

$r^{i+1} \ell(y)=\alpha_{i} r^{i}(y)$, for every $y \in \Gamma_{i}(x)(0 \leq i \leq 2)$

For $i=0$ we need to check that

$$
\Gamma l(x)=\alpha_{0} \cdot r^{0}(x)
$$

Notice $[1,2,1],[1,3,1],[1,4,1]$ are all the walks of the shape $r \ell$ with respect to 1 . So, for $i=0$ we observe $r^{0}(x)=1$ and $r \ell(x)=3$. Then, the above equation holds with $\alpha_{0}=3$.

$r^{i+1} \ell(y)=\alpha_{i} r^{i}(y)$, for every $y \in \Gamma_{i}(x)(0 \leq i \leq 2)$

FOR $i=2$ WE NEED TO CHECK THAT
$\Gamma^{3} l(y)=\alpha_{3} \cdot \Gamma^{2}(y)$ FOR ALL $y \in \Gamma_{2}(x)$
WE OBSERVE THAT $\Gamma^{3} l(y)=0$ FOR ALL $y \in \Gamma_{2}(x)$.

Moreover, $\Gamma^{2}(y)>0$ For all $y \in \Gamma_{2}(x)$.

We thus have that $\alpha_{3}=0$.
$r^{i+1} \ell(y)=\alpha_{i} r^{i}(y)$, for every $y \in \Gamma_{i}(x)(0 \leq i \leq 2)$
For $i=1$ we need to check that

$$
\Gamma^{2} l(y)=\alpha_{2} \cdot \Gamma(y) \quad \text { FOR ALL } y \in \Gamma_{1}(x)
$$

Notice $[1,2,5,2],[1,3,5,2]$ are all the 1,2 -walks of the shape $r^{2} \ell$ with respect to 1 .

Notice $[1,2,5,3],[1,3,5,3]$ are all the 1,3 -walks of the shape $r^{2} \ell$ with respect to 1 .

Notice $[1,4,6,4],[1,4,7,4]$ are all the 1,4 -walks of the shape $r^{2} \ell$ with respect to 1 .

So, for every $y \in \Gamma_{1}(x)$, we have $r^{2} \ell(y)=2$ and $r(y)=1$. Then, the above equation holds with $\alpha_{1}=2$.

A consequence

Let $\Gamma=(X, R)$ be a graph. Fix $x \in X$ and consider the Terwilliger Algebra T of Γ with respect to x.

COROLLARY (TERWILLIGER, 1993)

If Γ is distance-regular around x then $T \hat{x}$ is thin.

Assume that Γ is distance-regular around x.

For every integer $i(0 \leq i \leq d)$ and $y \in \Gamma_{i}(x)$, we have

$$
r^{i}(y)=\prod_{j=1}^{i} c_{j}(x)
$$

Assume that Γ is distance-regular around x.

For every integer $i(0 \leq i \leq d)$ and $y \in \Gamma_{i}(x)$, we have

$$
r^{i+1} \ell(y)=b_{i}(x) c_{i+1}(x) \prod_{j=1}^{i} c_{j}(x)
$$

Assume that Γ is distance-regular around x.

For every integer $i(0 \leq i \leq d)$ and $y \in \Gamma_{i}(x)$, we have

$$
r^{i} f(y)=a_{i}(x) \prod_{j=1}^{i} c_{j}(x)
$$

Then, for every $y \in \Gamma_{i}(x)(0 \leq i \leq d)$ we have:

$$
r^{i}(y)=\prod_{j=1}^{i} c_{j}(x)
$$

$$
r^{i+1} \ell(y)=b_{i}(x) c_{i+1}(x) \prod_{j=1}^{i} c_{j}(x)=b_{i}(x) c_{i+1}(x) r^{i}(y)
$$

$$
r^{i} f(y)=a_{i}(x) \prod_{j=1}^{i} c_{j}(x)=a_{i}(x) r^{i}(y)
$$

Therefore, for every $y \in \Gamma_{i}(x)$ we have that $r^{i+1} \ell(y)=\alpha_{i} r^{i}(y)$ and $r^{i} f(y)=\beta_{i} r^{i}(y)$ with $\alpha_{i}=b_{i}(x) c_{i+1}(x)$ and $\beta_{i}=a_{i}(x)$. By Theorem 1, the trivial T-module $T \hat{x}$ is thin.

A construction

$\tau h\left\{a_{n_{k}}\right\}$ y $\circ \cup!$
Thank You!

