Extensions of Steiner loops

Mario Galici

University of Palermo

Joint work with: G. Falcone, A. Figula, G. Filippone

Rijeka Conference on Combinatorial Objects and Their Applications

July 3 – 7, 2023

Rijeka, Croatia

A Steiner triple system is a pair $(\mathcal{S}, \mathcal{T})$, where

- \mathcal{S} is a set,
- \mathcal{T} is a family of **triples** of \mathcal{S} such that any two points of \mathcal{S} are contained in exactly one triple of \mathcal{T} .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣

A **loop** is a set \mathcal{L} equipped with a binary operation + with an identity element Ω such that

$$a + x = b, \tag{1}$$

$$y + a = b, (2)$$

have unique solutions x and y.

A **loop** is a set \mathcal{L} equipped with a binary operation + with an identity element Ω such that

$$a + x = b, \tag{1}$$

$$y + a = b, (2)$$

have unique solutions x and y.

If \mathcal{L} is commutative, $\mathcal{L}' \subseteq \mathcal{L}$ is **normal** if and only if

$$x + (y + \mathcal{L}') = (x + y) + \mathcal{L}', \quad \forall \ x, y \in \mathcal{L}.$$
(3)

Steiner loops of projective type

Mario Galici

Let $\mathcal{L}_{\mathcal{S}} := \mathcal{S} \cup \{\Omega\}.$ Defining:

$$x + \Omega = \Omega + x = x, \tag{4}$$

$$x + x = \Omega, \tag{5}$$

$$x + y = z \iff \{x, y, z\}$$
 is a triple, (6)

 $\mathcal{L}_{\mathcal{S}}$ is a loop with identity Ω called a **Steiner loop (of projective type)**.

Let $\mathcal{L}_{\mathcal{S}} := \mathcal{S} \cup \{\Omega\}.$ Defining:

$$x + \Omega = \Omega + x = x, \tag{4}$$

$$x + x = \Omega, \tag{5}$$

$$x + y = z \iff \{x, y, z\}$$
 is a triple, (6)

 $\mathcal{L}_{\mathcal{S}}$ is a loop with identity Ω called a **Steiner loop (of projective type)**.

$$\mathcal{L}_{\mathcal{S}}$$
 is a group $\iff \mathcal{S}$ is $\mathrm{PG}(d, 2)$.

 $\mathcal{L}_{\mathcal{S}}$ is a commutative loop of exponent 2 with the **totally simmetric property:**

$$(x+y) + y = x \quad \forall \ x, y \in \mathcal{L}_{\mathcal{S}}.$$
(7)

$\mathcal{L}_{\mathcal{S}}$ is a commutative loop of exponent 2 with the **totally simmetric** property:

$$(x+y) + y = x \quad \forall \ x, y \in \mathcal{L}_{\mathcal{S}}.$$
(7)

Theorem

- Suloops of $\mathcal{L}_{\mathcal{S}}$ are Steiner loops.
- Quotients $\mathcal{L}_{\mathcal{S}}/\mathcal{L}_{\mathcal{N}}$ are Steiner loops $\mathcal{L}_{\mathcal{Q}}$.

$\mathcal{L}_{\mathcal{S}}$ is a commutative loop of exponent 2 with the **totally simmetric property:**

$$(x+y) + y = x \quad \forall \ x, y \in \mathcal{L}_{\mathcal{S}}.$$
(7)

Theorem

- Suloops of $\mathcal{L}_{\mathcal{S}}$ are Steiner loops.
- Quotients $\mathcal{L}_{\mathcal{S}}/\mathcal{L}_{\mathcal{N}}$ are Steiner loops $\mathcal{L}_{\mathcal{Q}}$.

We say that \mathcal{N} is a normal subsystem and \mathcal{Q} is the corresponding quotient system.

Mario Galici

æ

Definition

Let $\mathcal{L}_{\mathcal{N}} = \mathcal{N} \cup \{\Omega'\}$ and $\mathcal{L}_{\mathcal{Q}} = \mathcal{Q} \cup \{\overline{\Omega}\}$. An operator

$$\begin{split} \Phi : \mathcal{L}_{\mathcal{Q}} \times \mathcal{L}_{\mathcal{Q}} &\longrightarrow \operatorname{Sq}(\mathcal{L}_{\mathcal{N}}) \\ (P, Q) &\longmapsto \Phi_{P, Q} \end{split}$$

is called a **Steiner operator** if it fulfills:

Definition

Let $\mathcal{L}_{\mathcal{N}} = \mathcal{N} \cup \{\Omega'\}$ and $\mathcal{L}_{\mathcal{Q}} = \mathcal{Q} \cup \{\overline{\Omega}\}$. An operator

$$\begin{split} \Phi : \mathcal{L}_{\mathcal{Q}} \times \mathcal{L}_{\mathcal{Q}} &\longrightarrow \operatorname{Sq}(\mathcal{L}_{\mathcal{N}}) \\ (P, Q) &\longmapsto \Phi_{P, Q} \end{split}$$

is called a **Steiner operator** if it fulfills:

i) the Latin square $\Phi_{\bar{\Omega},\bar{\Omega}}$ is the addition table of $\mathcal{L}_{\mathcal{N}}$;

Definition

Let $\mathcal{L}_{\mathcal{N}} = \mathcal{N} \cup \{\Omega'\}$ and $\mathcal{L}_{\mathcal{Q}} = \mathcal{Q} \cup \{\overline{\Omega}\}$. An operator

$$\begin{split} \Phi : \mathcal{L}_{\mathcal{Q}} \times \mathcal{L}_{\mathcal{Q}} &\longrightarrow \operatorname{Sq}(\mathcal{L}_{\mathcal{N}}) \\ (P, Q) &\longmapsto \Phi_{P, Q} \end{split}$$

is called a **Steiner operator** if it fulfills:

- i) the Latin square $\Phi_{\overline{\Omega},\overline{\Omega}}$ is the addition table of $\mathcal{L}_{\mathcal{N}}$;
- ii) The diagonal elements of $\Phi_{P,P}$ are all Ω' ;

Definition

Let $\mathcal{L}_{\mathcal{N}} = \mathcal{N} \cup \{\Omega'\}$ and $\mathcal{L}_{\mathcal{Q}} = \mathcal{Q} \cup \{\Omega\}$. An operator

$$\begin{split} \Phi : \mathcal{L}_{\mathcal{Q}} \times \mathcal{L}_{\mathcal{Q}} &\longrightarrow \operatorname{Sq}(\mathcal{L}_{\mathcal{N}}) \\ (P, Q) &\longmapsto \Phi_{P, Q} \end{split}$$

is called a **Steiner operator** if it fulfills:

- i) the Latin square $\Phi_{\bar{\Omega},\bar{\Omega}}$ is the addition table of $\mathcal{L}_{\mathcal{N}}$;
- ii) The diagonal elements of $\Phi_{P,P}$ are all Ω' ;
- iii) $\Phi_{Q,P}$ is the transpose of $\Phi_{P,Q}$;

Definition

Let $\mathcal{L}_{\mathcal{N}} = \mathcal{N} \cup \{\Omega'\}$ and $\mathcal{L}_{\mathcal{Q}} = \mathcal{Q} \cup \{\Omega\}$. An operator

$$\begin{split} \Phi : \mathcal{L}_{\mathcal{Q}} \times \mathcal{L}_{\mathcal{Q}} &\longrightarrow \operatorname{Sq}(\mathcal{L}_{\mathcal{N}}) \\ (P, Q) &\longmapsto \Phi_{P, Q} \end{split}$$

is called a **Steiner operator** if it fulfills:

- i) the Latin square $\Phi_{\overline{\Omega},\overline{\Omega}}$ is the addition table of $\mathcal{L}_{\mathcal{N}}$;
- ii) The diagonal elements of $\Phi_{P,P}$ are all Ω' ;
- iii) $\Phi_{Q,P}$ is the transpose of $\Phi_{P,Q}$;
- iv) $\Phi_{P,P+Q}(x, \Phi_{P,Q}(x, y)) = y$

for all $P, Q \in \mathcal{L}_Q, x, y \in \mathcal{L}_N$.

·/26

If we define on $\mathcal{L}_{\mathcal{Q}} \times \mathcal{L}_{\mathcal{N}}$ the operation

$$(P,x) + (Q,y) = (P+Q, \Phi_{P,Q}(x,y)),$$
(8)

크 > 크

If we define on $\mathcal{L}_{\mathcal{Q}} \times \mathcal{L}_{\mathcal{N}}$ the operation

$$(P, x) + (Q, y) = \left(P + Q, \ \Phi_{P,Q}(x, y)\right), \tag{8}$$

then we obtain a Steiner loop of projective type $\mathcal{L}_\mathcal{S}$ such that

$$\Omega' \longrightarrow \mathcal{L}_{\mathcal{N}} \longrightarrow \mathcal{L}_{\mathcal{S}} \longrightarrow \mathcal{L}_{\mathcal{Q}} \longrightarrow \bar{\Omega}$$

$$(9)$$

is short and exact.

If we define on $\mathcal{L}_{\mathcal{Q}} \times \mathcal{L}_{\mathcal{N}}$ the operation

$$(P, x) + (Q, y) = \left(P + Q, \ \Phi_{P,Q}(x, y)\right), \tag{8}$$

then we obtain a Steiner loop of projective type $\mathcal{L}_{\mathcal{S}}$ such that

$$\Omega' \longrightarrow \mathcal{L}_{\mathcal{N}} \longrightarrow \mathcal{L}_{\mathcal{S}} \longrightarrow \mathcal{L}_{\mathcal{Q}} \longrightarrow \bar{\Omega}$$
(9)

is short and exact.

Conversely, any Steiner loop $\mathcal{L}_{\mathcal{S}}$ of projective type having a normal subloop $\mathcal{L}_{\mathcal{N}}$ and a factor loop $\mathcal{L}_{\mathcal{Q}} = \mathcal{L}_{\mathcal{S}}/\mathcal{L}_{\mathcal{N}}$, is isomorphic, for some given Steiner operator Φ , to the above one.

Veblen points

Mario Galici

æ

Veblen points

Definition

A point $x \in S$ is a **Veblen** point if whenever $\{x, a, b\}, \{x, c, d\}, \{t, a, c\}$ are triples in S, also $\{t, b, d\}$ is a triple in S.

An element $x \neq \Omega$ is a Veblen point $\iff x \in \mathcal{Z} \iff \{\Omega, x\} \trianglelefteq \mathcal{L}_{\mathcal{S}}.$

An element $x \neq \Omega$ is a Veblen point $\iff x \in \mathcal{Z} \iff \{\Omega, x\} \trianglelefteq \mathcal{L}_{\mathcal{S}}$.

Definition

The **center** (in our case) is defined as the normal subgroup

$$\mathcal{Z} = \left\{z \in \mathcal{L} \mid x + (y + z) = z + (x + y) = y + (z + x), \ \forall \ x, y \in \mathcal{L} \right\}.$$

An element $x \neq \Omega$ is a Veblen point $\iff x \in \mathcal{Z} \iff \{\Omega, x\} \trianglelefteq \mathcal{L}_{\mathcal{S}}$.

Definition

The **center** (in our case) is defined as the normal subgroup

$$\mathcal{Z} = \left\{ z \in \mathcal{L} \mid x + (y + z) = z + (x + y) = y + (z + x), \ \forall \ x, y \in \mathcal{L} \right\}.$$

Corollary

The set of all the Veblen points of S forms a subsystem of S that is a PG over GF(2).

Schreier Extensions

Mario Galici

Schreier Extensions

Definition

Let:

• N be a group with identity Ω ,

æ

Schreier Extensions

Definition

Let:

- N be a group with identity Ω ,
- K be a **loop** with identity $\overline{\Omega}$,

Let:

- N be a group with identity Ω ,
- K be a **loop** with identity $\overline{\Omega}$,
- T: $K \to \operatorname{Aut}(N)$ be a function with $\operatorname{T}(\overline{\Omega}) = \operatorname{Id}$,

Let:

- N be a **group** with identity Ω ,
- K be a **loop** with identity $\overline{\Omega}$,
- T: $K \to \operatorname{Aut}(N)$ be a function with $\operatorname{T}(\overline{\Omega}) = \operatorname{Id}$,
- $f: K \times K \to N$ such that $f(\bar{\Omega}, \tau) = f(\tau, \bar{\Omega}) = \Omega$.

Let:

- N be a group with identity Ω ,
- K be a **loop** with identity $\overline{\Omega}$,
- T: $K \to \operatorname{Aut}(N)$ be a function with $\operatorname{T}(\overline{\Omega}) = \operatorname{Id}$,
- $f \colon K \times K \to N$ such that $f(\bar{\Omega}, \tau) = f(\tau, \bar{\Omega}) = \Omega$.

The operation

$$(\tau, t) \oplus (\sigma, s) = (\tau + \sigma, f(\tau, \sigma) + t^{\mathrm{T}(\sigma)} + s)$$
(10)

on $K \times N$ defines a **loop** $L = L(\mathbf{T}, f)$ called *Schreier extension* of N by K, such that $\overline{N} = \{(\overline{\Omega}, n) \mid n \in N\} \simeq N$ is a normal subloop and $L/\overline{N} \simeq K$.

Let:

- N be a **group** with identity Ω ,
- K be a **loop** with identity $\overline{\Omega}$,
- T: $K \to \operatorname{Aut}(N)$ be a function with $\operatorname{T}(\overline{\Omega}) = \operatorname{Id}$,
- $f \colon K \times K \to N$ such that $f(\bar{\Omega}, \tau) = f(\tau, \bar{\Omega}) = \Omega$.

The operation

$$(\tau, t) \oplus (\sigma, s) = (\tau + \sigma, f(\tau, \sigma) + t^{\mathrm{T}(\sigma)} + s)$$
(10)

on $K \times N$ defines a **loop** $L = L(\mathbf{T}, f)$ called *Schreier extension* of N by K, such that $\overline{N} = \{(\overline{\Omega}, n) \mid n \in N\} \simeq N$ is a normal subloop and $L/\overline{N} \simeq K$. L is called **central extension** of N if \overline{N} is a central subgroup of L.

Remark

If $\mathcal{L}_{\mathcal{S}}$ is a Schreier extension of $\mathcal{L}_{\mathcal{N}}$ by $\mathcal{L}_{\mathcal{Q}}$, then:

Remark

If $\mathcal{L}_{\mathcal{S}}$ is a Schreier extension of $\mathcal{L}_{\mathcal{N}}$ by $\mathcal{L}_{\mathcal{Q}}$, then:

• $\mathcal{L}_{\mathcal{S}}$ is in fact a **central** extension;

Remark

If $\mathcal{L}_{\mathcal{S}}$ is a Schreier extension of $\mathcal{L}_{\mathcal{N}}$ by $\mathcal{L}_{\mathcal{Q}}$, then:

- $\mathcal{L}_{\mathcal{S}}$ is in fact a **central** extension;
- f is symmetric;

Remark

If $\mathcal{L}_{\mathcal{S}}$ is a Schreier extension of $\mathcal{L}_{\mathcal{N}}$ by $\mathcal{L}_{\mathcal{Q}}$, then:

- $\mathcal{L}_{\mathcal{S}}$ is in fact a **central** extension;
- f is symmetric;
- f is constant on the triples of S, that is:

if $\{P, Q, R\}$ is a triple $\implies f(P, Q) = f(P, R) = f(Q, R)$.

Remark

If $\mathcal{L}_{\mathcal{S}}$ is a Schreier extension of $\mathcal{L}_{\mathcal{N}}$ by $\mathcal{L}_{\mathcal{Q}}$, then:

- $\mathcal{L}_{\mathcal{S}}$ is in fact a **central** extension;
- f is symmetric;
- f is constant on the triples of S, that is:

if $\{P, Q, R\}$ is a triple $\implies f(P, Q) = f(P, R) = f(Q, R)$.

The operation simply becomes

$$(P, x) + (Q, y) = (P + Q, x + y + f(P, Q))$$
(11)

The function f is called a **factor system**.

The set of all Schreier extensions of $\mathcal{L}_{\mathcal{N}}$ by $\mathcal{L}_{\mathcal{Q}}$ is a group denoted by

 $\mathrm{Ext}_{\mathrm{S}}(\mathcal{L}_{\mathcal{N}},\mathcal{L}_{\mathcal{Q}}).$

The function f is called a **factor system**.

The set of all Schreier extensions of $\mathcal{L}_{\mathcal{N}}$ by $\mathcal{L}_{\mathcal{Q}}$ is a group denoted by

 $\operatorname{Ext}_{S}(\mathcal{L}_{\mathcal{N}},\mathcal{L}_{\mathcal{Q}}).$

$$|\operatorname{Ext}_{\mathrm{S}}(\mathcal{L}_{\mathcal{N}}, \mathcal{L}_{\mathcal{Q}})| = |\mathcal{L}_{\mathcal{N}}|^{b} = 2^{tb},$$

where b is the number of blocks of Q.

There exists a STS(v) with (at least) $2^c - 1$ Veblen points if, and only if, $\frac{v+1}{2^c} \equiv 2,4 \pmod{6}$.

There exists a STS(v) with (at least) $2^c - 1$ Veblen points if, and only if, $\frac{v+1}{2^c} \equiv 2,4 \pmod{6}$.

List of the first 100 order of STS's which **cannot** have Veblen points:

9, 13, 21, 25, 33, 37, 45, 49, 57, 61, 69, 73, 81, 85, 93, 97, 105, 109, 117, 121, 129, 133, 141, 145, 153, 157, 165, 169, 177, 181, 189, 193, 201, 205, 213, 217, 225, 229, 237, 241, 249, 253, 261, 265, 273, 277, 285, 289, 297, 301, 309, 313, 321, 325, 333, 337, 345, 349, 357, 361, 369, 373, 381, 385, 393, 397, 405, 409, 417, 421, 429, 433, 441, 445, 453, 457, 465, 469, 477, 481, 489, 493, 501, 505, 513, 517, 525, 529, 537, 541, 549, 553, 561, 565, 573, 577, 585, 589, 597, 601.

"Small" cases

• The only STS(15) with Veblen points are PG(3, 2) and # 2.*

 "Small" cases

- The only STS(15) with Veblen points are PG(3, 2) and # 2.*
- And for STS of order 19, 27 31...?

^{*}Handbook of Combinatorial Designs, C. J. Colbourn, J. H. Dinitz E S S S S S C Mario Galici July 04 2023 15/26

Any Schreier extension $\mathcal{L}_{\mathcal{S}}$ of index at most 4 is a group.

Corollary

If a Steiner triple system S with cardinality $|S| < 2^d - 1$, d > 0, contains at least 2^{d-4} Veblen points, then it is a projective geometry.

Definition

Two Schreier extensions $\mathcal{L}_{\mathcal{S}}$ and $\mathcal{L}_{\mathcal{S}'}$ of $\mathcal{L}_{\mathcal{N}}$ by $\mathcal{L}_{\mathcal{Q}}$ are said:

Definition

Two Schreier extensions $\mathcal{L}_{\mathcal{S}}$ and $\mathcal{L}_{\mathcal{S}'}$ of $\mathcal{L}_{\mathcal{N}}$ by $\mathcal{L}_{\mathcal{Q}}$ are said:

• equivalent if there is an isomorphism $\mathcal{L}_{\mathcal{S}} \to \mathcal{L}_{\mathcal{S}'}$ which induces the identity both on $\mathcal{L}_{\mathcal{N}}$ and $\mathcal{L}_{\mathcal{Q}}$.

$$f_1 \equiv f_2. \tag{12}$$

Definition

Two Schreier extensions $\mathcal{L}_{\mathcal{S}}$ and $\mathcal{L}_{\mathcal{S}'}$ of $\mathcal{L}_{\mathcal{N}}$ by $\mathcal{L}_{\mathcal{Q}}$ are said:

• equivalent if there is an isomorphism $\mathcal{L}_{\mathcal{S}} \to \mathcal{L}_{\mathcal{S}'}$ which induces the identity both on $\mathcal{L}_{\mathcal{N}}$ and $\mathcal{L}_{\mathcal{Q}}$.

$$f_1 \equiv f_2. \tag{12}$$

• isomorphic if there is an isomorphism $\varphi : \mathcal{L}_{\mathcal{S}} \to \mathcal{L}_{\mathcal{S}'}$ such that

$$\varphi(\mathcal{L}_{\mathcal{N}}) = \mathcal{L}_{\mathcal{N}} \text{ and } \varphi(\mathcal{L}_{\mathcal{Q}}) = \mathcal{L}_{\mathcal{Q}}.$$

Equivalent Schreier extensions

Remark

 $f_1, f_2 \in \operatorname{Ext}_{\mathrm{S}}(\mathcal{L}_{\mathcal{N}}, \mathcal{L}_{\mathcal{Q}})$ are equivalent $\iff f_1 - f_2 = \delta^1 \varphi$, for a suitable function φ .

The equivalence is given by

$$(P, x) \mapsto (P, x + \varphi(P)).$$
 (13)

Remark

The number of non-equivalent Schreier extensions is

$$\frac{2^{tb}}{|\mathbf{B}^2(\mathcal{L}_\mathcal{N},\mathcal{L}_\mathcal{Q})|},$$

where

$$B^{2}(\mathcal{L}_{\mathcal{N}},\mathcal{L}_{\mathcal{Q}}):=\{\delta^{1}\varphi\in Ext_{S}(\mathcal{L}_{\mathcal{N}},\mathcal{L}_{\mathcal{Q}})\mid \varphi\colon \mathcal{L}_{\mathcal{Q}}\to \mathcal{L}_{\mathcal{N}}\}.$$

Mario Galici

18/26

Action of $\operatorname{Aut}(\mathcal{L}_{\mathcal{N}})$ and $\operatorname{Aut}(\mathcal{L}_{\mathcal{Q}})$ on $\operatorname{Ext}_{S}(\mathcal{L}_{\mathcal{N}}, \mathcal{L}_{\mathcal{Q}})$.

Proposition

 $f_1, f_2 \in \operatorname{Ext}_{\mathrm{S}}(\mathcal{L}_{\mathcal{N}}, \mathcal{L}_{\mathcal{Q}})$ are isomorphic $\iff \alpha f_1 = f_2 \beta$ (up to an equivalence), for some $\alpha \in \operatorname{Aut}(\mathcal{L}_{\mathcal{N}}), \beta \in \operatorname{Aut}(\mathcal{L}_{\mathcal{Q}}).$

Action of $\operatorname{Aut}(\mathcal{L}_{\mathcal{N}})$ and $\operatorname{Aut}(\mathcal{L}_{\mathcal{Q}})$ on $\operatorname{Ext}_{S}(\mathcal{L}_{\mathcal{N}}, \mathcal{L}_{\mathcal{Q}})$.

Proposition

 $f_1, f_2 \in \operatorname{Ext}_{\mathrm{S}}(\mathcal{L}_{\mathcal{N}}, \mathcal{L}_{\mathcal{Q}})$ are isomorphic $\iff \alpha f_1 = f_2 \beta$ (up to an equivalence), for some $\alpha \in \operatorname{Aut}(\mathcal{L}_{\mathcal{N}}), \beta \in \operatorname{Aut}(\mathcal{L}_{\mathcal{Q}}).$

Remark

We have an action of the group $\operatorname{Aut}(\mathcal{L}_{\mathcal{N}}) \times \operatorname{Aut}(\mathcal{L}_{\mathcal{Q}})$ on the set of non-equivalent extensions

$$(\alpha,\beta)(f) = \alpha^{-1} f\beta, \qquad (14)$$

whose orbits are the isomorphism classes of all the factor systems.

Among the 11084874829 non-isomotphic STS(19), there are only 3 Steiner triple systems with one Veblen point.

• \mathcal{S} be a STS(19) with a Veblen point;

•
$$\Omega' \longrightarrow \mathcal{L}_{\mathcal{N}} \longrightarrow \mathcal{L}_{\mathcal{S}} \longrightarrow \mathcal{L}_{\mathcal{Q}} \longrightarrow \overline{\Omega}$$

with $|\mathcal{L}_{\mathcal{N}}| = 2$ and $\mathcal{Q} = STS(9)$.

•
$$|\operatorname{Ext}_S(\mathcal{L}_N, \mathcal{L}_Q)| = 2^{12} = 4096$$

- The number of non-equivalent extension is $\frac{|\operatorname{Ext}_{\mathcal{S}}(\mathcal{L}_{\mathcal{N}},\mathcal{L}_{\mathcal{Q}})|}{|\operatorname{B}^{2}(\mathcal{L}_{\mathcal{N}},\mathcal{L}_{\mathcal{Q}})|} = 8.$
- We computed the 8 non-equivalent factor system and denote them with f_0, f_1, \ldots, f_7 , where f_0 is the trivial one.
- $\operatorname{Aut}(\mathcal{L}_{\mathcal{N}}) = {\operatorname{id}} \text{ and } |\operatorname{Aut}(\mathcal{L}_{\mathcal{Q}})| = 432.$
- We computed $\operatorname{Aut}(\mathcal{L}_{\mathcal{Q}})$ and we found out the orbits.

Non-trivial orbit $\{f_1, f_2, f_4, f_7\}$

Non-trivial orbit $\{f_3, f_5, f_6\}$

There are 1736 non-isomotphic STS(27) containing one Veblen point.

- 1504: \mathcal{Q} is the non-cyclic STS(13);
- 232: Q is the cyclic STS(13).

Number of some non-isomorphic STS(31) with one Veblen point and corresponding quotient STS Q:

\mathcal{Q}	Count
PG(3,2)	1240
STS(15)#2	48080
STS(15)#3	47744
STS(15)#7	16520
STS(15)#61	99952
STS(15)#80	17888

2

Number of some non-isomorphic STS(31) with one Veblen point and corresponding quotient STS Q:

\mathcal{Q}	Count
PG(3,2)	1240
STS(15)#2	48080
STS(15)#3	47744
STS(15)#7	16520
STS(15)#61	99952
STS(15)#80	17888

Theorem

There are only 3 non isomorphic STS(31) containing precisely 3 Veblen points.

Mario Galici

25/26

Thank you for your attention

Hvala

Mario Galici

July 04 2023 26 / 26