Extensions of Steiner loops

Mario Galici

University of Palermo

Joint work with: G. Falcone, A. Figula, G. Filippone

Rijeka Conference on Combinatorial Objects and Their Applications
July 3 - 7, 2023
Rijeka, Croatia

Steiner triple systems

Definition

A Steiner triple system is a pair $(\mathcal{S}, \mathcal{T})$, where

- \mathcal{S} is a set,
- \mathcal{T} is a family of triples of \mathcal{S} such that any two points of \mathcal{S} are contained in exactly one triple of \mathcal{T}.

Loops

Loops

Definition

A loop is a set \mathcal{L} equipped with a binary operation + with an identity element Ω such that

$$
\begin{align*}
& a+x=b \tag{1}\\
& y+a=b \tag{2}
\end{align*}
$$

have unique solutions x and y.

Loops

Definition

A loop is a set \mathcal{L} equipped with a binary operation + with an identity element Ω such that

$$
\begin{align*}
& a+x=b \tag{1}\\
& y+a=b \tag{2}
\end{align*}
$$

have unique solutions x and y.

If \mathcal{L} is commutative, $\mathcal{L}^{\prime} \subseteq \mathcal{L}$ is normal if and only if

$$
\begin{equation*}
x+\left(y+\mathcal{L}^{\prime}\right)=(x+y)+\mathcal{L}^{\prime}, \quad \forall x, y \in \mathcal{L} \tag{3}
\end{equation*}
$$

Steiner loops of projective type

Steiner loops of projective type

Definition

Let $\mathcal{L}_{\mathcal{S}}:=\mathcal{S} \cup\{\Omega\}$.
Defining:

$$
\begin{gather*}
x+\Omega=\Omega+x=x, \tag{4}\\
x+x=\Omega, \tag{5}\\
x+y=z \Longleftrightarrow\{x, y, z\} \text { is a triple, } \tag{6}
\end{gather*}
$$

$\mathcal{L}_{\mathcal{S}}$ is a loop with identity Ω called a Steiner loop (of projective type).

Steiner loops of projective type

Definition

Let $\mathcal{L}_{\mathcal{S}}:=\mathcal{S} \cup\{\Omega\}$.
Defining:

$$
\begin{gather*}
x+\Omega=\Omega+x=x \tag{4}\\
x+x=\Omega \tag{5}\\
x+y=z \Longleftrightarrow\{x, y, z\} \text { is a triple } \tag{6}
\end{gather*}
$$

$\mathcal{L}_{\mathcal{S}}$ is a loop with identity Ω called a Steiner loop (of projective type).

$$
\mathcal{L}_{\mathcal{S}} \text { is a group } \Longleftrightarrow \mathcal{S} \text { is } \operatorname{PG}(d, 2) .
$$

Properties

$\mathcal{L}_{\mathcal{S}}$ is a commutative loop of exponent 2 with the totally simmetric property:

$$
\begin{equation*}
(x+y)+y=x \quad \forall x, y \in \mathcal{L}_{\mathcal{S}} . \tag{7}
\end{equation*}
$$

Properties

$\mathcal{L}_{\mathcal{S}}$ is a commutative loop of exponent 2 with the totally simmetric property:

$$
\begin{equation*}
(x+y)+y=x \quad \forall x, y \in \mathcal{L}_{\mathcal{S}} . \tag{7}
\end{equation*}
$$

Theorem

- Suloops of $\mathcal{L}_{\mathcal{S}}$ are Steiner loops.
- Quotients $\mathcal{L}_{\mathcal{S}} / \mathcal{L}_{\mathcal{N}}$ are $\operatorname{Steiner}$ loops $\mathcal{L}_{\mathcal{Q}}$.

Properties

$\mathcal{L}_{\mathcal{S}}$ is a commutative loop of exponent 2 with the totally simmetric property:

$$
\begin{equation*}
(x+y)+y=x \quad \forall x, y \in \mathcal{L}_{\mathcal{S}} . \tag{7}
\end{equation*}
$$

Theorem

- Suloops of $\mathcal{L}_{\mathcal{S}}$ are Steiner loops.
- Quotients $\mathcal{L}_{\mathcal{S}} / \mathcal{L}_{\mathcal{N}}$ are Steiner loops $\mathcal{L}_{\mathcal{Q}}$.

We say that \mathcal{N} is a normal subsystem and \mathcal{Q} is the corresponding quotient system.

Steiner operators

Steiner operators

Definition

Let $\mathcal{L}_{\mathcal{N}}=\mathcal{N} \cup\left\{\Omega^{\prime}\right\}$ and $\mathcal{L}_{\mathcal{Q}}=\mathcal{Q} \cup\{\bar{\Omega}\}$.
An operator

$$
\begin{aligned}
\Phi: \mathcal{L}_{\mathcal{Q}} \times \mathcal{L}_{\mathcal{Q}} & \longrightarrow \operatorname{Sq}\left(\mathcal{L}_{\mathcal{N}}\right) \\
(P, Q) & \longmapsto \Phi_{P, Q}
\end{aligned}
$$

is called a Steiner operator if it fulfills:

Steiner operators

Definition

Let $\mathcal{L}_{\mathcal{N}}=\mathcal{N} \cup\left\{\Omega^{\prime}\right\}$ and $\mathcal{L}_{\mathcal{Q}}=\mathcal{Q} \cup\{\bar{\Omega}\}$.
An operator

$$
\begin{aligned}
\Phi: \mathcal{L}_{\mathcal{Q}} \times \mathcal{L}_{\mathcal{Q}} & \longrightarrow \operatorname{Sq}\left(\mathcal{L}_{\mathcal{N}}\right) \\
(P, Q) & \longmapsto \Phi_{P, Q}
\end{aligned}
$$

is called a Steiner operator if it fulfills:
i) the Latin square $\Phi_{\bar{\Omega}, \bar{\Omega}}$ is the addition table of $\mathcal{L}_{\mathcal{N}}$;

Steiner operators

Definition

Let $\mathcal{L}_{\mathcal{N}}=\mathcal{N} \cup\left\{\Omega^{\prime}\right\}$ and $\mathcal{L}_{\mathcal{Q}}=\mathcal{Q} \cup\{\bar{\Omega}\}$.
An operator

$$
\begin{aligned}
\Phi: \mathcal{L}_{\mathcal{Q}} \times \mathcal{L}_{\mathcal{Q}} & \longrightarrow \operatorname{Sq}\left(\mathcal{L}_{\mathcal{N}}\right) \\
(P, Q) & \longmapsto \Phi_{P, Q}
\end{aligned}
$$

is called a Steiner operator if it fulfills:
i) the Latin square $\Phi_{\bar{\Omega}, \bar{\Omega}}$ is the addition table of $\mathcal{L}_{\mathcal{N}}$;
ii) The diagonal elements of $\Phi_{P, P}$ are all Ω^{\prime};

Steiner operators

Definition

Let $\mathcal{L}_{\mathcal{N}}=\mathcal{N} \cup\left\{\Omega^{\prime}\right\}$ and $\mathcal{L}_{\mathcal{Q}}=\mathcal{Q} \cup\{\bar{\Omega}\}$.
An operator

$$
\begin{aligned}
\Phi: \mathcal{L}_{\mathcal{Q}} \times \mathcal{L}_{\mathcal{Q}} & \longrightarrow \operatorname{Sq}\left(\mathcal{L}_{\mathcal{N}}\right) \\
(P, Q) & \longmapsto \Phi_{P, Q}
\end{aligned}
$$

is called a Steiner operator if it fulfills:
i) the Latin square $\Phi_{\bar{\Omega}, \bar{\Omega}}$ is the addition table of $\mathcal{L}_{\mathcal{N}}$;
ii) The diagonal elements of $\Phi_{P, P}$ are all Ω^{\prime};
iii) $\Phi_{Q, P}$ is the transpose of $\Phi_{P, Q}$;

Steiner operators

Definition

Let $\mathcal{L}_{\mathcal{N}}=\mathcal{N} \cup\left\{\Omega^{\prime}\right\}$ and $\mathcal{L}_{\mathcal{Q}}=\mathcal{Q} \cup\{\bar{\Omega}\}$.
An operator

$$
\begin{aligned}
\Phi: \mathcal{L}_{\mathcal{Q}} \times \mathcal{L}_{\mathcal{Q}} & \longrightarrow \operatorname{Sq}\left(\mathcal{L}_{\mathcal{N}}\right) \\
(P, Q) & \longmapsto \Phi_{P, Q}
\end{aligned}
$$

is called a Steiner operator if it fulfills:
i) the Latin square $\Phi_{\bar{\Omega}, \bar{\Omega}}$ is the addition table of $\mathcal{L}_{\mathcal{N}}$;
ii) The diagonal elements of $\Phi_{P, P}$ are all Ω^{\prime};
iii) $\Phi_{Q, P}$ is the transpose of $\Phi_{P, Q}$;
iv) $\Phi_{P, P+Q}\left(x, \Phi_{P, Q}(x, y)\right)=y$
for all $P, Q \in \mathcal{L}_{\mathcal{Q}}, x, y \in \mathcal{L}_{\mathcal{N}}$.

Steiner operators

Extensions

Theorem

If we define on $\mathcal{L}_{\mathcal{Q}} \times \mathcal{L}_{\mathcal{N}}$ the operation

$$
\begin{equation*}
(P, x)+(Q, y)=\left(P+Q, \Phi_{P, Q}(x, y)\right), \tag{8}
\end{equation*}
$$

Extensions

Theorem

If we define on $\mathcal{L}_{\mathcal{Q}} \times \mathcal{L}_{\mathcal{N}}$ the operation

$$
\begin{equation*}
(P, x)+(Q, y)=\left(P+Q, \Phi_{P, Q}(x, y)\right) \tag{8}
\end{equation*}
$$

then we obtain a Steiner loop of projective type $\mathcal{L}_{\mathcal{S}}$ such that

$$
\begin{equation*}
\Omega^{\prime} \longrightarrow \mathcal{L}_{\mathcal{N}} \longrightarrow \mathcal{L}_{\mathcal{S}} \longrightarrow \mathcal{L}_{\mathcal{Q}} \longrightarrow \bar{\Omega} \tag{9}
\end{equation*}
$$

is short and exact.

Extensions

Theorem

If we define on $\mathcal{L}_{\mathcal{Q}} \times \mathcal{L}_{\mathcal{N}}$ the operation

$$
\begin{equation*}
(P, x)+(Q, y)=\left(P+Q, \Phi_{P, Q}(x, y)\right) \tag{8}
\end{equation*}
$$

then we obtain a Steiner loop of projective type $\mathcal{L}_{\mathcal{S}}$ such that

$$
\begin{equation*}
\Omega^{\prime} \longrightarrow \mathcal{L}_{\mathcal{N}} \longrightarrow \mathcal{L}_{\mathcal{S}} \longrightarrow \mathcal{L}_{\mathcal{Q}} \longrightarrow \bar{\Omega} \tag{9}
\end{equation*}
$$

is short and exact.
Conversely, any Steiner loop $\mathcal{L}_{\mathcal{S}}$ of projective type having a normal subloop $\mathcal{L}_{\mathcal{N}}$ and a factor loop $\mathcal{L}_{\mathcal{Q}}=\mathcal{L}_{\mathcal{S}} / \mathcal{L}_{\mathcal{N}}$, is isomorphic, for some given Steiner operator Φ, to the above one.

Veblen points

Veblen points

Definition

A point $x \in \mathcal{S}$ is a Veblen point if whenever $\{x, a, b\},\{x, c, d\},\{t, a, c\}$ are triples in \mathcal{S}, also $\{t, b, d\}$ is a triple in \mathcal{S}.

Center and Veblen points

Theorem

An element $x \neq \Omega$ is a Veblen point $\Longleftrightarrow x \in \mathcal{Z} \Longleftrightarrow\{\Omega, x\} \unlhd \mathcal{L}_{\mathcal{S}}$.

Center and Veblen points

Theorem

An element $x \neq \Omega$ is a Veblen point $\Longleftrightarrow x \in \mathcal{Z} \Longleftrightarrow\{\Omega, x\} \unlhd \mathcal{L}_{\mathcal{S}}$.

Definition

The center (in our case) is defined as the normal subgroup

$$
\mathcal{Z}=\{z \in \mathcal{L} \mid x+(y+z)=z+(x+y)=y+(z+x), \forall x, y \in \mathcal{L}\}
$$

Center and Veblen points

Theorem

An element $x \neq \Omega$ is a Veblen point $\Longleftrightarrow x \in \mathcal{Z} \Longleftrightarrow\{\Omega, x\} \unlhd \mathcal{L}_{\mathcal{S}}$.

Definition

The center (in our case) is defined as the normal subgroup

$$
\mathcal{Z}=\{z \in \mathcal{L} \mid x+(y+z)=z+(x+y)=y+(z+x), \forall x, y \in \mathcal{L}\}
$$

Corollary

The set of all the Veblen points of \mathcal{S} forms a subsystem of \mathcal{S} that is a PG over GF(2).

Schreier Extensions

Schreier Extensions

Definition

Let:

- N be a group with identity Ω,

Schreier Extensions

Definition

Let:

- N be a group with identity Ω,
- K be a loop with identity $\bar{\Omega}$,

Schreier Extensions

Definition

Let:

- N be a group with identity Ω,
- K be a loop with identity $\bar{\Omega}$,
- T: $K \rightarrow \operatorname{Aut}(N)$ be a function with $\mathrm{T}(\bar{\Omega})=\mathrm{Id}$,

Schreier Extensions

Definition

Let:

- N be a group with identity Ω,
- K be a loop with identity $\bar{\Omega}$,
- $\mathrm{T}: K \rightarrow \operatorname{Aut}(N)$ be a function with $\mathrm{T}(\bar{\Omega})=\mathrm{Id}$,
- $f: K \times K \rightarrow N$ such that $f(\bar{\Omega}, \tau)=f(\tau, \bar{\Omega})=\Omega$.

Schreier Extensions

Definition

Let:

- N be a group with identity Ω,
- K be a loop with identity $\bar{\Omega}$,
- $\mathrm{T}: K \rightarrow \operatorname{Aut}(N)$ be a function with $\mathrm{T}(\bar{\Omega})=\mathrm{Id}$,
- $f: K \times K \rightarrow N$ such that $f(\bar{\Omega}, \tau)=f(\tau, \bar{\Omega})=\Omega$.

The operation

$$
\begin{equation*}
(\tau, t) \oplus(\sigma, s)=\left(\tau+\sigma, f(\tau, \sigma)+t^{\mathrm{T}(\sigma)}+s\right) \tag{10}
\end{equation*}
$$

on $K \times N$ defines a loop $L=L(\mathrm{~T}, f)$ called Schreier extension of N by K, such that $\bar{N}=\{(\bar{\Omega}, n) \mid n \in N\} \simeq N$ is a normal subloop and $L / \bar{N} \simeq K$.

Schreier Extensions

Definition

Let:

- N be a group with identity Ω,
- K be a loop with identity $\bar{\Omega}$,
- $\mathrm{T}: K \rightarrow \operatorname{Aut}(N)$ be a function with $\mathrm{T}(\bar{\Omega})=\mathrm{Id}$,
- $f: K \times K \rightarrow N$ such that $f(\bar{\Omega}, \tau)=f(\tau, \bar{\Omega})=\Omega$.

The operation

$$
\begin{equation*}
(\tau, t) \oplus(\sigma, s)=\left(\tau+\sigma, f(\tau, \sigma)+t^{\mathrm{T}(\sigma)}+s\right) \tag{10}
\end{equation*}
$$

on $K \times N$ defines a loop $L=L(\mathrm{~T}, f)$ called Schreier extension of N by K, such that $\bar{N}=\{(\bar{\Omega}, n) \mid n \in N\} \simeq N$ is a normal subloop and $L / \bar{N} \simeq K . L$ is called central extension of N if \bar{N} is a central subgroup of L.

Schreier Extensions of Steiner loops

Remark

If $\mathcal{L}_{\mathcal{S}}$ is a Schreier extension of $\mathcal{L}_{\mathcal{N}}$ by $\mathcal{L}_{\mathcal{Q}}$, then:

Schreier Extensions of Steiner loops

Remark

If $\mathcal{L}_{\mathcal{S}}$ is a Schreier extension of $\mathcal{L}_{\mathcal{N}}$ by $\mathcal{L}_{\mathcal{Q}}$, then:

- $\mathcal{L}_{\mathcal{S}}$ is in fact a central extension;

Schreier Extensions of Steiner loops

Remark

If $\mathcal{L}_{\mathcal{S}}$ is a Schreier extension of $\mathcal{L}_{\mathcal{N}}$ by $\mathcal{L}_{\mathcal{Q}}$, then:

- $\mathcal{L}_{\mathcal{S}}$ is in fact a central extension;
- f is symmetric;

Schreier Extensions of Steiner loops

Remark

If $\mathcal{L}_{\mathcal{S}}$ is a Schreier extension of $\mathcal{L}_{\mathcal{N}}$ by $\mathcal{L}_{\mathcal{Q}}$, then:

- $\mathcal{L}_{\mathcal{S}}$ is in fact a central extension;
- f is symmetric;
- f is constant on the triples of \mathcal{S}, that is:

$$
\text { if }\{P, Q, R\} \text { is a triple } \Longrightarrow f(P, Q)=f(P, R)=f(Q, R) .
$$

Schreier Extensions of Steiner loops

Remark

If $\mathcal{L}_{\mathcal{S}}$ is a Schreier extension of $\mathcal{L}_{\mathcal{N}}$ by $\mathcal{L}_{\mathcal{Q}}$, then:

- $\mathcal{L}_{\mathcal{S}}$ is in fact a central extension;
- f is symmetric;
- f is constant on the triples of \mathcal{S}, that is:

$$
\text { if }\{P, Q, R\} \text { is a triple } \Longrightarrow f(P, Q)=f(P, R)=f(Q, R) .
$$

The operation simply becomes

$$
\begin{equation*}
(P, x)+(Q, y)=(P+Q, x+y+f(P, Q)) \tag{11}
\end{equation*}
$$

Schreier extensions

The function f is called a factor system.
The set of all Schreier extensions of $\mathcal{L}_{\mathcal{N}}$ by $\mathcal{L}_{\mathcal{Q}}$ is a group denoted by

$$
\operatorname{Ext}_{\mathrm{S}}\left(\mathcal{L}_{\mathcal{N}}, \mathcal{L}_{\mathcal{Q}}\right)
$$

Schreier extensions

The function f is called a factor system.
The set of all Schreier extensions of $\mathcal{L}_{\mathcal{N}}$ by $\mathcal{L}_{\mathcal{Q}}$ is a group denoted by

$$
\operatorname{Ext}_{\mathrm{S}}\left(\mathcal{L}_{\mathcal{N}}, \mathcal{L}_{\mathcal{Q}}\right)
$$

$$
\left|\operatorname{Ext}_{\mathrm{S}}\left(\mathcal{L}_{\mathcal{N}}, \mathcal{L}_{\mathcal{Q}}\right)\right|=\left|\mathcal{L}_{\mathcal{N}}\right|^{b}=2^{t b}
$$

where b is the number of blocks of \mathcal{Q}.

STS with Veblen points

Theorem

There exists a $\operatorname{STS}(v)$ with (at least) $2^{c}-1$ Veblen points if, and only if, $\frac{v+1}{2^{c}} \equiv 2,4(\bmod 6)$.

STS with Veblen points

Theorem

There exists a $\operatorname{STS}(v)$ with (at least) $2^{c}-1$ Veblen points if, and only if, $\frac{v+1}{2^{c}} \equiv 2,4(\bmod 6)$.

List of the first 100 order of STS's which cannot have Veblen points: $9,13,21,25,33,37,45,49,57,61,69,73,81,85,93,97,105,109,117$, $121,129,133,141,145,153,157,165,169,177,181,189,193,201,205$, $213,217,225,229,237,241,249,253,261,265,273,277,285,289,297$, $301,309,313,321,325,333,337,345,349,357,361,369,373,381,385$, $393,397,405,409,417,421,429,433,441,445,453,457,465,469,477$, $481,489,493,501,505,513,517,525,529,537,541,549,553,561,565$, $573,577,585,589,597,601$.

STS with Veblen points

"Small" cases

- The only $\operatorname{STS}(15)$ with Veblen points are $\operatorname{PG}(3,2)$ and $\# 2$.*
*Handbook of Combinatorial Designs, C. J. Colbourn, J. H. Dinitz

STS with Veblen points

"Small" cases

- The only $\operatorname{STS}(15)$ with Veblen points are $\operatorname{PG}(3,2)$ and $\# 2 .{ }^{*}$
- And for STS of order 19, 27 31...?
*Handbook of Combinatorial Designs, C. J. Colbourn, J. H. Dinitz

Veblen points

Theorem

Any Schreier extension $\mathcal{L}_{\mathcal{S}}$ of index at most 4 is a group.

Corollary

If a Steiner triple system \mathcal{S} with cardinality $|\mathcal{S}|<2^{d}-1, d>0$, contains at least 2^{d-4} Veblen points, then it is a projective geometry.

Equivalent and isomorphic Schreier extensions

Definition

Two Schreier extensions $\mathcal{L}_{\mathcal{S}}$ and $\mathcal{L}_{\mathcal{S}^{\prime}}$ of $\mathcal{L}_{\mathcal{N}}$ by $\mathcal{L}_{\mathcal{Q}}$ are said:

Equivalent and isomorphic Schreier extensions

Definition

Two Schreier extensions $\mathcal{L}_{\mathcal{S}}$ and $\mathcal{L}_{\mathcal{S}^{\prime}}$ of $\mathcal{L}_{\mathcal{N}}$ by $\mathcal{L}_{\mathcal{Q}}$ are said:

- equivalent if there is an isomorphism $\mathcal{L}_{\mathcal{S}} \rightarrow \mathcal{L}_{\mathcal{S}^{\prime}}$ which induces the identity both on $\mathcal{L}_{\mathcal{N}}$ and $\mathcal{L}_{\mathcal{Q}}$.

$$
\begin{equation*}
f_{1} \equiv f_{2} \tag{12}
\end{equation*}
$$

Equivalent and isomorphic Schreier extensions

Definition

Two Schreier extensions $\mathcal{L}_{\mathcal{S}}$ and $\mathcal{L}_{\mathcal{S}^{\prime}}$ of $\mathcal{L}_{\mathcal{N}}$ by $\mathcal{L}_{\mathcal{Q}}$ are said:

- equivalent if there is an isomorphism $\mathcal{L}_{\mathcal{S}} \rightarrow \mathcal{L}_{\mathcal{S}^{\prime}}$ which induces the identity both on $\mathcal{L}_{\mathcal{N}}$ and $\mathcal{L}_{\mathcal{Q}}$.

$$
\begin{equation*}
f_{1} \equiv f_{2} \tag{12}
\end{equation*}
$$

- isomorphic if there is an isomorphism $\varphi: \mathcal{L}_{\mathcal{S}} \rightarrow \mathcal{L}_{\mathcal{S}^{\prime}}$ such that

$$
\varphi\left(\mathcal{L}_{\mathcal{N}}\right)=\mathcal{L}_{\mathcal{N}} \text { and } \varphi\left(\mathcal{L}_{\mathcal{Q}}\right)=\mathcal{L}_{\mathcal{Q}}
$$

Equivalent Schreier extensions

Remark

$f_{1}, f_{2} \in \operatorname{Ext}_{S}\left(\mathcal{L}_{\mathcal{N}}, \mathcal{L}_{\mathcal{Q}}\right)$ are equivalent $\Longleftrightarrow f_{1}-f_{2}=\delta^{1} \varphi$, for a suitable function φ.
The equivalence is given by

$$
\begin{equation*}
(P, x) \mapsto(P, x+\varphi(P)) \tag{13}
\end{equation*}
$$

Remark

The number of non-equivalent Schreier extensions is

$$
\frac{2^{t b}}{\left|\mathrm{~B}^{2}\left(\mathcal{L}_{\mathcal{N}}, \mathcal{L}_{\mathcal{Q}}\right)\right|}
$$

where

$$
\mathrm{B}^{2}\left(\mathcal{L}_{\mathcal{N}}, \mathcal{L}_{\mathcal{Q}}\right):=\left\{\delta^{1} \varphi \in \operatorname{Ext}_{\mathrm{S}}\left(\mathcal{L}_{\mathcal{N}}, \mathcal{L}_{\mathcal{Q}}\right) \mid \varphi: \mathcal{L}_{\mathcal{Q}} \rightarrow \mathcal{L}_{\mathcal{N}}\right\} .
$$

Action of $\operatorname{Aut}\left(\mathcal{L}_{\mathcal{N}}\right)$ and $\operatorname{Aut}\left(\mathcal{L}_{\mathcal{Q}}\right)$ on $\operatorname{Ext}\left(\mathcal{L}_{\mathcal{N}}, \mathcal{L}_{\mathcal{Q}}\right)$.

Proposition

$f_{1}, f_{2} \in \operatorname{Ext}_{\mathrm{S}}\left(\mathcal{L}_{\mathcal{N}}, \mathcal{L}_{\mathcal{Q}}\right)$ are isomorphic $\Longleftrightarrow \alpha f_{1}=f_{2} \beta$ (up to an equivalence), for some $\alpha \in \operatorname{Aut}\left(\mathcal{L}_{\mathcal{N}}\right), \beta \in \operatorname{Aut}\left(\mathcal{L}_{\mathcal{Q}}\right)$.

Action of $\operatorname{Aut}\left(\mathcal{L}_{\mathcal{N}}\right)$ and $\operatorname{Aut}\left(\mathcal{L}_{Q}\right)$ on $\operatorname{Exts}\left(\mathcal{L}_{\mathcal{N}}, \mathcal{L}_{\mathcal{Q}}\right)$.

Proposition

$f_{1}, f_{2} \in \operatorname{Ext}_{\mathrm{S}}\left(\mathcal{L}_{\mathcal{N}}, \mathcal{L}_{\mathcal{Q}}\right)$ are isomorphic $\Longleftrightarrow \alpha f_{1}=f_{2} \beta$ (up to an equivalence), for some $\alpha \in \operatorname{Aut}\left(\mathcal{L}_{\mathcal{N}}\right), \beta \in \operatorname{Aut}\left(\mathcal{L}_{\mathcal{Q}}\right)$.

Remark

We have an action of the $\operatorname{group} \operatorname{Aut}\left(\mathcal{L}_{\mathcal{N}}\right) \times \operatorname{Aut}\left(\mathcal{L}_{\mathcal{Q}}\right)$ on the set of non-equivalent extensions

$$
\begin{equation*}
(\alpha, \beta)(f)=\alpha^{-1} f \beta \tag{14}
\end{equation*}
$$

whose orbits are the isomorphism classes of all the factor systems.

Veblen points in a STS(19)

Theorem

Among the 11084874829 non-isomotphic STS(19), there are only 3 Steiner triple systems with one Veblen point.

Idea of proof

- \mathcal{S} be a $\operatorname{STS}(19)$ with a Veblen point;
- $\Omega^{\prime} \longrightarrow \mathcal{L}_{\mathcal{N}} \longrightarrow \mathcal{L}_{\mathcal{S}} \longrightarrow \mathcal{L}_{\mathcal{Q}} \longrightarrow \bar{\Omega}$ with $\left|\mathcal{L}_{\mathcal{N}}\right|=2$ and $\mathcal{Q}=\operatorname{STS}(9)$.
- $\left|\operatorname{Ext}_{S}\left(\mathcal{L}_{\mathcal{N}}, \mathcal{L}_{\mathcal{Q}}\right)\right|=2^{12}=4096$
- The number of non-equivalent extension is $\frac{\left|\operatorname{Ext}_{S}\left(\mathcal{L}_{\mathcal{N}}, \mathcal{L}_{\mathcal{Q}}\right)\right|}{\left|\mathrm{B}^{2}\left(\mathcal{L}_{\mathcal{N}}, \mathcal{L}_{\mathcal{Q}}\right)\right|}=8$.
- We computed the 8 non-equivalent factor system and denote them with $f_{0}, f_{1}, \ldots, f_{7}$, where f_{0} is the trivial one.
- $\operatorname{Aut}\left(\mathcal{L}_{\mathcal{N}}\right)=\{\mathrm{id}\}$ and $\left|\operatorname{Aut}\left(\mathcal{L}_{\mathcal{Q}}\right)\right|=432$.
- We computed $\operatorname{Aut}\left(\mathcal{L}_{\mathcal{Q}}\right)$ and we found out the orbits.

Non-trivial orbit $\left\{f_{1}, f_{2}, f_{4}, f_{7}\right\}$

(a) f_{1}

(c) f_{4}

(b) f_{2}

(d) f_{7}

Non-trivial orbit $\left\{f_{3}, f_{5}, f_{6}\right\}$

(g) f_{6}

STS(27)

Theorem

There are 1736 non-isomotphic $\operatorname{STS}(27)$ containing one Veblen point.

- 1504: \mathcal{Q} is the non-cyclic $\operatorname{STS}(13)$;
- 232: \mathcal{Q} is the cyclic $\operatorname{STS}(13)$.

STS(31)

Theorem

Number of some non-isomorphic $\operatorname{STS}(31)$ with one Veblen point and corresponding quotient STS \mathcal{Q} :

\mathcal{Q}	Count
PG(3, 2)	1240
STS(15)\#2	48080
STS(15)\#3	47744
STS(15) \#7	16520
STS(15)\#61	99952
STS(15) \#80	17888

STS(31)

Theorem

Number of some non-isomorphic STS(31) with one Veblen point and corresponding quotient STS \mathcal{Q} :

\mathcal{Q}	Count
PG(3, 2)	1240
$\operatorname{STS}(15) \# 2$	48080
STS(15) \#3	47744
$\operatorname{STS}(15) \# 7$	16520
STS(15) \#61	99952
STS(15) \#80	17888

Theorem

There are only 3 non isomorphic STS(31) containing precisely 3 Veblen points.

Thank you
 for your attention

Hvala

