On strongly regular graphs decomposable into a divisible design graph and a Hoffman coclique

Alexander Gavrilyuk

（joint work with Vladislav Kabanov）

兒枢大录

Shimane University，Japan

July 6， 2023

Motivation

(1) In 2022, Vladislav Kabanov described a construction of strongly regular graphs (SRGs) based on:

- a divisible design graph Δ with specific parameters,
- a coclique C,
- a symmetric design which defines how to join the vertices of C to the vertices of Δ.

Motivation

(1) In 2022, Vladislav Kabanov described a construction of strongly regular graphs (SRGs) based on:

- a divisible design graph Δ with specific parameters,
- a coclique C,
- a symmetric design which defines how to join the vertices of C to the vertices of Δ.
(2) In 2021, he described a prolific construction of divisible design graphs with the required parameters.

Motivation

(1) In 2022, Vladislav Kabanov described a construction of strongly regular graphs (SRGs) based on:

- a divisible design graph Δ with specific parameters,
- a coclique C,
- a symmetric design which defines how to join the vertices of C to the vertices of Δ.
(2) In 2021, he described a prolific construction of divisible design graphs with the required parameters.
- Thus, $(1)+(2)$ gives a prolific construction of SRGs

Motivation

(1) In 2022, Vladislav Kabanov described a construction of strongly regular graphs (SRGs) based on:

- a divisible design graph Δ with specific parameters,
- a coclique C,
- a symmetric design which defines how to join the vertices of C to the vertices of Δ.
(2) In 2021, he described a prolific construction of divisible design graphs with the required parameters.
- Thus, (1) + (2) gives a prolific construction of SRGs
- in which C turns out to be a Hoffman coclique.

Introduction

In this work, we go in the opposite direction.

- Suppose we have an SRG 「 that can be "decomposed" into a divisible design graph Δ and a Hoffman coclique. Then:

Introduction

In this work, we go in the opposite direction.

- Suppose we have an SRG 「 that can be "decomposed" into a divisible design graph Δ and a Hoffman coclique. Then:
(1) we show that the parameters of Δ should coincide (to some extent) with those required in the construction by Kabanov;

Introduction

In this work, we go in the opposite direction.

- Suppose we have an SRG 「 that can be "decomposed" into a divisible design graph Δ and a Hoffman coclique. Then:
(1) we show that the parameters of Δ should coincide (to some extent) with those required in the construction by Kabanov;
(2) however, these parameters do not determine the structure of Δ, which allows us to further slightly generalize the construction of SRGs.

Introduction

In this work, we go in the opposite direction.

- Suppose we have an SRG 「 that can be "decomposed" into a divisible design graph Δ and a Hoffman coclique. Then:
(1) we show that the parameters of Δ should coincide (to some extent) with those required in the construction by Kabanov;
(2) however, these parameters do not determine the structure of Δ, which allows us to further slightly generalize the construction of SRGs.
- To put these into a general context, I will start off with an overview of prolific constructions of SRGs.

Affine designs: a key ingredient in all recipes

An affine design $\mathcal{D}=(\mathcal{P}, \mathcal{B})$ with parameters q and r is a 2-design:

- \mathcal{P} is the set of points,
- \mathcal{B} is the set of blocks,

Affine designs: a key ingredient in all recipes

An affine design $\mathcal{D}=(\mathcal{P}, \mathcal{B})$ with parameters q and r is a 2-design:

- \mathcal{P} is the set of points,
- \mathcal{B} is the set of blocks,
- with the following two properties:
- every two blocks either are disjoint or intersect in r points;
- each block together with all blocks disjoint from it forms a parallel class, i.e., a set of q mutually disjoint blocks partitioning all points of the design.

Affine designs: a key ingredient in all recipes

An affine design $\mathcal{D}=(\mathcal{P}, \mathcal{B})$ with parameters q and r is a 2-design:

- \mathcal{P} is the set of points,
- \mathcal{B} is the set of blocks,
- with the following two properties:
- every two blocks either are disjoint or intersect in r points;
- each block together with all blocks disjoint from it forms a parallel class, i.e., a set of q mutually disjoint blocks partitioning all points of the design.
- All parameters of \mathcal{D} are expressed in terms of q and r :

$v:$	$q^{2} r$
$b:$	$q^{3} e+q^{2}+q$
$k:$	$q r$
$\lambda:$	$q e+1$
$m:$	$q^{2} e+q+1$

where $e=\frac{r-1}{q-1}$ is an integer.
the number of points the number of blocks the size of a block the number of blocks on any two points the number of parallel classes

Affine designs: examples

- an affine plane of order q (with $r=1$):
- \mathcal{P} : points,
- \mathcal{B} : lines.

Affine designs: examples

- an affine plane of order q (with $r=1$):
- \mathcal{P} : points,
- \mathcal{B} : lines.

- the d-dimensional affine space over \mathbb{F}_{q} (with $r=q^{d-2}$):
- \mathcal{P} : points,
- B: hyperplanes.
- Hadamard 3-designs (with $q=2$).

Wallis (1971): ingredients

- Take a 2-($V, B, R, K, \Lambda=1)($ Steiner $)$ design Σ,

Wallis (1971): ingredients

- Take a 2-($V, B, R, K, \Lambda=1)(S t e i n e r) ~ d e s i g n ~ \Sigma$,
- and a collection of V affine designs $\mathcal{D}_{1}, \ldots, \mathcal{D}_{V}$ with the same parameters q and r (not necessarily isomorphic):
- V, B, R, K and q, r are related; in particular, $R=$ the number of parallel classes in \mathcal{D}_{i},
- let $\underbrace{\mathcal{L}_{i}, \mathcal{L}_{i}, \mathcal{L}_{i}, \ldots}_{R \text { colors }}$ be all parallel classes of $\mathcal{D}_{i}=(\mathcal{P}_{i}, \underbrace{\mathcal{L}_{i} \cup \mathcal{L}_{i} \cup \mathcal{L}_{i} \cup \ldots}_{\mathcal{B}_{i}})$.

Wallis (1971): ingredients

- Take a 2-($V, B, R, K, \Lambda=1)(S t e i n e r) ~ d e s i g n ~ \Sigma$,
- and a collection of V affine designs $\mathcal{D}_{1}, \ldots, \mathcal{D}_{V}$ with the same parameters q and r (not necessarily isomorphic):
- V, B, R, K and q, r are related; in particular, $R=$ the number of parallel classes in \mathcal{D}_{i},
- let $\underbrace{\mathcal{L}_{i}, \mathcal{L}_{i}, \mathcal{L}_{i}, \ldots}_{R \text { colors }}$ be all parallel classes of $\mathcal{D}_{i}=(\mathcal{P}_{i}, \underbrace{\mathcal{L}_{i} \cup \mathcal{L}_{i} \cup \mathcal{L}_{i} \cup \ldots}_{\mathcal{B}_{i}})$.
- Identify the point set of Σ with $\{1,2, \ldots, V\}$.
- Identify the blocks of Σ with collections of parallel classes in such a way that all blocks containing a point i exhaust all R colors $\mathcal{L}_{i}, \mathcal{L}_{i}, \mathcal{L}_{i}, \ldots$:
e.g., R blocks containing 1: $\left\{\begin{array}{l}\{1,2,3, \ldots\} \mapsto\left\{\mathcal{L}_{1}, \mathcal{L}_{2}, \mathcal{L}_{3}, \ldots\right\} \\ \{1,4,5, \ldots\} \mapsto\left\{\mathcal{L}_{1}, \mathcal{L}_{4}, \mathcal{L}_{5}, \ldots\right\} \\ \{1,6,7, \ldots\} \mapsto\left\{\mathcal{L}_{1}, \mathcal{L}_{6}, \mathcal{L}_{7}, \ldots\right\} \\ \ldots\end{array}\right.$

Wallis: construction

Now define a graph Γ on $\mathcal{P}_{1} \cup \mathcal{P}_{2} \cup \ldots \mathcal{P}_{V}$:

- each \mathcal{P}_{i} induces an empty graph (coclique),
- for every block, pairwisely join points on "corresponding" lines from different parallel classes:

Wallis: construction

Now define a graph 「 on $\mathcal{P}_{1} \cup \mathcal{P}_{2} \cup \ldots \mathcal{P}_{V}$:

- each \mathcal{P}_{i} induces an empty graph (coclique),
- for every block, pairwisely join points on "corresponding" lines from different parallel classes:

- Then 「 is an SRG.
- Lots of freedom, but Wallis did not estimate the number of non-isomorphic graphs.

Fon-Der-Flaass (2002)

- The paper by Wallis "went largely unnoticed" and in 2002 Fon-Der-Flaass reinvented some of Wallis' ideas.
- He discovered three more constructions; one of them is a special case of the Wallis' one.
- He also showed that it produces hyperexponentially many (as q increases) non-isomorphic SRGs with the same parameters.

Fon-Der-Flaass-2

Take Γ constructed earlier (using affine planes of order q and $\Sigma=\binom{q+2}{2}$):

- remove one of the affine planes,
- then one parallel class in each of the remaining planes becomes "free",

Fon-Der-Flaass-2

Take Γ constructed earlier (using affine planes of order q and $\Sigma=\binom{q+2}{2}$):

- remove one of the affine planes,
- then one parallel class in each of the remaining planes becomes "free",
- turn all lines in the "free" parallel classes into q-cliques.

Fon-Der-Flaass-2

Take Γ constructed earlier (using affine planes of order q and $\Sigma=\binom{q+2}{2}$):

- remove one of the affine planes,
- then one parallel class in each of the remaining planes becomes "free",
- turn all lines in the "free" parallel classes into q-cliques.
- finally, add a $(q+1)$-clique K and join the i-th vertex of K to all vertices of \mathcal{P}_{i},
This produces an SRG with the parameters of $G Q(q, q)$.

Muzychuk (2007)

Muzychuk went further and generalized the idea of Wallis:

- instead of a Steiner 2-design Σ he takes a partial linear space whose collinearity graph is an SRG.
- he constructed at least 6 families of SRGs, including Fon-Der-Flaass-1 and Fon-Der-Flaass-3.

Big picture

Muzychuk

Fon-Der-Flaass-2 looks odd in this picture.

DDGs

- Divisible design graph (Haemers, Kharaghani, Meulenberg, 2011):
- a k-regular graph on $v=m n$ vertices,
- the vertex set can be partitioned into m classes of size n, such that:
\#common neighbors of $x, y= \begin{cases}\lambda_{1}, & \text { if } x, y \text { are from the same class, } \\ \lambda_{2}, & \text { if } x, y \text { are from different classes }\end{cases}$

DDGs

- Divisible design graph (Haemers, Kharaghani, Meulenberg, 2011):
- a k-regular graph on $v=m n$ vertices,
- the vertex set can be partitioned into m classes of size n, such that:
\#common neighbors of $x, y= \begin{cases}\lambda_{1}, & \text { if } x, y \text { are from the same class, } \\ \lambda_{2}, & \text { if } x, y \text { are from different classes }\end{cases}$

$$
\left(v, k, \lambda_{1}, \lambda_{2} ; m, n\right)
$$

Kabanov and DDGs

- All DDGs on up to 39 vertices (Shalaginov, Panasenko, 2022).
- Cayley DDGs over an affine group (Kabanov, Shalaginov, 2021).

Kabanov and DDGs

- All DDGs on up to 39 vertices (Shalaginov, Panasenko, 2022).
- Cayley DDGs over an affine group (Kabanov, Shalaginov, 2021).

Kabanov then took a closer look at these examples and noticed that quite a few of them arise in the Wallis - Fon-Der-Flaass manner.

$13 / 22$

Prolific constructions of DDGs

V.V. Kabanov: New versions of the Wallis-Fon-Der-Flaass construction to create divisible design graphs // Discrete Math., 2022.

- Why was this overlooked?

Because the complement of a DDG is not a DDG.

Prolific constructions of DDGs

V.V. Kabanov: New versions of the Wallis-Fon-Der-Flaass construction to create divisible design graphs // Discrete Math., 2022.

- Why was this overlooked?

Because the complement of a DDG is not a DDG.

- He actually found 4 constructions; in particular, some DDGs $(36,24,15,16 ; 4,9)$ come from the family with parameters:

Prolific constructions of DDGs

V.V. Kabanov: New versions of the Wallis-Fon-Der-Flaass construction to create divisible design graphs // Discrete Math., 2022.

- Why was this overlooked?

Because the complement of a DDG is not a DDG.

- He actually found 4 constructions; in particular, some DDGs $(36,24,15,16 ; 4,9)$ come from the family with parameters:
$(\underbrace{\frac{q^{d}\left(q^{d}-1\right)}{q-1}}_{v}, \underbrace{q^{d-1}\left(q^{d}-1\right)}_{k}, \underbrace{q^{d-1}\left(q^{d}-q^{d-1}-1\right)}_{\lambda_{1}}, \underbrace{q^{d-2}\left(q^{d}-1\right)(q-1)}_{\lambda_{2}} ; \underbrace{\frac{q^{d}-1}{q-1}}_{m}, \underbrace{n=q^{d}}_{n})$

DDG + coclique $=$ SRG

V.V. Kabanov: A new construction of SRGs with parameters of the complement symplectic graph // Electronic J. Comb., 2023.

Just like in the Fon-Der-Flaass-2 construction:

$$
\begin{gathered}
\left(\begin{array}{c}
\underbrace{\frac{q^{d}\left(q^{d}-1\right)}{q-1}}_{v}, \underbrace{q^{d-1}\left(q^{d}-1\right)}_{k}, \underbrace{q^{d-1}\left(q^{d}-q^{d-1}-1\right)}_{\lambda_{1}}, \underbrace{q^{d-2}\left(q^{d}-1\right)(q-1)}_{\lambda_{2}} ; \underbrace{\frac{q^{d}-1}{q-1}}_{m}, \underbrace{n=q^{d}}_{n}) \\
+\leftarrow \text { symmetric design } \\
m \text {-coclique } \\
\|
\end{array}\right] \\
\operatorname{SRG}\left(\frac{q^{2 d}-1}{q-1}, q^{2 d-1}, q^{2 d-2}(q-1), q^{2 d-2}(q-1)\right)
\end{gathered}
$$

DDG + coclique $=$ SRG

V.V. Kabanov: A new construction of SRGs with parameters of the complement symplectic graph // Electronic J. Comb., 2023.

Just like in the Fon-Der-Flaass-2 construction:
$+\leftarrow$ symmetric design
m-coclique
||
$\operatorname{SRG}\left(\frac{q^{2 d}-1}{q-1}, q^{2 d-1}, q^{2 d-2}(q-1), q^{2 d-2}(q-1)\right)$
These are the parameters of the complement of $\operatorname{Sp}(2 d, q)$.

Big picture updated

Sp(2d, q): "prolific" parameters

- Abiad, Haemers (2016): Godsil-McKay switching for $q=2$,
- Kubota (2016): more Godsil-McKay switching for $q=2$,
- Cossidente, Pavese (2017): "geometric" switching in generalized quadrangles,
- Ihringer (2017): "geometric" switching in polar spaces,
- Brouwer, Ihringer, Kantor (2021): "geometric" switching in symplectic polar spaces preserving the 4 -vertex condition.

Our result

What we assume:

- Γ is an SRG containing a Hoffman coclique C s.t. $\Gamma \backslash C$ is a DDG with parts of size n.

Our result

What we assume:

- Γ is an SRG containing a Hoffman coclique C s.t. $\Gamma \backslash C$ is a DDG with parts of size n.
What we show:
- the parameters of Γ have the following form:

$$
v=(-s) \frac{n^{2}-1}{n+s}, \quad k=(-s) n, \quad \lambda=\mu=(-s)(n+s)
$$

where s is the smallest eigenvalue of Γ.

- If $-s$ is a prime power q, these are the parameters of $\overline{\operatorname{Sp}(2 d, q)}$.

A "prime power conjecture"?

Does this construction work when s is not a prime power?

A "prime power conjecture"?

Does this construction work when s is not a prime power?

- The problem is that we cannot use the construction of DDGs based on affine planes.
- However, not all of DDGs with the required parameters arise from affine planes.
- there are 28 SRGs $(40,27,18,18)$ (Spence, 2000),
- 27 of them decompose into "DDG(36, 24, 15; 4,9) + 4-coclique",
- this gives 87 non-isomorphic DDGs,
- but not all of them can be obtained from the affine planes construction.

A "prime power conjecture"?

Does this construction work when s is not a prime power?

- The problem is that we cannot use the construction of DDGs based on affine planes.
- However, not all of DDGs with the required parameters arise from affine planes.
- there are 28 SRGs $(40,27,18,18)$ (Spence, 2000),
- 27 of them decompose into "DDG(36, 24, 15; 4, 9) + 4-coclique",
- this gives 87 non-isomorphic DDGs,
- but not all of them can be obtained from the affine planes construction.
- $\operatorname{SRG}(143,72,36,36)$ (here $s=-6)$. Such graphs do exist, but the examples known to us* do not contain a Hoffman coclique.
* found at the homepage of V. Krčadinac.

A "prime power conjecture"?

Does this construction work when s is not a prime power?

- The problem is that we cannot use the construction of DDGs based on affine planes.
- However, not all of DDGs with the required parameters arise from affine planes.
- there are 28 SRGs $(40,27,18,18)$ (Spence, 2000),
- 27 of them decompose into "DDG(36, 24, 15; 4,9) + 4-coclique",
- this gives 87 non-isomorphic DDGs,
- but not all of them can be obtained from the affine planes construction.
- $\operatorname{SRG}(143,72,36,36)$ (here $s=-6)$. Such graphs do exist, but the examples known to us* do not contain a Hoffman coclique.
* found at the homepage of V. Krčadinac.
- $\operatorname{SRG}(259,216,180,180)$ (also $s=-6)$: an open case.

A "prime power conjecture"?

Does this construction work when s is not a prime power?

- The problem is that we cannot use the construction of DDGs based on affine planes.
- However, not all of DDGs with the required parameters arise from affine planes.
- there are 28 SRGs $(40,27,18,18)$ (Spence, 2000),
- 27 of them decompose into "DDG(36, 24, 15; 4,9) + 4-coclique",
- this gives 87 non-isomorphic DDGs,
- but not all of them can be obtained from the affine planes construction.
- $\operatorname{SRG}(143,72,36,36)$ (here $s=-6)$. Such graphs do exist, but the examples known to us* do not contain a Hoffman coclique.
* found at the homepage of V . Krčadinac.
- $\operatorname{SRG}(259,216,180,180)$ (also $s=-6)$: an open case.

It exists if there exists a $\operatorname{DDG}(252,210,174,175 ; 7,36)$.

Sketch

Suppose Γ has spectrum k^{1}, r^{f}, s^{g}.

- $\Gamma \backslash C$ has spectrum with 4 eigenvalues

$$
(k+s)^{1}, r^{f-c+1},(r+s)^{c-1}, s^{g-c}
$$

- DDG $\left(v^{\prime}, k^{\prime}, \lambda_{1}, \lambda_{2} ; m, n\right)$ has 5 eigenvalues

$$
k^{\prime}, \pm \sqrt{k^{\prime}-\lambda_{1}}, \pm \sqrt{k^{\prime 2}-\lambda_{2} v^{\prime}}
$$

but their multiplicities are not determined in general.

Sketch

Suppose Γ has spectrum k^{1}, r^{f}, s^{g}.

- $\Gamma \backslash C$ has spectrum with 4 eigenvalues

$$
(k+s)^{1}, r^{f-c+1},(r+s)^{c-1}, s^{g-c}
$$

- DDG $\left(v^{\prime}, k^{\prime}, \lambda_{1}, \lambda_{2} ; m, n\right)$ has 5 eigenvalues

$$
k^{\prime}, \pm \sqrt{k^{\prime}-\lambda_{1}}, \pm \sqrt{k^{\prime 2}-\lambda_{2} v^{\prime}}
$$

but their multiplicities are not determined in general.
Then we have two principal cases:

- either $\pm \sqrt{k^{\prime}-\lambda_{1}}=0$ or $\pm \sqrt{k^{\prime 2}-\lambda_{2} v^{\prime}}=0$:
- in one of these two cases we obtain our parameters,
- or one of the eigenvalues in the spectrum of DDG collapses (has 0 multiplicity):
- 8 sub-cases depending on whether $\sqrt{k^{\prime}-\lambda_{1}} \lessgtr \sqrt{k^{\prime 2}-\lambda_{2} v^{\prime}}$.

Discussion: adding a clique?

- Since the complement to a DDG is not a DDG, our result does not immediately extend to the situation "DDG + a (Delsarte) clique".

Discussion: adding a clique?

- Since the complement to a DDG is not a DDG, our result does not immediately extend to the situation "DDG + a (Delsarte) clique".
- We do know some examples when this happens:
- there are 3854 SRGs $(35,18,9,9)$ (McKay, Spence, 2001).
- 499 of them are $\operatorname{DDG}(28,15,6,8 ; 7,4)+7$-clique.

THONK Y Y IL

The co-author

