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Motivation

(1) In 2022, Vladislav Kabanov described a construction of strongly
regular graphs (SRGs) based on:
• a divisible design graph ∆ with specific parameters,
• a coclique C ,
• a symmetric design which defines how to join the vertices of C to the

vertices of ∆.

(2) In 2021, he described a prolific construction of divisible design graphs
with the required parameters.

• Thus, (1) + (2) gives a prolific construction of SRGs
• in which C turns out to be a Hoffman coclique.
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Introduction

In this work, we go in the opposite direction.

• Suppose we have an SRG Γ that can be “decomposed” into a divisible
design graph ∆ and a Hoffman coclique. Then:

(1) we show that the parameters of ∆ should coincide (to some extent)
with those required in the construction by Kabanov;

(2) however, these parameters do not determine the structure of ∆, which
allows us to further slightly generalize the construction of SRGs.

• To put these into a general context, I will start off with an overview
of prolific constructions of SRGs.
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Affine designs: a key ingredient in all recipes

An affine design D = (P,B) with parameters q and r is a 2-design:

• P is the set of points,

• B is the set of blocks,

• with the following two properties:
• every two blocks either are disjoint or intersect in r points;
• each block together with all blocks disjoint from it forms a parallel

class, i.e., a set of q mutually disjoint blocks partitioning all points of
the design.

• All parameters of D are expressed in terms of q and r :
v : q2r the number of points
b : q3e + q2 + q the number of blocks
k : qr the size of a block
λ : qe + 1 the number of blocks on any two points
m : q2e + q + 1 the number of parallel classes

where e = r−1
q−1 is an integer.
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Affine designs: examples

• an affine plane of order q (with r = 1):
• P: points,
• B: lines.

• the d-dimensional affine space over Fq (with r = qd−2):
• P: points,
• B: hyperplanes.

• Hadamard 3-designs (with q = 2).
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Wallis (1971): ingredients

• Take a 2-(V ,B,R,K ,Λ = 1) (Steiner) design Σ,

• and a collection of V affine designs D1, . . . ,DV with the same
parameters q and r (not necessarily isomorphic):
• V ,B,R,K and q, r are related; in particular, R = the number of

parallel classes in Di ,
• let Li ,Li ,Li , . . .︸ ︷︷ ︸

R colors

be all parallel classes of Di = (Pi ,Li ∪ Li ∪ Li ∪ . . .︸ ︷︷ ︸
Bi

).

• Identify the point set of Σ with {1, 2, . . . ,V }.
• Identify the blocks of Σ with collections of parallel classes in such a
way that all blocks containing a point i exhaust all R colors
Li ,Li ,Li , . . .:

e.g., R blocks containing 1:


{1, 2, 3, . . .} 7→ {L1,L2,L3, . . .}
{1, 4, 5, . . .} 7→ {L1,L4,L5, . . .}
{1, 6, 7, . . .} 7→ {L1,L6,L7, . . .}
. . .
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Wallis: construction

Now define a graph Γ on P1 ∪ P2 ∪ . . .PV :
• each Pi induces an empty graph (coclique),
• for every block, pairwisely join points on “corresponding” lines from
different parallel classes:

• Then Γ is an SRG.
• Lots of freedom, but Wallis did not estimate the number of

non-isomorphic graphs.
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Fon-Der-Flaass (2002)

• The paper by Wallis “went largely unnoticed” and in 2002
Fon-Der-Flaass reinvented some of Wallis’ ideas.

• He discovered three more constructions; one of them is a special case
of the Wallis’ one.

• He also showed that it produces hyperexponentially many (as q
increases) non-isomorphic SRGs with the same parameters.
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Fon-Der-Flaass-2

Take Γ constructed earlier (using affine planes of order q and Σ =
(q+2

2

)
):

• remove one of the affine planes,
• then one parallel class in each of the remaining planes becomes “free”,

• turn all lines in the “free” parallel classes into q-cliques.
• finally, add a (q + 1)-clique K and join the i-th vertex of K to all

vertices of Pi ,
This produces an SRG with the parameters of GQ(q, q).
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Muzychuk (2007)

Muzychuk went further and generalized the idea of Wallis:

• instead of a Steiner 2-design Σ he takes a partial linear space whose
collinearity graph is an SRG.

• he constructed at least 6 families of SRGs, including Fon-Der-Flaass-1
and Fon-Der-Flaass-3.
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Big picture

Wallis

Muzychuk

Fon-Der-Flaass

”GQ(q + 1, q − 1)” ”GQ(q − 1, q + 1)” ”GQ(q, q)”

Σ =
(V
2

)
2-design with

λ = 1

↑
partial linear space

Di are planes Di are planes

1 3 2

Fon-Der-Flaass-2 looks odd in this picture.
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DDGs

• Divisible design graph (Haemers, Kharaghani, Meulenberg, 2011):
• a k-regular graph on v = mn vertices,
• the vertex set can be partitioned into m classes of size n, such that:

#common neighbors of x , y =

{
λ1, if x , y are from the same class,

λ2, if x , y are from different classes

(v , k , λ1, λ2;m, n)
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Kabanov and DDGs

• All DDGs on up to 39 vertices (Shalaginov, Panasenko, 2022).

• Cayley DDGs over an affine group (Kabanov, Shalaginov, 2021).

Kabanov then took a closer look at these examples and noticed that quite
a few of them arise in the Wallis – Fon-Der-Flaass manner.
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Prolific constructions of DDGs
V.V. Kabanov: New versions of the Wallis-Fon-Der-Flaass construction to create divisible

design graphs // Discrete Math., 2022.

• Why was this overlooked?

Because the complement of a DDG is not a DDG.

• He actually found 4 constructions; in particular, some DDGs
(36, 24, 15, 16; 4, 9) come from the family with parameters:

qd (qd − 1)

q − 1︸ ︷︷ ︸
v

, qd−1(qd − 1)︸ ︷︷ ︸
k

, qd−1(qd − qd−1 − 1)︸ ︷︷ ︸
λ1

, qd−2(qd − 1)(q − 1)︸ ︷︷ ︸
λ2

;
qd − 1

q − 1︸ ︷︷ ︸
m

, n = qd︸ ︷︷ ︸
n
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DDG + coclique = SRG
V.V. Kabanov: A new construction of SRGs with parameters of the complement

symplectic graph // Electronic J. Comb., 2023.

Just like in the Fon-Der-Flaass-2 construction:qd (qd − 1)

q − 1︸ ︷︷ ︸
v

, qd−1(qd − 1)︸ ︷︷ ︸
k

, qd−1(qd − qd−1 − 1)︸ ︷︷ ︸
λ1

, qd−2(qd − 1)(q − 1)︸ ︷︷ ︸
λ2

;
qd − 1

q − 1︸ ︷︷ ︸
m

, n = qd︸ ︷︷ ︸
n


+← symmetric design

m-coclique

||

SRG

(
q2d − 1

q − 1
, q2d−1, q2d−2(q − 1), q2d−2(q − 1)

)

These are the parameters of the complement of Sp(2d , q).
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Big picture updated

Wallis

Muzychuk

Fon-Der-Flaass

”GQ(q + 1, q − 1)” ”GQ(q − 1, q + 1)” ”GQ(q, q)”

Σ =
(V
2

)
2-design with

λ = 1

↑
partial linear space

Di are planes Di are planes

1 3 2

Kabanov

”Sp(2d , q)”
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Sp(2d , q): “prolific” parameters

• Abiad, Haemers (2016): Godsil-McKay switching for q = 2,

• Kubota (2016): more Godsil-McKay switching for q = 2,

• Cossidente, Pavese (2017): “geometric” switching in generalized
quadrangles,

• Ihringer (2017): “geometric” switching in polar spaces,

• Brouwer, Ihringer, Kantor (2021): “geometric” switching in
symplectic polar spaces preserving the 4-vertex condition.
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Our result

What we assume:

• Γ is an SRG containing a Hoffman coclique C s.t. Γ \ C is a DDG
with parts of size n.

What we show:

• the parameters of Γ have the following form:

v = (−s)n
2 − 1

n + s
, k = (−s)n, λ = µ = (−s)(n + s),

where s is the smallest eigenvalue of Γ.

• If −s is a prime power q, these are the parameters of Sp(2d , q).
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A “prime power conjecture”?

Does this construction work when s is not a prime power?

• The problem is that we cannot use the construction of DDGs based
on affine planes.
• However, not all of DDGs with the required parameters arise from

affine planes.
• there are 28 SRGs (40, 27, 18, 18) (Spence, 2000),
• 27 of them decompose into “DDG(36, 24, 15; 4, 9) + 4-coclique”,
• this gives 87 non-isomorphic DDGs,
• but not all of them can be obtained from the affine planes construction.

• SRG(143, 72, 36, 36) (here s = −6). Such graphs do exist, but the
examples known to us∗ do not contain a Hoffman coclique.

∗ found at the homepage of V. Krčadinac.

• SRG(259, 216, 180, 180) (also s = −6): an open case.

It exists if there exists a DDG(252, 210, 174, 175; 7, 36).
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• SRG(259, 216, 180, 180) (also s = −6): an open case.

It exists if there exists a DDG(252, 210, 174, 175; 7, 36).

19 / 22



A “prime power conjecture”?

Does this construction work when s is not a prime power?

• The problem is that we cannot use the construction of DDGs based
on affine planes.
• However, not all of DDGs with the required parameters arise from
affine planes.
• there are 28 SRGs (40, 27, 18, 18) (Spence, 2000),
• 27 of them decompose into “DDG(36, 24, 15; 4, 9) + 4-coclique”,
• this gives 87 non-isomorphic DDGs,
• but not all of them can be obtained from the affine planes construction.

• SRG(143, 72, 36, 36) (here s = −6). Such graphs do exist, but the
examples known to us∗ do not contain a Hoffman coclique.

∗ found at the homepage of V. Krčadinac.
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Sketch

Suppose Γ has spectrum k1, r f , sg .

• Γ \ C has spectrum with 4 eigenvalues

(k + s)1, r f−c+1, (r + s)c−1, sg−c

• DDG (v ′, k ′, λ1, λ2;m, n) has 5 eigenvalues

k ′,±
√

k ′ − λ1,±
√
k ′2 − λ2v ′

but their multiplicities are not determined in general.

Then we have two principal cases:

• either ±
√
k ′ − λ1 = 0 or ±

√
k ′2 − λ2v ′ = 0:

• in one of these two cases we obtain our parameters,

• or one of the eigenvalues in the spectrum of DDG collapses (has 0
multiplicity):
• 8 sub-cases depending on whether

√
k ′ − λ1 ≶

√
k ′2 − λ2v ′.
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Then we have two principal cases:

• either ±
√
k ′ − λ1 = 0 or ±

√
k ′2 − λ2v ′ = 0:

• in one of these two cases we obtain our parameters,

• or one of the eigenvalues in the spectrum of DDG collapses (has 0
multiplicity):
• 8 sub-cases depending on whether

√
k ′ − λ1 ≶

√
k ′2 − λ2v ′.
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Discussion: adding a clique?

• Since the complement to a DDG is not a DDG, our result does not
immediately extend to the situation “DDG + a (Delsarte) clique”.

• We do know some examples when this happens:
• there are 3854 SRGs (35, 18, 9, 9) (McKay, Spence, 2001).
• 499 of them are DDG(28, 15, 6, 8; 7, 4) + 7-clique.
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