On strongly regular graphs decomposable into a divisible design graph and a Hoffman coclique

Alexander Gavrilyuk

(joint work with Vladislav Kabanov)

Shimane University, Japan

July 6, 2023

- (1) In 2022, Vladislav Kabanov described a construction of strongly regular graphs (SRGs) based on:
 - a divisible design graph Δ with specific parameters,
 - a coclique C,
 - a symmetric design which defines how to join the vertices of C to the vertices of Δ .

- (1) In 2022, Vladislav Kabanov described a construction of strongly regular graphs (SRGs) based on:
 - a divisible design graph Δ with specific parameters,
 - a coclique C,
 - a symmetric design which defines how to join the vertices of C to the vertices of Δ .
- (2) In 2021, he described a *prolific* construction of divisible design graphs with the required parameters.

- (1) In 2022, Vladislav Kabanov described a construction of strongly regular graphs (SRGs) based on:
 - a divisible design graph Δ with specific parameters,
 - a coclique C,
 - a symmetric design which defines how to join the vertices of C to the vertices of Δ .
- (2) In 2021, he described a *prolific* construction of divisible design graphs with the required parameters.
 - Thus, (1) + (2) gives a *prolific* construction of SRGs

- (1) In 2022, Vladislav Kabanov described a construction of strongly regular graphs (SRGs) based on:
 - a divisible design graph Δ with specific parameters,
 - a coclique C,
 - a symmetric design which defines how to join the vertices of C to the vertices of Δ .
- (2) In 2021, he described a *prolific* construction of divisible design graphs with the required parameters.
 - Thus, (1) + (2) gives a *prolific* construction of SRGs
 - in which C turns out to be a Hoffman coclique.

• Suppose we have an SRG Γ that can be "decomposed" into a divisible design graph Δ and a Hoffman coclique. Then:

- Suppose we have an SRG Γ that can be "decomposed" into a divisible design graph Δ and a Hoffman coclique. Then:
 - (1) we show that the parameters of Δ should coincide (to some extent) with those required in the construction by Kabanov;

- Suppose we have an SRG Γ that can be "decomposed" into a divisible design graph Δ and a Hoffman coclique. Then:
 - (1) we show that the parameters of Δ should coincide (to some extent) with those required in the construction by Kabanov;
 - (2) however, these parameters do not determine the structure of Δ , which allows us to further slightly generalize the construction of SRGs.

- Suppose we have an SRG Γ that can be "decomposed" into a divisible design graph Δ and a Hoffman coclique. Then:
 - (1) we show that the parameters of Δ should coincide (to some extent) with those required in the construction by Kabanov;
 - (2) however, these parameters do not determine the structure of Δ , which allows us to further slightly generalize the construction of SRGs.
- To put these into a general context, I will start off with an overview of *prolific* constructions of SRGs.

Affine designs: a key ingredient in all recipes

An affine design $\mathcal{D} = (\mathcal{P}, \mathcal{B})$ with parameters q and r is a 2-design:

- \mathcal{P} is the set of points,
- \mathcal{B} is the set of blocks,

Affine designs: a key ingredient in all recipes

An affine design $\mathcal{D} = (\mathcal{P}, \mathcal{B})$ with parameters q and r is a 2-design:

- \mathcal{P} is the set of points,
- B is the set of blocks,
- with the following two properties:
 - every two blocks either are disjoint or intersect in r points;
 - each block together with all blocks *disjoint* from it forms a **parallel class**, i.e., a set of *q* mutually disjoint blocks partitioning all points of the design.

Affine designs: a key ingredient in all recipes

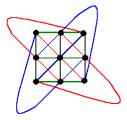
An affine design $\mathcal{D} = (\mathcal{P}, \mathcal{B})$ with parameters q and r is a 2-design:

- \mathcal{P} is the set of points,
- B is the set of blocks,
- with the following two properties:
 - every two blocks either are disjoint or intersect in r points;
 - each block together with all blocks *disjoint* from it forms a **parallel class**, i.e., a set of *q* mutually disjoint blocks partitioning all points of the design.
- All parameters of \mathcal{D} are expressed in terms of q and r:

<i>V</i> :	q ² r	the number of points
b :	$q^3e + q^2 + q$	the number of blocks
k :	qr	the size of a block
λ :	qe+1	the number of blocks on any two points
<i>m</i> :	q^2e+q+1	the number of parallel classes
where $e = \frac{r-1}{q-1}$ is an integer.		

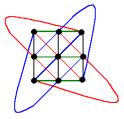
Affine designs: examples

- an affine plane of order q (with r = 1):
 - \mathcal{P} : points,
 - *B*: lines.



Affine designs: examples

- an affine plane of order q (with r = 1):
 - \mathcal{P} : points,
 - *B*: lines.



- the *d*-dimensional affine space over \mathbb{F}_q (with $r = q^{d-2}$):
 - \mathcal{P} : points,
 - B: hyperplanes.
- Hadamard 3-designs (with q = 2).

Wallis (1971): ingredients

• Take a 2-($V, B, R, K, \Lambda = 1$) (Steiner) design Σ ,

Wallis (1971): ingredients

- Take a 2-($V, B, R, K, \Lambda = 1$) (*Steiner*) design Σ ,
- and a collection of V affine designs $\mathcal{D}_1, \ldots, \mathcal{D}_V$ with the same parameters q and r (not necessarily isomorphic):
 - *V*, *B*, *R*, *K* and *q*, *r* are related; in particular, *R* = the number of parallel classes in D_i ,
 - let $\underbrace{\mathcal{L}_i, \mathcal{L}_i, \mathcal{L}_i, \dots}_{R \text{ colors}}$ be all parallel classes of $\mathcal{D}_i = (\mathcal{P}_i, \underbrace{\mathcal{L}_i \cup \mathcal{L}_i \cup \mathcal{L}_i \cup \dots}_{\mathcal{B}_i}).$

Wallis (1971): ingredients

- Take a 2-($V, B, R, K, \Lambda = 1$) (*Steiner*) design Σ ,
- and a collection of V affine designs D₁,..., D_V with the same parameters q and r (not necessarily isomorphic):
 - *V*, *B*, *R*, *K* and *q*, *r* are related; in particular, *R* = the number of parallel classes in D_i ,
 - let $\underbrace{\mathcal{L}_i, \mathcal{L}_i, \mathcal{L}_i, \dots}_{R \text{ colors}}$ be all parallel classes of $\mathcal{D}_i = (\mathcal{P}_i, \underbrace{\mathcal{L}_i \cup \mathcal{L}_i \cup \mathcal{L}_i \cup \dots}_{\mathcal{B}_i}).$
- Identify the point set of Σ with $\{1, 2, \dots, V\}$.
- Identify the blocks of Σ with collections of parallel classes in such a way that all blocks containing a point *i* exhaust all *R* colors

 *L*_i, *L*_i, *L*_i, . . .:

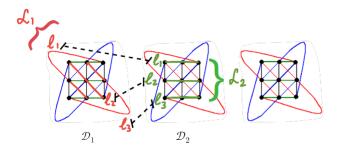
e.g., R blocks containing 1: \langle

$$\begin{cases} \{1, 2, 3, \ldots\} \mapsto \{\mathcal{L}_{1}, \mathcal{L}_{2}, \mathcal{L}_{3}, \ldots\} \\ \{1, 4, 5, \ldots\} \mapsto \{\mathcal{L}_{1}, \mathcal{L}_{4}, \mathcal{L}_{5}, \ldots\} \\ \{1, 6, 7, \ldots\} \mapsto \{\mathcal{L}_{1}, \mathcal{L}_{6}, \mathcal{L}_{7}, \ldots\} \\ \ldots \end{cases}$$

Wallis: construction

Now define a graph Γ on $\mathcal{P}_1 \cup \mathcal{P}_2 \cup \ldots \mathcal{P}_V$:

- each \mathcal{P}_i induces an empty graph (coclique),
- for every block, pairwisely join points on "*corresponding*" lines from different parallel classes:

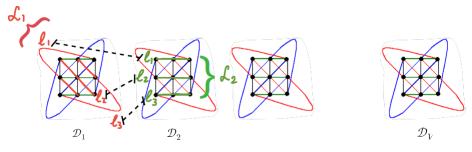


 \mathcal{D}_V

Wallis: construction

Now define a graph Γ on $\mathcal{P}_1 \cup \mathcal{P}_2 \cup \ldots \mathcal{P}_V$:

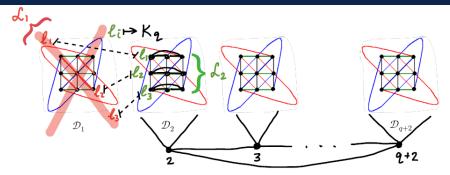
- each \mathcal{P}_i induces an empty graph (coclique),
- for every block, pairwisely join points on "*corresponding*" lines from different parallel classes:



- Then Γ is an SRG.
- Lots of freedom, but Wallis did not estimate the number of non-isomorphic graphs.

- The paper by Wallis "went largely unnoticed" and in 2002 Fon-Der-Flaass reinvented some of Wallis' ideas.
- He discovered three more constructions; one of them is a special case of the Wallis' one.
- He also showed that it produces hyperexponentially many (as *q* increases) non-isomorphic SRGs with the same parameters.

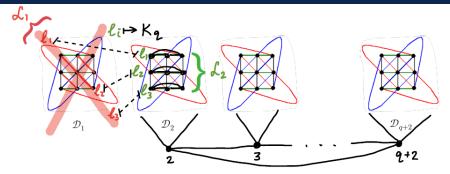
Fon-Der-Flaass-2



Take Γ constructed earlier (using affine *planes* of order *q* and $\Sigma = \begin{pmatrix} q+2 \\ 2 \end{pmatrix}$):

- remove one of the affine planes,
- then one parallel class in each of the remaining planes becomes "free",

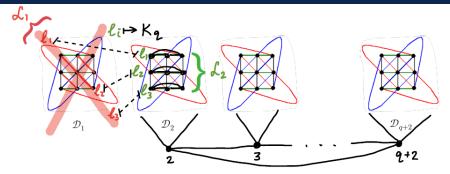
Fon-Der-Flaass-2



Take Γ constructed earlier (using affine *planes* of order *q* and $\Sigma = \begin{pmatrix} q+2 \\ 2 \end{pmatrix}$):

- remove one of the affine planes,
- then one parallel class in each of the remaining planes becomes "free",
- turn all lines in the "free" parallel classes into q-cliques.

Fon-Der-Flaass-2



Take Γ constructed earlier (using affine *planes* of order *q* and $\Sigma = \begin{pmatrix} q+2 \\ 2 \end{pmatrix}$):

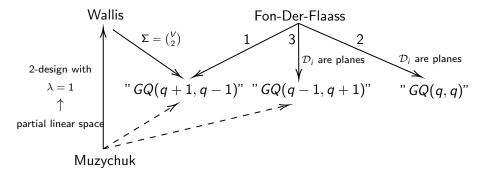
- remove one of the affine planes,
- then one parallel class in each of the remaining planes becomes "free",
- turn all lines in the "free" parallel classes into q-cliques.
- finally, add a (q + 1)-clique K and join the *i*-th vertex of K to all vertices of P_i,

This produces an SRG with the parameters of GQ(q, q).

Muzychuk went further and generalized the idea of Wallis:

- instead of a Steiner 2-design Σ he takes a partial linear space whose collinearity graph is an SRG.
- he constructed at least 6 families of SRGs, including Fon-Der-Flaass-1 and Fon-Der-Flaass-3.

Big picture



Fon-Der-Flaass-2 looks odd in this picture.

- Divisible design graph (Haemers, Kharaghani, Meulenberg, 2011):
 - a k-regular graph on v = mn vertices,
 - the vertex set can be partitioned into *m* classes of size *n*, such that:

#common neighbors of $x, y = \begin{cases} \lambda_1, & \text{if } x, y \text{ are from the same class,} \\ \lambda_2, & \text{if } x, y \text{ are from different classes} \end{cases}$

- Divisible design graph (Haemers, Kharaghani, Meulenberg, 2011):
 - a k-regular graph on v = mn vertices,
 - the vertex set can be partitioned into *m* classes of size *n*, such that:

#common neighbors of $x, y = \begin{cases} \lambda_1, & \text{if } x, y \text{ are from the same class,} \\ \lambda_2, & \text{if } x, y \text{ are from different classes} \end{cases}$

 $(v, k, \lambda_1, \lambda_2; m, n)$

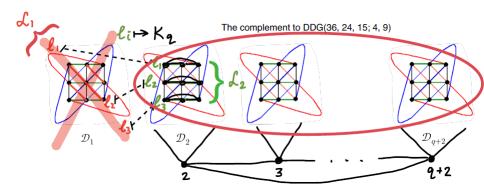
Kabanov and DDGs

- All DDGs on up to 39 vertices (Shalaginov, Panasenko, 2022).
- Cayley DDGs over an affine group (Kabanov, Shalaginov, 2021).

Kabanov and DDGs

- All DDGs on up to 39 vertices (Shalaginov, Panasenko, 2022).
- Cayley DDGs over an affine group (Kabanov, Shalaginov, 2021).

Kabanov then took a closer look at these examples and noticed that quite a few of them arise in the Wallis – Fon-Der-Flaass manner.



Prolific constructions of DDGs

V.V. Kabanov: New versions of the Wallis-Fon-Der-Flaass construction to create divisible design graphs // Discrete Math., 2022.

• Why was this overlooked?

Because the complement of a DDG is not a DDG.

Prolific constructions of DDGs

V.V. Kabanov: New versions of the Wallis-Fon-Der-Flaass construction to create divisible design graphs // Discrete Math., 2022.

• Why was this overlooked?

Because the complement of a DDG is not a DDG.

• He actually found 4 constructions; in particular, some DDGs (36, 24, 15, 16; 4, 9) come from the family with parameters:

Prolific constructions of DDGs

V.V. Kabanov: New versions of the Wallis-Fon-Der-Flaass construction to create divisible design graphs // Discrete Math., 2022.

• Why was this overlooked?

Because the complement of a DDG is not a DDG.

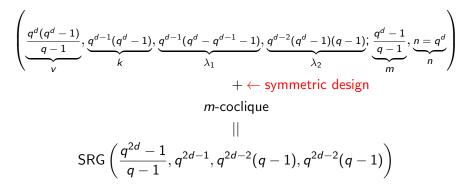
• He actually found 4 constructions; in particular, some DDGs (36, 24, 15, 16; 4, 9) come from the family with parameters:

$$\left(\underbrace{\frac{q^{d}(q^{d}-1)}{q-1}}_{V},\underbrace{\frac{q^{d-1}(q^{d}-1)}{k}}_{k},\underbrace{\frac{q^{d-1}(q^{d}-q^{d-1}-1)}{\lambda_{1}}}_{\lambda_{1}},\underbrace{\frac{q^{d-2}(q^{d}-1)(q-1)}{\lambda_{2}}}_{\lambda_{2}};\underbrace{\frac{q^{d}-1}{q-1}}_{m},\underbrace{\frac{n=q^{d}}{n}}_{n}\right)$$

DDG + coclique = SRG

V.V. Kabanov: A new construction of SRGs with parameters of the complement symplectic graph // Electronic J. Comb., 2023.

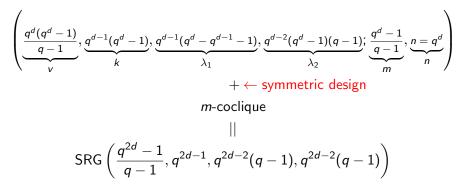
Just like in the Fon-Der-Flaass-2 construction:



$\mathsf{DDG} + \mathsf{coclique} = \mathsf{SRG}$

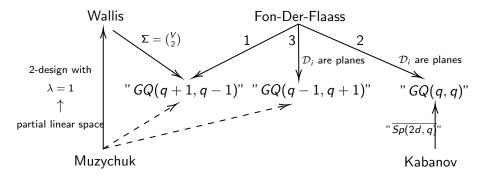
V.V. Kabanov: A new construction of SRGs with parameters of the complement symplectic graph // Electronic J. Comb., 2023.

Just like in the Fon-Der-Flaass-2 construction:



These are the parameters of the complement of Sp(2d, q).

Big picture updated



- Abiad, Haemers (2016): Godsil-McKay switching for q = 2,
- Kubota (2016): more Godsil-McKay switching for q = 2,
- Cossidente, Pavese (2017): "geometric" switching in generalized quadrangles,
- Ihringer (2017): "geometric" switching in polar spaces,
- Brouwer, Ihringer, Kantor (2021): "geometric" switching in symplectic polar spaces preserving the 4-vertex condition.

What we assume:

• Γ is an SRG containing a Hoffman coclique *C* s.t. $\Gamma \setminus C$ is a DDG with parts of size *n*.

What we assume:

• Γ is an SRG containing a Hoffman coclique *C* s.t. $\Gamma \setminus C$ is a DDG with parts of size *n*.

What we show:

• the parameters of Γ have the following form:

$$v = (-s)\frac{n^2-1}{n+s}, \quad k = (-s)n, \quad \lambda = \mu = (-s)(n+s),$$

where s is the smallest eigenvalue of Γ .

• If -s is a prime power q, these are the parameters of $\overline{\text{Sp}(2d, q)}$.

A "prime power conjecture"?

Does this construction work when s is not a prime power?

- The problem is that we cannot use the construction of DDGs based on affine planes.
- However, not all of DDGs with the required parameters arise from affine planes.
 - there are 28 SRGs (40, 27, 18, 18) (Spence, 2000),
 - 27 of them decompose into "DDG(36, 24, 15; 4, 9) + 4-coclique",
 - this gives 87 non-isomorphic DDGs,
 - but not all of them can be obtained from the affine planes construction.

- The problem is that we cannot use the construction of DDGs based on affine planes.
- However, not all of DDGs with the required parameters arise from affine planes.
 - there are 28 SRGs (40, 27, 18, 18) (Spence, 2000),
 - 27 of them decompose into "DDG(36, 24, 15; 4, 9) + 4-coclique",
 - this gives 87 non-isomorphic DDGs,
 - but not all of them can be obtained from the affine planes construction.
- SRG(143, 72, 36, 36) (here s = -6). Such graphs do exist, but the examples known to us^{*} do not contain a Hoffman coclique.

* found at the homepage of V. Krčadinac.

- The problem is that we cannot use the construction of DDGs based on affine planes.
- However, not all of DDGs with the required parameters arise from affine planes.
 - there are 28 SRGs (40, 27, 18, 18) (Spence, 2000),
 - 27 of them decompose into "DDG(36, 24, 15; 4, 9) + 4-coclique",
 - this gives 87 non-isomorphic DDGs,
 - but not all of them can be obtained from the affine planes construction.
- SRG(143, 72, 36, 36) (here s = -6). Such graphs do exist, but the examples known to us^{*} do not contain a Hoffman coclique.

* found at the homepage of V. Krčadinac.

• SRG(259, 216, 180, 180) (also s = -6): an open case.

- The problem is that we cannot use the construction of DDGs based on affine planes.
- However, not all of DDGs with the required parameters arise from affine planes.
 - there are 28 SRGs (40, 27, 18, 18) (Spence, 2000),
 - 27 of them decompose into "DDG(36, 24, 15; 4, 9) + 4-coclique",
 - this gives 87 non-isomorphic DDGs,
 - but not all of them can be obtained from the affine planes construction.
- SRG(143, 72, 36, 36) (here s = -6). Such graphs do exist, but the examples known to us^{*} do not contain a Hoffman coclique.

* found at the homepage of V. Krčadinac.

• SRG(259, 216, 180, 180) (also s = -6): an open case.

It exists if there exists a DDG(252, 210, 174, 175; 7, 36).

Sketch

Suppose Γ has spectrum k^1, r^f, s^g .

• $\Gamma \setminus C$ has spectrum with 4 eigenvalues

$$(k+s)^1, r^{f-c+1}, (r+s)^{c-1}, s^{g-c}$$

• DDG $(v', k', \lambda_1, \lambda_2; m, n)$ has 5 eigenvalues

$$k', \pm \sqrt{k' - \lambda_1}, \pm \sqrt{k'^2 - \lambda_2 v'}$$

but their multiplicities are not determined in general.

Sketch

Suppose Γ has spectrum k^1, r^f, s^g .

• $\Gamma \setminus C$ has spectrum with 4 eigenvalues

$$(k+s)^1, r^{f-c+1}, (r+s)^{c-1}, s^{g-c}$$

DDG (ν', k', λ₁, λ₂; m, n) has 5 eigenvalues

$$k', \pm \sqrt{k' - \lambda_1}, \pm \sqrt{k'^2 - \lambda_2 v'}$$

but their multiplicities are not determined in general.

Then we have two principal cases:

- either $\pm \sqrt{k' \lambda_1} = 0$ or $\pm \sqrt{k'^2 \lambda_2 v'} = 0$:
 - in one of these two cases we obtain our parameters,
- or one of the eigenvalues in the spectrum of DDG collapses (has 0 multiplicity):
 - 8 sub-cases depending on whether $\sqrt{k' \lambda_1} \leq \sqrt{k'^2 \lambda_2 v'}$.

Discussion: adding a clique?

 Since the complement to a DDG is not a DDG, our result does not immediately extend to the situation "DDG + a (Delsarte) clique".

Discussion: adding a clique?

- Since the complement to a DDG is not a DDG, our result does not immediately extend to the situation "DDG + a (Delsarte) clique".
- We do know some examples when this happens:
 - there are 3854 SRGs (35, 18, 9, 9) (McKay, Spence, 2001).
 - 499 of them are DDG(28, 15, 6, 8; 7, 4) + 7-clique.

THANK YOU

The co-author

