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Outline

Combinatorial structures:
➢ violator spaces
➢ closure spaces
➢ spanoids
➢ greedoids

• Set systems or Hypergraphs: (E,F)
E – a finite ground set and a family of feasible sets F  2E
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• Spaces : (E, )
E – a ground set and an operator  : 2E → 2E



Closure spaces:  Definition

 : 2E 2E is a closure operator if:
• for all X  E, X   (X) (extensivity)
• for all X  Y  E,  (X)   (Y) (isotonicity)
• for all X  E,  ( (X))= (X) (idempotence)
• A closure space is a pair (E, ), where E is a finite set and

 : 2E 2E is a closure operator.
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Closure spaces:  Definition

 :2E 2E is a closure operator if:
• for all X  E, X   (X) (extensivity)
• for all X  Y  E,  (X)   (Y) (isotonicity)
• for all X  E,  ( (X))= (X) (idempotence)
• A closure space is a pair (E, ), where E is a finite set and

 :2E 2E is a closure operator.

A set A  E  is closed if A =  (A).                                                     
The family of closed sets K is closed under intersection:

X, Y  K → X Y   (X Y )   (X)   (Y ) = X Y
Conversely, any set system (E,K) closed under intersection is a 
family of closed sets of  the closure operator  (X)={A K: X A}.
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Convex sets – closed sets
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In a Euclidean space, a set is convex if it 
contains the line segment between any two of 
its points.
It is easy to see that the family of convex sets 

is closed under intersection. 

In fact, the family of convex sets coincides with the family of closed sets 
defined by the convex hull operator – closure operator  .



Violator spaces. Definition.

Violator Spaces were introduced by Matoušek et al. in 2008 as
generalization of Linear Programming problems.
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A violator space is a finite space (H,V), where                                     
V :2H 2H is a mapping such that:
• for all X  H, X V(X) = (consistency)
• for all X  Y  H, s.t. Y V(X) =, V(X) = V(Y) (locality)



Violator spaces. Definition.

Violator Spaces were introduced by Matoušek et al. in 2008 as
generalization of Linear Programming problems.
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An Interpretation:
• H is the set of constraints
• V(X) - the set of all constraints violating X

For X  H, a basis of X is a minimal subset B with V (B) = V (X).

A violator space is a finite space (H,V), where                                     
V :2H 2H is a mapping such that:
• for all X  H, X V(X) = (consistency)
• for all X  Y  H, s.t. Y V(X) =, V(X) = V(Y) (locality)



Violator spaces: Example
The smallest enclosing ball in R2:
Problem: Given a set of points in R2,                                    
find the smallest circle containing them.
• H is a set of points R2.
• V: For X  H, a point p outside of X “violates” X

if adding p to X increases the size of the smallest circle 
containing X.

X- black points
Red points violate X
Green (and black) point does not violate X
A basis of X – any three points on the circle.
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Violator spaces: Example
The smallest enclosing ball in R2:
Problem: Given a set of points in R2,                                    
find the smallest circle containing them.
• H is a set of points R2.
• V: For X  H, a point p outside of X “violates” X

if adding p to X increases the size of the smallest circle 
containing X.
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convex hull operator: a basis of X – the 

extreme points of the convex hull.



Violator operator 
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▪ Consistency of V is equivalent to extensivity of  :                           
X  V(X) =   X   (X)

▪ Locality of V is equivalent to “self-convexity”: 
X  Y   (X)  (X) =  (Y)    

▪ In what follows the pair (H, ) , where  is extensive and self-
convex operator will be called a violator space.

Let V be a violator mapping. Define  (X) = H - V(X).

X Y  (X)



Violator operator 
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▪ Consistency of V is equivalent to extensivity of  :                           
X  V(X) =   X   (X)

▪ Locality of V is equivalent to “self-convexity”: 
X  Y   (X)  (X) =  (Y)    

▪ Violator spaces (H, ) satisfy idempotence and convexity :
( X  Y  Z )   (  (X) =  (Z) )   (X) =  (Y) =  (Z)

Let V be a violator mapping. Define  (X) = H - V(X).

X Y  (X)

X Y
 (X) =  (Y) =  (Z)

Z



Violator mappings and closure operators

The axiom of isotonicity not necessarily holds:
Example:        H = {(x,y)Z2|-1 ≤ x ≤ 1, -5 ≤ y ≤ 5}

X={(-1,0),(1,0)}
Y ={(-1,0),(1,0),(0,-4)}

X  Y, but  (X)   (Y)
(0,1)   (X), (0,1)   (Y) 
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 (Y)

 (X)



Spanoids- as an abstraction of spanning 
structures: Definition

A Spanoid over [n] is a family of pairs T→ i , T  [n], i  [n] s.t:
• i→ i for each i  [n]
• for all X  Y: X→ i Y→ i (monotonicity)

Spanoids were introduced by Dvir, Goppy, Gu, Wigderson (2020) as
logical inference structures with applications in several areas
including coding theory.
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Consider the following implication T → i with T  [n] and i [n]:
the values of codewords in coordinate positions T, determine the
value of some other coordinate i.



Spanoids

A derivation T  i is a chain of sets T=T0,T1,...,Tr, where for each
0<j≤r there is ijE such that Tj-1 → ij ,and Tj=Tj-1 ij, and Tr=Tr-1 i.
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span(T)={i|Ti}

span is a closure operator

T=T0 → T1=T0  i1 → T2=T1 i2→ …→ Tr= Tr-1  i
i1 i2

T T i1 T i



Spanoids: Definition

Example 1: Graphic Matroid
• E is the set of edges of a graph G=(V,E) 
• F = { A  E | T = G[A] is an induced subgraph of G such that T is 

a forest } – independent sets.

• M(G)=(E,F) is a (graphic) matroid:
M1:   F
M2: If AF and B  A, then BF (hereditary)
M3: If A,BF and |A|<|B|   x  B\A s. t. A{x}  F

(augmentation property)
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Spanoids: Definition

Example 1: Graphic Matroid
• E is the set of edges of a graph G=(V,E) 
• F = { A  E | T = G[A] is an induced subgraph of G such that T is 

a forest }.
• M(G)=(E,F) is a graphic matroid.
• rank(X) - is the size of the largest forest in X 

the maximum number of edges which do not close a cycle

• X→ i rank(X)=rank(Xi)

• span(X)={i|rank(X)=rank(Xi)}
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Spanoids: Example

Example 2:
• E is the set of n points in Euclidean space Rd

• X→ q  q lies on a line passing through two points from X
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Sylvester-Gallai theorem:
• If the line through any two points 

passes through a third point,
then they must all be collinear

• If for any two points p,t  E there is a 
third point q  E s.t. {p,t} → q , then 
all points are collinear
( the span is a one-dimensional space)



Greedoids: Definition

A Greedoid over E is a family of feasible sets F  2E such that:
•   F
• if X, Y  F and |X|<|Y| then there exists a y ∈ Y − X such that

X y ∈ F (augmentation property)

Greedoids were introduced by Korte and Lovasz (1981)
as a generalization of matroids.
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Greedoids: Definition

A Greedoid over E is a family of feasible sets F  2E such that:
•   F
• if X, Y  F and |X|<|Y| then there exists a y ∈ Y − X such that

X y ∈ F (augmentation property)

Greedoids were introduced by Korte and Lovasz (1981)
as a generalization of matroids.
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(X)={x: rank(X  x)= rank(X)}

rank(X)=max{|A|:A  X, A  F}



Closure of greedoids

• for all X  E, X   (X) (extensivity)
• X  Y   (X)→(X) =  (Y) self-convexity
• x,yX and Xx  F→ x  (Xy)  y   (Xx)   -

a weaker version of the Steinitz- MacLine exchange property 
•  is not necessarily isotone
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rank(X)=max{|A|:A  X, A  F}

(X)={x: rank(X  x)= rank(X)}



Violator spaces vs Greedoids
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Violator spaces (H, ) satisfy 
• extensivity
• self-convexity
• idempotence
• convexity
• not necessarily isotone

Greedoids (E, ) satisfy 
• extensivity 
• self-convexity
• idempotence
• convexity
• not necessarily isotone

• x,yX and Xx  F→
x  (Xy)  y   (Xx)

Greedoids may be considered as a subclass of violator spaces



Spanoids, Greedoids and Violator spaces
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convex spaces (extensivity and convexity)

violator 
spaces closure spaces

spanoids pre-closure 
spaces 
(extensivity 
and 
isotonicity) 

Greedoids
matroids
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• Dvir, Z., Gopi, S., Gu, Y., & Wigderson, A.(2020) 

Spanoids - an abstraction of spanning structures, 
and a barrier for LCCs.

SIAM Journal on Computing, 49(3), 

465-496.

https://doi.org/10.1137/19M124647X
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Algorithmic characterizations

The class of violator spaces is the most general one for which 
Clarkson’s algorithm is still guaranteed to work (Škovrŏn, 2007)

The greedy algorithm maximizes some bottleneck function on a set 
system if and only if the set system is an antimatroid (dual to 
convex geometry) (Boyd, 1990; Kempner, Levit, 2003).

Open problems: 
• Applications of Clarkson’s algorithm to closure systems
• Algorithmic characterizations of closure systems
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