Balanced designs related to projective planes

Hadi Kharaghani

Rijeka Conference on Combinatorial Objects and Their Applications
University of Rijeka
Rijeka, Croatia
July 3-7, 2023
Joint work with Sho Suda
July 5, 2023

University of Lethbridge

K. A. Bush was the first to establish a link between projective planes of even order and specific Hadamard matrices that was later labeled as Bush-type, in 1971.
K. A. Bush was the first to establish a link between projective planes of even order and specific Hadamard matrices that was later labeled as Bush-type, in 1971.

Eric Verheiden provided a direct construction for the Bush-type Hadamard matrices using the incidence matrices of the projective planes in 1982.
K. A. Bush was the first to establish a link between projective planes of even order and specific Hadamard matrices that was later labeled as Bush-type, in 1971.

Eric Verheiden provided a direct construction for the Bush-type Hadamard matrices using the incidence matrices of the projective planes in 1982.

In his five pages paper Eric Verheiden noted that four MOLS of size 10 is enough to construct a symmetric Bush-type Hadamard matrix and suggested an exhaustive search to show the nonexistent of such matrices.
K. A. Bush was the first to establish a link between projective planes of even order and specific Hadamard matrices that was later labeled as Bush-type, in 1971.

Eric Verheiden provided a direct construction for the Bush-type Hadamard matrices using the incidence matrices of the projective planes in 1982.

In his five pages paper Eric Verheiden noted that four MOLS of size 10 is enough to construct a symmetric Bush-type Hadamard matrix and suggested an exhaustive search to show the nonexistent of such matrices.

Balancedly Splittable Hadamard matrices

Here is a balancedly splitted Hadamard matrix of order 4:

Here is a balancedly splitted Hadamard matrix of order $4:-=-1$ and $\bar{a}=-a$.

$$
H=\left[\begin{array}{l}
H_{1} \\
\hline H_{2}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
\hline 1 & - & 1 & - \\
1 & 1 & - & - \\
1 & - & - & 1
\end{array}\right]
$$

Here is a balancedly splitted Hadamard matrix of order $4:-=-1$ and $\bar{a}=-a$.

$$
\begin{gathered}
H=\left[\begin{array}{l}
H_{1} \\
H_{2}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
\hline 1 & - & 1 & - \\
1 & 1 & - & - \\
1 & - & - & 1
\end{array}\right] \\
H_{1}^{t} H_{1}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]
\end{gathered}
$$

Here is a balancedly splitted Hadamard matrix of order $4:-=-1$ and $\bar{a}=-a$.

$$
\begin{gathered}
H=\left[\begin{array}{l}
H_{1} \\
\hline H_{2}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
\hline 1 & - & 1 & - \\
1 & 1 & - & - \\
1 & - & - & 1
\end{array}\right] \\
H_{1}^{t} H_{1}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right] \\
H_{2}^{t} H_{2}=\left[\begin{array}{llll}
3 & - & - & - \\
- & 3 & - & - \\
- & - & 3 & - \\
- & - & - & 3
\end{array}\right]
\end{gathered}
$$

Here is a balancedly splitted Hadamard matrix of order $4:-=-1$ and $\bar{a}=-a$.

$$
\begin{gathered}
H=\left[\begin{array}{l}
H_{1} \\
H_{2}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
\hline 1 & - & 1 & - \\
1 & 1 & - & - \\
1 & - & - & 1
\end{array}\right] \\
H_{1}^{t} H_{1}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right] \\
H_{2}^{t} H_{2}=\left[\begin{array}{llll}
3 & - & - & - \\
- & 3 & - & - \\
- & - & 3 & - \\
- & - & - & 3
\end{array}\right]
\end{gathered}
$$

Every normalized Hadamard matrix is balancedly splittable in this way.

Here is a twin balancedly splitted Hadamard matrix of order 16:

Here is a twin balancedly splitted Hadamard matrix of order 16:

$$
\left[\begin{array}{l}
H_{0} \\
H_{1} \\
\hline H_{2}
\end{array}\right]=\left[\begin{array}{lllllllllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & - & - & - & - & 1 & 1 & 1 & 1 & - & - & - \\
1 & - \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & - & - & - & - & - & - & - \\
1 & 1 & 1 & 1 & - & - & - & - & - & - & - & - & 1 & 1 & 1 \\
\hline & 1 \\
\hline 1 & - & 1 & - & 1 & - & 1 & - & 1 & - & 1 & - & 1 & - & 1 \\
\hline
\end{array}\right]
$$

$$
H_{0}=\left[\begin{array}{lllllllllllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & - & - & - & 1 & 1 & 1 & 1 & - & - & - \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & - & - & - & - & - & - & - & - \\
1 & 1 & 1 & 1 & - & - & - & - & - & - & - & 1 & 1 & 1 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& H_{0}=\left[\begin{array}{llllllllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right] \\
& 1 \\
& 1
\end{aligned} 1
$$

$$
\begin{aligned}
& H_{0}=\left[\begin{array}{lllllllllllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & - & - & - & 1 & 1 & 1 & 1 & 1 & - & - & - & - \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & - & - & - & - & - & - & - \\
1 & 1 & 1 & 1 & - & - & - & - & - & - & - & - & 1 & 1 & 1 & 1
\end{array}\right]
\end{aligned}
$$

$$
H_{0}^{t} H_{0}=\left[\begin{array}{l}
4444000000000000 \\
4444000000000000 \\
4444000000000000 \\
4444000000000000 \\
0000444400000000 \\
0000444400000000 \\
0000444400000000 \\
0000444400000000 \\
0000000044440000 \\
0000000044440000 \\
0000000044440000 \\
0000000044440000 \\
0000000000004444 \\
0000000000004444 \\
0000000000004444 \\
0000000000004444
\end{array}\right]
$$

$H_{1}^{t} H_{1}=$		$H_{2}^{t} H_{2}=$	

The corresponding angle between lines is $\arccos \left(\frac{1}{3}\right)$ for both sets of lines.

$$
H_{0}^{t} H_{0}+H_{1}^{t} H_{1}=\left[\begin{array}{cccccccccccccccc}
10 & 2 & 2 & 2 & 2 & \overline{2} & 2 & \overline{2} & 2 & 2 & \overline{2} & \overline{2} & 2 & \overline{2} & \overline{2} & 2 \\
2 & 10 & 2 & 2 & \overline{2} & 2 & \overline{2} & 2 & 2 & 2 & \overline{2} & \overline{2} & \overline{2} & 2 & 2 & \overline{2} \\
2 & 2 & 10 & 2 & 2 & \overline{2} & 2 & \overline{2} & \overline{2} & \overline{2} & 2 & 2 & \overline{2} & 2 & 2 & \overline{2} \\
2 & 2 & 2 & 10 & \overline{2} & 2 & \overline{2} & 2 & \overline{2} & \overline{2} & 2 & 2 & 2 & \overline{2} & \overline{2} & 2 \\
2 & \overline{2} & 2 & \overline{2} & 10 & 2 & 2 & 2 & 2 & \overline{2} & \overline{2} & 2 & 2 & 2 & \overline{2} & \overline{2} \\
\overline{2} & 2 & \overline{2} & 2 & 2 & 10 & 2 & 2 & \overline{2} & 2 & 2 & \overline{2} & 2 & 2 & \overline{2} & \overline{2} \\
2 & \overline{2} & 2 & \overline{2} & 2 & 2 & 10 & 2 & \overline{2} & 2 & 2 & \overline{2} & \overline{2} & \overline{2} & 2 & 2 \\
\overline{2} & 2 & \overline{2} & 2 & 2 & 2 & 2 & 10 & 2 & \overline{2} & \overline{2} & 2 & \overline{2} & \overline{2} & 2 & 2 \\
2 & 2 & \overline{2} & \overline{2} & 2 & \overline{2} & \overline{2} & 2 & 10 & 2 & 2 & 2 & 2 & \overline{2} & 2 & \overline{2} \\
2 & 2 & \overline{2} & \overline{2} & \overline{2} & 2 & 2 & \overline{2} & 2 & 10 & 2 & 2 & \overline{2} & 2 & \overline{2} & 2 \\
\overline{2} & \overline{2} & 2 & 2 & \overline{2} & 2 & 2 & \overline{2} & 2 & 2 & 10 & 2 & 2 & \overline{2} & 2 & \overline{2} \\
\overline{2} & \overline{2} & 2 & 2 & 2 & \overline{2} & \overline{2} & \frac{2}{2} & 2 & 2 & 2 & 10 & \overline{2} & 2 & \overline{2} & 2 \\
2 & \overline{2} & \overline{2} & 2 & 2 & 2 & \overline{2} & \overline{2} & 2 & \overline{2} & 2 & \overline{2} & 10 & 2 & 2 & 2 \\
\overline{2} & 2 & 2 & \overline{2} & 2 & 2 & \overline{2} & \overline{2} & \overline{2} & 2 & \overline{2} & 2 & 2 & 10 & 2 & 2 \\
\overline{2} & 2 & 2 & \overline{2} & \overline{2} & \overline{2} & 2 & 2 & 2 & \overline{2} & 2 & \overline{2} & 2 & 2 & 10 & 2 \\
2 & \overline{2} & \overline{2} & 2 & \overline{2} & \overline{2} & 2 & 2 & \overline{2} & 2 & \overline{2} & 2 & 2 & 2 & 2 & 10
\end{array}\right]
$$

The corresponding angle between lines is $\arccos \left(\frac{1}{5}\right)$.

$$
H_{0}^{t} H_{0}+H_{2}^{t} H_{2}=\left[\begin{array}{cccccccccccccccc}
10 & 2 & 2 & 2 & \overline{2} & 2 & \overline{2} & 2 & \overline{2} & \overline{2} & 2 & 2 & \overline{2} & 2 & 2 & \overline{2} \\
2 & 10 & 2 & 2 & 2 & \overline{2} & 2 & \overline{2} & \overline{2} & \overline{2} & 2 & 2 & 2 & \overline{2} & \overline{2} & 2 \\
2 & 2 & 10 & 2 & \overline{2} & 2 & \overline{2} & 2 & 2 & 2 & \overline{2} & \overline{2} & 2 & \overline{2} & \overline{2} & 2 \\
2 & 2 & 2 & 10 & 2 & \overline{2} & 2 & \overline{2} & 2 & 2 & \overline{2} & \overline{2} & \overline{2} & 2 & 2 & \overline{2} \\
\overline{2} & \frac{2}{2} & \overline{2} & 2 & 10 & 2 & 2 & 2 & \overline{2} & 2 & 2 & \overline{2} & \overline{2} & \overline{2} & 2 & 2 \\
2 & \overline{2} & 2 & \overline{2} & 2 & 10 & 2 & 2 & 2 & \overline{2} & \overline{2} & 2 & \overline{2} & \overline{2} & \frac{2}{2} & 2 \\
\overline{2} & 2 & \overline{2} & 2 & 2 & 2 & 10 & 2 & 2 & \overline{2} & \overline{2} & 2 & 2 & 2 & \overline{2} & \overline{2} \\
2 & \overline{2} & 2 & \overline{2} & 2 & 2 & 2 & 10 & \overline{2} & 2 & 2 & \overline{2} & 2 & 2 & \overline{2} & \overline{2} \\
\overline{2} & \overline{2} & 2 & 2 & \overline{2} & 2 & 2 & \overline{2} & 10 & 2 & 2 & 2 & \overline{2} & 2 & \overline{2} & 2 \\
\overline{2} & \overline{2} & 2 & 2 & 2 & \overline{2} & \overline{2} & 2 & 2 & 10 & 2 & 2 & 2 & \overline{2} & 2 & \overline{2} \\
2 & 2 & \overline{2} & \overline{2} & 2 & \overline{2} & \overline{2} & 2 & 2 & 2 & 10 & 2 & \overline{2} & 2 & \overline{2} & 2 \\
2 & 2 & \overline{2} & \overline{2} & \overline{2} & 2 & 2 & \overline{2} & 2 & 2 & 2 & 10 & 2 & \overline{2} & 2 & \overline{2} \\
\overline{2} & \frac{2}{2} & 2 & \overline{2} & \overline{2} & \overline{2} & 2 & 2 & \overline{2} & 2 & \overline{2} & 2 & 10 & 2 & 2 & 2 \\
2 & \overline{2} & \overline{2} & 2 & \overline{2} & \overline{2} & 2 & 2 & 2 & \overline{2} & 2 & \overline{2} & 2 & 10 & 2 & 2 \\
2 & \overline{2} & \overline{2} & 2 & 2 & 2 & \overline{2} & \overline{2} & \overline{2} & 2 & \overline{2} & 2 & 2 & 2 & 10 & 2 \\
\overline{2} & 2 & 2 & \overline{2} & 2 & 2 & \overline{2} & \overline{2} & 2 & \overline{2} & 2 & \overline{2} & 2 & 2 & 2 & 10
\end{array}\right]
$$

The corresponding angle between lines is $\arccos \left(\frac{1}{5}\right)$.

Definition

A normalized Hadamard matrix H is balancedly splittable if by suitably permuting its rows it can be transformed to

$$
H=\left[\begin{array}{l}
H_{1} \\
H_{2}
\end{array}\right],
$$

Definition

A normalized Hadamard matrix H is balancedly splittable if by suitably permuting its rows it can be transformed to

$$
H=\left[\begin{array}{l}
H_{1} \\
H_{2}
\end{array}\right],
$$

such that $H_{1}^{t} H_{1}$ has at most two distinct off-diagonal entries.

Definition

A normalized Hadamard matrix H is balancedly splittable if by suitably permuting its rows it can be transformed to

$$
H=\left[\begin{array}{l}
H_{1} \\
H_{2}
\end{array}\right],
$$

such that $H_{1}^{t} H_{1}$ has at most two distinct off-diagonal entries.
Let $H=\left[\begin{array}{l}H_{1} \\ H_{2}\end{array}\right]$ be a balancedly splittable Hadamard matrix of order n, where H_{1} is an $\ell \times n$ matrix.

Definition

A normalized Hadamard matrix H is balancedly splittable if by suitably permuting its rows it can be transformed to

$$
H=\left[\begin{array}{l}
H_{1} \\
H_{2}
\end{array}\right],
$$

such that $H_{1}^{t} H_{1}$ has at most two distinct off-diagonal entries.
Let $H=\left[\begin{array}{l}H_{1} \\ H_{2}\end{array}\right]$ be a balancedly splittable Hadamard matrix of order n, where H_{1} is an $\ell \times n$ matrix. Then, there exist integers a, b and a (0,1)-matrix A such that $a \geq b$ and

$$
H_{1}^{t} H_{1}=\ell I_{n}+a A+b\left(J_{n}-A-I_{n}\right) .
$$

Definition

A normalized Hadamard matrix H is balancedly splittable if by suitably permuting its rows it can be transformed to

$$
H=\left[\begin{array}{l}
H_{1} \\
H_{2}
\end{array}\right],
$$

such that $H_{1}^{t} H_{1}$ has at most two distinct off-diagonal entries.
Let $H=\left[\begin{array}{l}H_{1} \\ H_{2}\end{array}\right]$ be a balancedly splittable Hadamard matrix of order n, where H_{1} is an $\ell \times n$ matrix. Then, there exist integers a, b and a (0,1)-matrix A such that $a \geq b$ and

$$
H_{1}^{t} H_{1}=\ell I_{n}+a A+b\left(J_{n}-A-I_{n}\right)
$$

We will concentrate on the case where $b=-a$.

Equiangular Tight Frames

Equiangular Tight Frames

Let $X=\left\{L_{1}, L_{2}, \ldots, L_{k}\right\}$ be a finite set of lines in \mathbb{R}^{m} and let the line L_{i} be spanned by the unit vector u_{i}.

Equiangular Tight Frames

Let $X=\left\{L_{1}, L_{2}, \ldots, L_{k}\right\}$ be a finite set of lines in \mathbb{R}^{m} and let the line L_{i} be spanned by the unit vector u_{i}.
X is said to form an Equiangular Tight Frame, ETF,

Equiangular Tight Frames

Let $X=\left\{L_{1}, L_{2}, \ldots, L_{k}\right\}$ be a finite set of lines in \mathbb{R}^{m} and let the line L_{i} be spanned by the unit vector u_{i}.
X is said to form an Equiangular Tight Frame, ETF, if $\left|\left\langle\mathbf{u}_{i}, \mathbf{u}_{j}\right\rangle\right|=\alpha$, for some number $0<\alpha<1, i \neq j$, and

Equiangular Tight Frames

Let $X=\left\{L_{1}, L_{2}, \ldots, L_{k}\right\}$ be a finite set of lines in \mathbb{R}^{m} and let the line L_{i} be spanned by the unit vector u_{i}.
X is said to form an Equiangular Tight Frame, ETF, if $\left|\left\langle\mathbf{u}_{i}, \mathbf{u}_{j}\right\rangle\right|=\alpha$, for some number $0<\alpha<1, i \neq j$, and

$$
\sum_{j=1}^{k}\left|\left\langle x, u_{j}\right\rangle\right|^{2}=\|x\|^{2}
$$

Equiangular Tight Frames

Let $X=\left\{L_{1}, L_{2}, \ldots, L_{k}\right\}$ be a finite set of lines in \mathbb{R}^{m} and let the line L_{i} be spanned by the unit vector u_{i}.
X is said to form an Equiangular Tight Frame, ETF, if $\left|\left\langle\mathbf{u}_{i}, \mathbf{u}_{j}\right\rangle\right|=\alpha$, for some number $0<\alpha<1, i \neq j$, and

$$
\sum_{j=1}^{k}\left|\left\langle x, u_{j}\right\rangle\right|^{2}=\|x\|^{2}
$$

holds for every $x \in \mathbb{R}^{m}$.

Delsarte, Goethals and Seidel (DGS)(1975):

Equiangular Tight Frames

Let $X=\left\{L_{1}, L_{2}, \ldots, L_{k}\right\}$ be a finite set of lines in \mathbb{R}^{m} and let the line L_{i} be spanned by the unit vector u_{i}.
X is said to form an Equiangular Tight Frame, ETF, if $\left|\left\langle\mathbf{u}_{i}, \mathbf{u}_{j}\right\rangle\right|=\alpha$, for some number $0<\alpha<1, i \neq j$, and

$$
\sum_{j=1}^{k}\left|\left\langle x, u_{j}\right\rangle\right|^{2}=\|x\|^{2}
$$

holds for every $x \in \mathbb{R}^{m}$.

Delsarte, Goethals and Seidel (DGS)(1975):

Let $X \subset \mathbb{R}^{m}$ be a set of unit vectors such that $|\langle v, w\rangle|=\alpha$ for all $v, w \in X, v \neq w$. If $m<\frac{1}{\alpha^{2}}$, then

$$
|X| \leq \frac{m\left(1-\alpha^{2}\right)}{1-m \alpha^{2}}
$$

A balancedly splittable Hadamard matrix

A balancedly splittable Hadamard matrix

- a balanced split

The rows of a splitted Hadamard matrix considered as lines in \mathbb{R}^{6}

The rows of a splitted Hadamard matrix considered as lines in \mathbb{R}^{6}

$$
\left(\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
\hdashline 1 & 1 & 1 & 1 & - & - \\
\hdashline & - & - & - \\
1 & 1 & 1 & - & 1 & 1 \\
1 & 1 & - & 1 & - & 1 \\
1 & - & 1 & 1 & 1 & - \\
\hdashline 1 & 1 & 1 & 1 & - & 1 \\
1 & 1 & 1 & 1 & 1 \\
-1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & - & 1 \\
1 & 1 & - & 1 & 1 & - \\
-1 & 1 & 1 & 1 & 1 & - \\
1 & - & 1 & 1 & 1 \\
1 & - & 1 & 1 & 1 \\
-1 & 1 & 1 & 1 & 1
\end{array}\right)
$$

The rows of a splitted Hadamard matrix considered as lines in \mathbb{R}^{6}

$$
\left(\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
\hdashline 1 & - & 1 & 1 & - & - \\
1 & 1 & - & - \\
\hdashline 1 & 1 & - & 1 & 1 \\
1 & 1 & - & 1 & 1 & - \\
1 & - & 1 & 1 & 1 & 1 \\
\hdashline 1 & 1 & 1 & 1 & - & 1 \\
1 & 1 & 1 & 1 & 1 \\
\hdashline 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & - & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & - \\
-1 & 1 & 1 & 1 & 1 & - \\
1 & - & 1 & 1 & - & 1 \\
-1 & 1 & 1 & 1 & 1 \\
- & 1 & -1 & 1
\end{array}\right)
$$

- forms an ETF meeting the DGS upper bound.

The rows of a splitted Hadamard matrix considered as lines in \mathbb{R}^{6}

$$
\left(\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
\hdashline 1 & - & 1 & 1 & - & - \\
1 & 1 & - & - \\
\hdashline 1 & 1 & - & 1 & 1 \\
1 & 1 & - & 1 & 1 & - \\
1 & - & 1 & 1 & 1 & 1 \\
\hdashline 1 & 1 & 1 & 1 & - & 1 \\
1 & 1 & 1 & 1 & 1 \\
\hdashline 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & - & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & - \\
-1 & 1 & 1 & 1 & 1 & - \\
1 & - & 1 & 1 & - & 1 \\
-1 & 1 & 1 & 1 & 1 \\
- & 1 & -1 & 1
\end{array}\right)
$$

- forms an ETF meeting the DGS upper bound.

Definition: Unbiased Hadamard Matrices

Hadamard matrices H and K of order n are unbiased if

$$
H K^{t}=\sqrt{n} L
$$

for some Hadamard matrix L of order n.

Definition: Unbiased Hadamard Matrices

Hadamard matrices H and K of order n are unbiased if

$$
H K^{t}=\sqrt{n} L
$$

for some Hadamard matrix L of order n.

A balancedly splittable Hadamard matrix

A balancedly splittable Hadamard matrix

A balancedly splittable Hadamard matrix

- a balanced split

From the splitted matrix H another matrix K

From the splitted matrix H another matrix K

From the splitted matrix H another matrix K

- is formed

From the splitted matrix H another matrix K

- is formed
- H and K are unbiased

From the splitted matrix H another matrix K

- is formed
- H and K are unbiased

Some properties of balancedly splitted Hadamard matrices

Some properties of balancedly splitted Hadamard matrices

Let $H=\left[\begin{array}{l}H_{1} \\ H_{2}\end{array}\right]$ be a balancedly splitted Hadamard matrix of order n with $H_{1}^{t} H_{1}=\ell I_{n}+a S$ where $a \neq 0$ and S is an $n \times n(0,1,-1)$-matrix.

Some properties of balancedly splitted Hadamard matrices

Let $H=\left[\begin{array}{l}H_{1} \\ H_{2}\end{array}\right]$ be a balancedly splitted Hadamard matrix of order n with $H_{1}^{t} H_{1}=\ell I_{n}+a S$ where $a \neq 0$ and S is an $n \times n(0,1,-1)$-matrix. Then the following are equivalent.

Some properties of balancedly splitted Hadamard matrices

Let $H=\left[\begin{array}{l}H_{1} \\ H_{2}\end{array}\right]$ be a balancedly splitted Hadamard matrix of order n with $H_{1}^{t} H_{1}=\ell I_{n}+a S$ where $a \neq 0$ and S is an $n \times n(0,1,-1)$-matrix. Then the following are equivalent.

- $K=\frac{1}{2 a}\left(H_{1}^{t} H_{1}-H_{2}^{t} H_{2}\right)$ is a Hadamard matrix.

Some properties of balancedly splitted Hadamard matrices

Let $H=\left[\begin{array}{l}H_{1} \\ H_{2}\end{array}\right]$ be a balancedly splitted Hadamard matrix of order n with $H_{1}^{t} H_{1}=\ell I_{n}+a S$ where $a \neq 0$ and S is an $n \times n(0,1,-1)$-matrix. Then the following are equivalent.

- $K=\frac{1}{2 a}\left(H_{1}^{t} H_{1}-H_{2}^{t} H_{2}\right)$ is a Hadamard matrix.
- $(\ell, a)=\left(\frac{n \pm \sqrt{n}}{2}, \frac{\sqrt{n}}{2}\right)$.

Some properties of balancedly splitted Hadamard matrices

Let $H=\left[\begin{array}{l}H_{1} \\ H_{2}\end{array}\right]$ be a balancedly splitted Hadamard matrix of order n with $H_{1}^{t} H_{1}=\ell I_{n}+a S$ where $a \neq 0$ and S is an $n \times n(0,1,-1)$-matrix. Then the following are equivalent.

- $K=\frac{1}{2 a}\left(H_{1}^{t} H_{1}-H_{2}^{t} H_{2}\right)$ is a Hadamard matrix.
- $(\ell, a)=\left(\frac{n \pm \sqrt{n}}{2}, \frac{\sqrt{n}}{2}\right)$.

In this case, $n=4 k^{2}$ for some integer k,

$$
H K^{t}=\sqrt{n}\left[\begin{array}{r}
H_{1} \\
-H_{2}
\end{array}\right]
$$

Some properties of balancedly splitted Hadamard matrices

Let $H=\left[\begin{array}{l}H_{1} \\ H_{2}\end{array}\right]$ be a balancedly splitted Hadamard matrix of order n with $H_{1}^{t} H_{1}=\ell I_{n}+a S$ where $a \neq 0$ and S is an $n \times n(0,1,-1)$-matrix. Then the following are equivalent.

- $K=\frac{1}{2 a}\left(H_{1}^{t} H_{1}-H_{2}^{t} H_{2}\right)$ is a Hadamard matrix.
- $(\ell, a)=\left(\frac{n \pm \sqrt{n}}{2}, \frac{\sqrt{n}}{2}\right)$.

In this case, $n=4 k^{2}$ for some integer k,

$$
H K^{t}=\sqrt{n}\left[\begin{array}{r}
H_{1} \\
-H_{2}
\end{array}\right]
$$

and thus the Hadamard matrices H and K are unbiased.

Some properties of balancedly splitted Hadamard matrices

Let $H=\left[\begin{array}{l}H_{1} \\ H_{2}\end{array}\right]$ be a balancedly splitted Hadamard matrix of order n with $H_{1}^{t} H_{1}=\ell I_{n}+a S$ where $a \neq 0$ and S is an $n \times n(0,1,-1)$-matrix. Then the following are equivalent.

- $K=\frac{1}{2 a}\left(H_{1}^{t} H_{1}-H_{2}^{t} H_{2}\right)$ is a Hadamard matrix.
- $(\ell, a)=\left(\frac{n \pm \sqrt{n}}{2}, \frac{\sqrt{n}}{2}\right)$.

In this case, $n=4 k^{2}$ for some integer k,

$$
H K^{t}=\sqrt{n}\left[\begin{array}{r}
H_{1} \\
-H_{2}
\end{array}\right]
$$

and thus the Hadamard matrices H and K are unbiased.
Two of the five Hadamard matrices of order 16 fail to be balancedly splittable with $(\ell, a)=(6,2)$.

Nonexistence

There is no balancedly splittable Hadamard matrix with the parameters $(n, \ell, a), \ell+a \not \equiv 0(\bmod 4)$.

There is no balancedly splittable Hadamard matrix with the parameters $(n, \ell, a), \ell+a \not \equiv 0(\bmod 4)$.
Let x, y, x, w be non-negative integers such that

There is no balancedly splittable Hadamard matrix with the parameters $(n, \ell, a), \ell+a \not \equiv 0(\bmod 4)$.
Let x, y, x, w be non-negative integers such that

Then it follows that

$$
\left\{\begin{array}{l}
x+y+z+w=\ell \\
x+y-z-w=a \\
x-y+z-w=a \\
x-y-z+w=-a
\end{array}\right.
$$

There is no balancedly splittable Hadamard matrix with the parameters $(n, \ell, a), \ell+a \not \equiv 0(\bmod 4)$.
Let x, y, x, w be non-negative integers such that

Then it follows that

$$
\left\{\begin{aligned}
x+y+z+w & =\ell \\
x+y-z-w & =a \\
x-y+z-w & =a \\
x-y-z+w & =-a
\end{aligned}\right.
$$

Solving these equations yields $(x, y, z, w)=\left(\frac{\ell+a}{4}, \frac{\ell+a}{4}, \frac{\ell+a}{4}, \frac{\ell-3 a}{4}\right)$. Therefore, $\ell+a \equiv 0(\bmod 4)$.

Existence

Theorem (K, Pender, Suda, DCC 2021)

There is a balancedly splittable Hadamard matrix of order $4 n^{2}$ for any n an order of a Hadamard matrix.

There are nine submatrices forming the desired matrix:

Theorem (K, Pender, Suda, DCC 2021)

There is a balancedly splittable Hadamard matrix of order $4 n^{2}$ for any n an order of a Hadamard matrix.

There are nine submatrices forming the desired matrix:

$$
\left[\begin{array}{ccc}
G & F & -F \\
E & A & B \\
-E & B & A
\end{array}\right]
$$

Theorem (K, Pender, Suda, DCC 2021)

There is a balancedly splittable Hadamard matrix of order $4 n^{2}$ for any n an order of a Hadamard matrix.

There are nine submatrices forming the desired matrix:

$$
\left[\begin{array}{ccc}
G & F & -F \\
E & A & B \\
-E & B & A
\end{array}\right]
$$

- The most important Hadamard matrix:

$$
\left(\begin{array}{cc}
1 & 1 \\
1 & -
\end{array}\right)
$$

- Auxiliary matrices:

$$
c_{0}=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right), \quad c_{1}=\left(\begin{array}{cc}
1 & - \\
- & 1
\end{array}\right)
$$

The construction

The construction

S1: Form the block Barker sequence

The construction

S1: Form the block Barker sequence

$$
\left(c_{0}, c_{1}\right)
$$

is a block Barker sequence with block autocorrelation 0

The construction

S1: Form the block Barker sequence

$$
\left(c_{0}, c_{1}\right)
$$

is a block Barker sequence with block autocorrelation 0 S2: Form the block Golay sequence

The construction

S1: Form the block Barker sequence

$$
\left(c_{0}, c_{1}\right)
$$

is a block Barker sequence with block autocorrelation 0
S2: Form the block Golay sequence

- The sequences

$$
\left(c_{0}, c_{1}, c_{1}\right) \quad\left(c_{0}, c_{1},-c_{1}\right)
$$

form a block Golay pair with sum of autocorrelation 0 .

The construction

S1: Form the block Barker sequence

$$
\left(c_{0}, c_{1}\right)
$$

is a block Barker sequence with block autocorrelation 0
S2: Form the block Golay sequence

- The sequences

$$
\left(c_{0}, c_{1}, c_{1}\right) \quad\left(c_{0}, c_{1},-c_{1}\right)
$$

form a block Golay pair with sum of autocorrelation 0 .
S3: Form two block circulant matrices

The construction

S1: Form the block Barker sequence

$$
\left(c_{0}, c_{1}\right)
$$

is a block Barker sequence with block autocorrelation 0
S2: Form the block Golay sequence

- The sequences

$$
\left(c_{0}, c_{1}, c_{1}\right) \quad\left(c_{0}, c_{1},-c_{1}\right)
$$

form a block Golay pair with sum of autocorrelation 0 .
S3: Form two block circulant matrices

- $\operatorname{bcirc}\left(c_{0} c_{1} c_{1}\right) \quad \operatorname{bcirc}\left(c_{0} c_{1} \bar{c}_{1}\right)$
form a block complementary pair with block autocorrelation 0

The construction

S1: Form the block Barker sequence

$$
\left(c_{0}, c_{1}\right)
$$

is a block Barker sequence with block autocorrelation 0
S2: Form the block Golay sequence

- The sequences

$$
\left(c_{0}, c_{1}, c_{1}\right) \quad\left(c_{0}, c_{1},-c_{1}\right)
$$

form a block Golay pair with sum of autocorrelation 0 .
S3: Form two block circulant matrices

- $\operatorname{bcirc}\left(c_{0} c_{1} c_{1}\right) \quad \operatorname{bcirc}\left(c_{0} c_{1} \bar{c}_{1}\right)$
form a block complementary pair with block autocorrelation 0
- Form the matrices
- Form the matrices

$\mathrm{A}=\operatorname{bcirc}\left(c_{0} c_{1} c_{1}\right), \quad \mathrm{B}=\operatorname{bcirc}\left(c_{0} c_{1} \bar{c}_{1}\right)$

- Form the matrices
$\mathrm{A}=\operatorname{bcirc}\left(c_{0} c_{1} c_{1}\right), \quad \mathrm{B}=\operatorname{bcirc}\left(c_{0} c_{1} \bar{c}_{1}\right)$
Then the matrix

And

$$
\Theta \Theta^{t}=(2)\left(\begin{array}{cccccc|cccccc}
6 & \overline{2} & 0 & 0 & 0 & 0 & 2 & 2 & 0 & 0 & 0 & 0 \\
\overline{2} & 6 & 0 & 0 & 0 & 0 & 2 & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 6 & \overline{2} & 0 & 0 & 0 & 0 & 2 & 2 & 0 & 0 \\
0 & 0 & \overline{2} & 6 & 0 & 0 & 0 & 0 & 2 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 6 & \overline{2} & 0 & 0 & 0 & 0 & 2 & 2 \\
0 & 0 & 0 & 0 & \overline{2} & 6 & 0 & 0 & 0 & 0 & 2 & 2 \\
\hline 2 & 2 & 0 & 0 & 0 & 0 & 6 & 2 & 0 & 0 & 0 & 0 \\
2 & 2 & 0 & 0 & 0 & 0 & \overline{2} & 6 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 2 & 0 & 0 & 0 & 0 & 6 & \overline{2} & 0 & 0 \\
0 & 0 & 2 & 2 & 0 & 0 & 0 & 0 & \overline{2} & 6 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & 2 & 0 & 0 & 0 & 0 & 6 & \overline{2} \\
0 & 0 & 0 & 0 & 2 & 2 & 0 & 0 & 0 & 0 & \overline{2} & 6
\end{array}\right)
$$

$$
\left(\begin{array}{ccc|cccccc|ccccccc}
* & * & * & * & * & * & * & * & * & * & * & * & * & * & * & * \\
* & * & * & * & * & * & * & * & * & * & * & * & * & * & * & * \\
* & * & * & * & * & * & * & * & * & * & * & * & * & * & * & * \\
* & * & * & * & * & * & * & * & * & * & * & * & * & * & * & * \\
\hline * & * & * & * & 1 & 1 & 1 & - & 1 & - & 1 & 1 & 1 & - & - & 1 \\
* & * & * & * & 1 & 1 & - & 1 & - & 1 & 1 & 1 & - & 1 & 1 & - \\
* & * & * & * & 1 & - & 1 & 1 & 1 & - & 1 & 1 & 1 & 1 & 1 & - \\
* & * & * & * & -1 & 1 & 1 & - & 1 & 1 & - & 1 & 1 & - & 1 \\
* & * & * & 1 & - & 1 & - & 1 & 1 & 1 & - & - & 1 & 1 & 1 \\
* * & * & * & - & 1 & - & 1 & 1 & 1 & - & 1 & 1 & - & 1 & 1 \\
\hline * * & * & * & 1 & 1 & 1 & - & - & 1 & 1 & 1 & 1 & - & 1 & - \\
* & * & * & 1 & 1 & - & 1 & 1 & - & 1 & 1 & - & 1 & - & 1 \\
* & * & * & * & 1 & 1 & 1 & 1 & 1 & - & 1 & - & 1 & 1 & 1 & - \\
* & * & * & * & 1 & - & 1 & 1 & - & 1 & - & 1 & 1 & 1 & - & 1 \\
* & * & * & * & 1 & - & - & 1 & 1 & 1 & 1 & - & 1 & \frac{1}{1} & 1 \\
* & * & * & * & - & 1 & 1 & - & 1 & 1 & - & 1 & - & 1 & 1 & 1
\end{array}\right)
$$

Summary

For Hadamard matrices

For Hadamard matrices

- There is a balancedly splittable Hadamard matrix of order $64 n^{2}$ for any $4 n$ an order of a Hadamard matrix.

For Hadamard matrices

- There is a balancedly splittable Hadamard matrix of order $64 n^{2}$ for any $4 n$ an order of a Hadamard matrix. Case of $n=12=4(3)$ leading to order $576=64(3)^{2}$.
- No Hadamard matrix of order $4 n^{2}, n$ odd, is balancedly splittable.

For Hadamard matrices

- There is a balancedly splittable Hadamard matrix of order $64 n^{2}$ for any $4 n$ an order of a Hadamard matrix. Case of $n=12=4(3)$ leading to order $576=64(3)^{2}$.
- No Hadamard matrix of order $4 n^{2}, n$ odd, is balancedly splittable.
- K, Suda, Discrete Math. (2019) "Balancedly splittable Hadamard matrices" missed case of $n=144$.

For Hadamard matrices

- There is a balancedly splittable Hadamard matrix of order $64 n^{2}$ for any $4 n$ an order of a Hadamard matrix. Case of $n=12=4(3)$ leading to order $576=64(3)^{2}$.
- No Hadamard matrix of order $4 n^{2}, n$ odd, is balancedly splittable.
- K, Suda, Discrete Math. (2019) "Balancedly splittable Hadamard matrices" missed case of $n=144$.
- Jonathan Jedwab, et al. EJC (2023) "Constructions and Restrictions for Balanced Splittable Hadamard Matrices" also missed case of $n=144$.

For Hadamard matrices

- There is a balancedly splittable Hadamard matrix of order $64 n^{2}$ for any $4 n$ an order of a Hadamard matrix. Case of $n=12=4(3)$ leading to order $576=64(3)^{2}$.
- No Hadamard matrix of order $4 n^{2}, n$ odd, is balancedly splittable.
- K, Suda, Discrete Math. (2019) "Balancedly splittable Hadamard matrices" missed case of $n=144$.
- Jonathan Jedwab, et al. EJC (2023) "Constructions and Restrictions for Balanced Splittable Hadamard Matrices" also missed case of $n=144$.
- There is a balancedly splittable quaternary Hadamard matrix of order $16 n^{2}$ for which there is a quaternary Hadamard matrix of order $2 n$.

For Hadamard matrices

- There is a balancedly splittable Hadamard matrix of order $64 n^{2}$ for any $4 n$ an order of a Hadamard matrix. Case of $n=12=4(3)$ leading to order $576=64(3)^{2}$.
- No Hadamard matrix of order $4 n^{2}, n$ odd, is balancedly splittable.
- K, Suda, Discrete Math. (2019) "Balancedly splittable Hadamard matrices" missed case of $n=144$.
- Jonathan Jedwab, et al. EJC (2023) "Constructions and Restrictions for Balanced Splittable Hadamard Matrices" also missed case of $n=144$.
- There is a balancedly splittable quaternary Hadamard matrix of order $16 n^{2}$ for which there is a quaternary Hadamard matrix of order $2 n$. Case of $n=3$ leading to order $16(3)^{2}=144$.

For Hadamard matrices

- There is a balancedly splittable Hadamard matrix of order $64 n^{2}$ for any $4 n$ an order of a Hadamard matrix. Case of $n=12=4(3)$ leading to order $576=64(3)^{2}$.
- No Hadamard matrix of order $4 n^{2}, n$ odd, is balancedly splittable.
- K, Suda, Discrete Math. (2019) "Balancedly splittable Hadamard matrices" missed case of $n=144$.
- Jonathan Jedwab, et al. EJC (2023) "Constructions and Restrictions for Balanced Splittable Hadamard Matrices" also missed case of $n=144$.
- There is a balancedly splittable quaternary Hadamard matrix of order $16 n^{2}$ for which there is a quaternary Hadamard matrix of order $2 n$. Case of $n=3$ leading to order $16(3)^{2}=144$.
- There is a balancedly splittable Butson Hadamard matrix of order $4 n^{2}, n$ odd for which there is a Butson Hadamard matrix of order n.

For Hadamard matrices

- There is a balancedly splittable Hadamard matrix of order $64 n^{2}$ for any $4 n$ an order of a Hadamard matrix. Case of $n=12=4(3)$ leading to order $576=64(3)^{2}$.
- No Hadamard matrix of order $4 n^{2}, n$ odd, is balancedly splittable.
- K, Suda, Discrete Math. (2019) "Balancedly splittable Hadamard matrices" missed case of $n=144$.
- Jonathan Jedwab, et al. EJC (2023) "Constructions and Restrictions for Balanced Splittable Hadamard Matrices" also missed case of $n=144$.
- There is a balancedly splittable quaternary Hadamard matrix of order $16 n^{2}$ for which there is a quaternary Hadamard matrix of order $2 n$. Case of $n=3$ leading to order $16(3)^{2}=144$.
- There is a balancedly splittable Butson Hadamard matrix of order $4 n^{2}, n$ odd for which there is a Butson Hadamard matrix of order n. Case of $n=3$ leading to order $4(3)^{2}=36$.

Balancedly multi-splittable Hadamard matrices

$\mathrm{OA}(5,4)$ on $\{1,2,3,4\}$:

$$
\left[\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 \\
1 & 2 & 2 & 2 & 2 \\
1 & 3 & 3 & 3 & 3 \\
1 & 4 & 4 & 4 & 4 \\
2 & 1 & 2 & 3 & 4 \\
2 & 2 & 1 & 4 & 3 \\
2 & 3 & 4 & 1 & 2 \\
2 & 4 & 3 & 2 & 1 \\
3 & 1 & 3 & 4 & 2 \\
3 & 3 & 1 & 2 & 4 \\
3 & 4 & 2 & 1 & 3 \\
3 & 2 & 4 & 3 & 1 \\
4 & 1 & 4 & 2 & 3 \\
4 & 4 & 1 & 3 & 2 \\
4 & 2 & 3 & 1 & 4 \\
4 & 3 & 2 & 4 & 1
\end{array}\right]
$$

A normalized Hadamard matrix H_{4} :

$$
\left[\begin{array}{c|ccc}
1 & 1 & 1 & 1 \\
1 & - & 1 & - \\
1 & 1 & - & - \\
1 & - & - & 1
\end{array}\right]
$$

We have a 16×16 matrix with an added column of 1 's obtained from $\mathrm{OA}(5,4)$ and the rows of H_{4} from which the first column is removed

$$
\left[\begin{array}{c|ccc|ccc|ccc|ccc|ccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & - & 1 & - & - & 1 & - & - & 1 & - & - & 1 & - \\
1 & 1 & 1 & 1 & 1 & - & - & 1 & - & - & 1 & - & - & 1 & - & - \\
1 & 1 & 1 & 1 & - & - & 1 & - & - & 1 & - & - & 1 & - & - & 1 \\
1 & - & 1 & - & 1 & 1 & 1 & - & 1 & - & 1 & - & - & - & - & 1 \\
1 & - & 1 & - & - & 1 & - & 1 & 1 & 1 & - & - & 1 & 1 & - & - \\
1 & -1 & - & 1 & - & - & - & - & 1 & 1 & 1 & 1 & - & 1 & - \\
1 & - & 1 & - & - & - & 1 & 1 & - & - & - & 1 & - & 1 & 1 & 1 \\
1 & 1 & - & - & 1 & 1 & 1 & 1 & - & - & - & - & 1 & - & 1 & - \\
1 & 1 & - & - & 1 & - & - & 1 & 1 & 1 & - & 1 & - & - & - & 1 \\
1 & 1 & - & - & - & - & 1 & - & 1 & - & 1 & 1 & 1 & 1 & - & - \\
1 & 1 & - & - & - & 1 & - & - & - & 1 & 1 & - & - & 1 & 1 & 1 \\
1 & - & -1 & 1 & 1 & 1 & - & - & 1 & - & 1 & - & 1 & - & - \\
1 & - & - & 1 & - & - & 1 & 1 & 1 & 1 & 1 & - & - & - & 1 & - \\
1 & - & - & - & 1 & - & 1 & - & - & 1 & 1 & 1 & - & - & 1 \\
1 & - & - & 1 & - & - & 1 & - & - & - & 1 & 1 & 1 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{cc|ccc|ccc|ccc|ccc|ccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & - & 1 & - & - & 1 & - & - & 1 & - & - & 1 & - \\
1 & 1 & 1 & 1 & 1 & - & - & 1 & - & - & 1 & - & - & 1 & - & - \\
1 & 1 & 1 & 1 & - & - & 1 & - & - & 1 & - & - & 1 & - & - & 1 \\
1 & - & 1 & - & 1 & 1 & 1 & - & 1 & - & 1 & - & - & - & - & 1 \\
1 & - & 1 & - & - & 1 & - & 1 & 1 & 1 & - & - & 1 & 1 & - & - \\
1 & - & 1 & - & 1 & - & - & - & - & 1 & 1 & 1 & 1 & - & 1 & - \\
1 & - & 1 & - & - & - & 1 & 1 & - & - & - & 1 & - & 1 & 1 & 1 \\
1 & 1 & - & - & 1 & 1 & 1 & 1 & - & - & - & - & 1 & - & 1 & - \\
1 & 1 & - & - & 1 & - & - & 1 & 1 & 1 & - & 1 & - & - & - & 1 \\
1 & 1 & - & - & - & - & 1 & - & 1 & - & 1 & 1 & 1 & 1 & - & - \\
1 & 1 & - & - & - & 1 & - & - & - & 1 & 1 & - & - & 1 & 1 & 1 \\
1 & - & - & 1 & 1 & 1 & 1 & - & - & 1 & - & 1 & - & 1 & - & - \\
1 & - & - & 1 & - & - & 1 & 1 & 1 & 1 & 1 & - & - & - & 1 & - \\
1 & - & - & - & -1 & - & 1 & - & - & 1 & 1 & 1 & - & - & 1 \\
1 & - & - & 1 & 1 & - & - & 1 & - & - & - & 1 & 1 & 1 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{c|ccc|ccc|ccc|ccc|ccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & - & 1 & - & - & 1 & - & - & 1 & - & - & 1 & - \\
1 & 1 & 1 & 1 & 1 & - & - & 1 & - & - & 1 & - & - & 1 & - & - \\
1 & 1 & 1 & 1 & - & - & 1 & - & - & 1 & - & - & 1 & - & - & 1 \\
1 & - & 1 & - & 1 & 1 & 1 & - & 1 & - & 1 & - & - & - & - & 1 \\
1 & - & 1 & - & - & 1 & - & 1 & 1 & 1 & - & - & 1 & 1 & - & - \\
1 & -1 & - & 1 & - & - & - & - & 1 & 1 & 1 & 1 & - & 1 & - \\
1 & - & 1 & - & - & - & 1 & 1 & - & - & - & 1 & - & 1 & 1 & 1 \\
1 & 1 & - & - & 1 & 1 & 1 & 1 & - & - & - & - & 1 & - & 1 & - \\
1 & 1 & - & - & 1 & - & - & 1 & 1 & 1 & - & 1 & - & - & - & 1 \\
1 & 1 & - & - & - & - & 1 & - & 1 & - & 1 & 1 & 1 & 1 & - & - \\
1 & 1 & - & - & - & 1 & - & - & - & 1 & 1 & - & - & 1 & 1 & 1 \\
1 & - & - & 1 & 1 & 1 & - & - & 1 & - & 1 & - & 1 & - & - \\
1 & - & -1 & - & - & 1 & 1 & 1 & 1 & - & - & - & 1 & - \\
1 & - & - & 1 & -1 & - & 1 & - & - & 1 & 1 & 1 & - & - & 1 \\
1 & - & - & 1 & - & - & - & 1 & - & - & - & 1 & 1 & 1 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{cc|ccc|ccc|ccc|ccc|ccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & - & 1 & - & - & 1 & - & - & 1 & - & - & 1 & - \\
1 & 1 & 1 & 1 & 1 & - & - & 1 & - & - & 1 & - & - & 1 & - & - \\
1 & 1 & 1 & 1 & - & - & 1 & - & - & 1 & - & - & 1 & - & - & 1 \\
1 & - & 1 & - & 1 & 1 & 1 & - & 1 & - & 1 & - & - & - & - & 1 \\
1 & - & 1 & - & - & 1 & - & 1 & 1 & 1 & - & - & 1 & 1 & - & - \\
1 & - & 1 & - & 1 & - & - & - & - & 1 & 1 & 1 & 1 & - & 1 & - \\
1 & - & 1 & - & - & - & 1 & 1 & - & - & - & 1 & - & 1 & 1 & 1 \\
1 & 1 & - & - & 1 & 1 & 1 & 1 & - & - & - & - & 1 & - & 1 & - \\
1 & 1 & - & - & 1 & - & - & 1 & 1 & 1 & - & 1 & - & - & - & 1 \\
1 & 1 & - & - & - & - & 1 & - & 1 & - & 1 & 1 & 1 & 1 & - & - \\
1 & 1 & - & - & - & 1 & - & - & - & 1 & 1 & - & - & 1 & 1 & 1 \\
1 & - & - & 1 & 1 & 1 & 1 & - & - & 1 & - & 1 & - & 1 & - & - \\
1 & - & - & 1 & - & - & 1 & 1 & 1 & 1 & 1 & - & - & - & 1 & - \\
1 & - & - & 1 & - & 1 & - & 1 & - & - & 1 & 1 & 1 & - & - & 1 \\
1 & - & - & 1 & 1 & - & - & 1 & - & - & - & 1 & 1 & 1 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{cc|ccc|ccc|ccc|ccc|ccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & - & 1 & - & - & 1 & - & - & 1 & - & - & 1 & - \\
1 & 1 & 1 & 1 & 1 & - & - & 1 & - & - & 1 & - & - & 1 & - & - \\
1 & 1 & 1 & 1 & - & - & 1 & - & - & 1 & - & - & 1 & - & - & 1 \\
1 & - & 1 & - & 1 & 1 & 1 & - & 1 & - & 1 & - & - & - & - & 1 \\
1 & - & 1 & - & - & 1 & - & 1 & 1 & 1 & - & - & 1 & 1 & - & - \\
1 & - & 1 & - & 1 & - & - & - & - & 1 & 1 & 1 & 1 & - & 1 & - \\
1 & - & 1 & - & - & - & 1 & 1 & - & - & - & 1 & - & 1 & 1 & 1 \\
1 & 1 & - & - & 1 & 1 & 1 & 1 & - & - & - & - & 1 & - & 1 & - \\
1 & 1 & - & - & 1 & - & - & 1 & 1 & 1 & - & 1 & - & - & - & 1 \\
1 & 1 & - & - & - & - & 1 & - & 1 & - & 1 & 1 & 1 & 1 & - & - \\
1 & 1 & - & - & - & 1 & - & - & - & 1 & 1 & - & - & 1 & 1 & 1 \\
1 & - & - & 1 & 1 & 1 & 1 & - & - & 1 & - & 1 & - & 1 & - & - \\
1 & - & - & - & - & 1 & 1 & 1 & 1 & 1 & - & - & - & 1 & - \\
1 & - & - & - & 1 & - & 1 & - & - & 1 & 1 & 1 & - & - & 1 \\
1 & - & - & 1 & - & - & 1 & - & - & - & 1 & 1 & 1 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{cc|ccc|ccc|ccc|ccc|ccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & - & 1 & - & - & 1 & - & - & 1 & - & - & 1 & - \\
1 & 1 & 1 & 1 & 1 & - & - & 1 & - & - & 1 & - & - & 1 & - & - \\
1 & 1 & 1 & 1 & - & - & 1 & - & - & 1 & - & - & 1 & - & - & 1 \\
1 & - & 1 & - & 1 & 1 & 1 & - & 1 & - & 1 & - & - & - & - & 1 \\
1 & - & 1 & - & - & 1 & - & 1 & 1 & 1 & - & - & 1 & 1 & - & - \\
1 & - & 1 & - & 1 & - & - & - & - & 1 & 1 & 1 & 1 & - & 1 & - \\
1 & - & 1 & - & - & - & 1 & 1 & - & - & - & 1 & - & 1 & 1 & 1 \\
1 & 1 & - & - & 1 & 1 & 1 & 1 & - & - & - & - & 1 & - & 1 & - \\
1 & 1 & - & - & 1 & - & - & 1 & 1 & 1 & - & 1 & - & - & - & 1 \\
1 & 1 & - & - & - & - & 1 & - & 1 & - & 1 & 1 & 1 & 1 & - & - \\
1 & 1 & - & - & - & 1 & - & - & - & 1 & 1 & - & - & 1 & 1 & 1 \\
1 & - & - & 1 & 1 & 1 & 1 & - & - & 1 & - & 1 & - & 1 & - & - \\
1 & - & - & - & - & 1 & 1 & 1 & 1 & 1 & - & - & - & 1 & - \\
1 & - & - & - & 1 & - & 1 & - & - & 1 & 1 & 1 & - & - & 1 \\
1 & - & - & 1 & - & - & 1 & - & - & - & 1 & 1 & 1 & 1
\end{array}\right]
$$

From an $\mathrm{OA}(9,8)$ and the rows of a normalized Hadamard matrix H_{8} from which the first column is removed

From an $\mathrm{OA}(9,8)$ and the rows of a normalized Hadamard matrix H_{8} from which the first column is removed we get a 64×63 matrix which is splittable in $\binom{9}{4}=126$ different ways providing 64 ETF in \mathbb{R}^{28} meeting the DGS upper bound.

From an $\mathrm{OA}(9,8)$ and the rows of a normalized Hadamard matrix H_{8} from which the first column is removed we get a 64×63 matrix which is splittable in $\binom{9}{4}=126$ different ways providing 64 ETF in \mathbb{R}^{28} meeting the DGS upper bound.

A Hadamard matrix H of order $4 n^{2}$ is said to be balancedly multi-splittable, BMS,

From an $\mathrm{OA}(9,8)$ and the rows of a normalized Hadamard matrix H_{8} from which the first column is removed we get a 64×63 matrix which is splittable in $\binom{9}{4}=126$ different ways providing 64 ETF in \mathbb{R}^{28} meeting the DGS upper bound.

A Hadamard matrix H of order $4 n^{2}$ is said to be balancedly multi-splittable, BMS, if there is a block form of $H=\left[\begin{array}{llll}1 & H_{1} & \cdots & H_{2 n+1}\end{array}\right]$, where each H_{i} is of order $4 n^{2} \times(2 n-1)$

From an $\mathrm{OA}(9,8)$ and the rows of a normalized Hadamard matrix H_{8} from which the first column is removed we get a 64×63 matrix which is splittable in $\binom{9}{4}=126$ different ways providing 64 ETF in \mathbb{R}^{28} meeting the DGS upper bound.

A Hadamard matrix H of order $4 n^{2}$ is said to be balancedly multi-splittable, BMS, if there is a block form of $H=\left[\begin{array}{llll}1 & H_{1} & \cdots & H_{2 n+1}\end{array}\right]$, where each H_{i} is of order $4 n^{2} \times(2 n-1)$ such that H is balancedly spllitable with respect to a submatrix $\left[\begin{array}{lll}H_{i_{1}} & \cdots & H_{i_{n}}\end{array}\right]$ for any n-element subset $\left\{i_{1}, \ldots, i_{n}\right\}$ of $\{1,2, \ldots, 2 n+1\}$,

From an $\mathrm{OA}(9,8)$ and the rows of a normalized Hadamard matrix H_{8} from which the first column is removed we get a 64×63 matrix which is splittable in $\binom{9}{4}=126$ different ways providing 64 ETF in \mathbb{R}^{28} meeting the DGS upper bound.

A Hadamard matrix H of order $4 n^{2}$ is said to be balancedly multi-splittable, BMS, if there is a block form of $H=\left[\begin{array}{llll}1 & H_{1} & \cdots & H_{2 n+1}\end{array}\right]$, where each H_{i} is of order $4 n^{2} \times(2 n-1)$ such that H is balancedly spllitable with respect to a submatrix $\left[\begin{array}{lll}H_{i_{1}} & \cdots & H_{i_{n}}\end{array}\right]$ for any n-element subset $\left\{i_{1}, \ldots, i_{n}\right\}$ of $\{1,2, \ldots, 2 n+1\}$, that is, the inner product of any distinct rows of $\left[\begin{array}{lll}H_{i_{1}} & \cdots & H_{i_{n}}\end{array}\right]$ is $\pm n$.

Lemma (K, Suda, EJC 2023)

There is a BMS Hadamard matrix of order 4^{n} for each positive integer n.

From an $\mathrm{OA}(9,8)$ and the rows of a normalized Hadamard matrix H_{8} from which the first column is removed we get a 64×63 matrix which is splittable in $\binom{9}{4}=126$ different ways providing 64 ETF in \mathbb{R}^{28} meeting the DGS upper bound.

A Hadamard matrix H of order $4 n^{2}$ is said to be balancedly multi-splittable, BMS, if there is a block form of $H=\left[\begin{array}{llll}1 & H_{1} & \cdots & H_{2 n+1}\end{array}\right]$, where each H_{i} is of order $4 n^{2} \times(2 n-1)$ such that H is balancedly spllitable with respect to a submatrix $\left[\begin{array}{lll}H_{i_{1}} & \cdots & H_{i_{n}}\end{array}\right]$ for any n-element subset $\left\{i_{1}, \ldots, i_{n}\right\}$ of $\{1,2, \ldots, 2 n+1\}$, that is, the inner product of any distinct rows of $\left[\begin{array}{lll}H_{i_{1}} & \cdots & H_{i_{n}}\end{array}\right]$ is $\pm n$.

Lemma (K, Suda, EJC 2023)

There is a BMS Hadamard matrix of order 4^{n} for each positive integer n.
Conjecture: Hadamard matrices of order 4^{n} are the only Hadamard matrices which are possibly BMS.

Hadamard matrices related to projective planes

We have used an $\mathrm{OA}(5,4)$ on 4 symbols and a H_{4},

We have used an $\mathrm{OA}(5,4)$ on 4 symbols and a H_{4}, an $\mathrm{OA}(9,8)$ on 8 symbols and a H_{8} to construct BMS Hadamard matrices.

We have used an $\mathrm{OA}(5,4)$ on 4 symbols and a H_{4}, an $\mathrm{OA}(9,8)$ on 8 symbols and a H_{8} to construct BMS Hadamard matrices.

What happens if one uses an $\mathrm{OA}(13,12)$ and a H_{12} ?

We have used an $\mathrm{OA}(5,4)$ on 4 symbols and a H_{4}, an $\mathrm{OA}(9,8)$ on 8 symbols and a H_{8} to construct BMS Hadamard matrices.

What happens if one uses an $\mathrm{OA}(13,12)$ and a H_{12} ?
It is not known if there is an $\operatorname{OA}(13,12)$ on 12 symbols,

We have used an $\mathrm{OA}(5,4)$ on 4 symbols and a H_{4}, an $\mathrm{OA}(9,8)$ on 8 symbols and a H_{8} to construct BMS Hadamard matrices.

What happens if one uses an $\mathrm{OA}(13,12)$ and a H_{12} ?
It is not known if there is an $\operatorname{OA}(13,12)$ on 12 symbols, OR equivalently a projective plane of order 12 .

We have used an $\mathrm{OA}(5,4)$ on 4 symbols and a H_{4}, an $\mathrm{OA}(9,8)$ on 8 symbols and a H_{8} to construct BMS Hadamard matrices.

What happens if one uses an $\mathrm{OA}(13,12)$ and a H_{12} ?
It is not known if there is an $\mathrm{OA}(13,12)$ on 12 symbols, OR equivalently a projective plane of order 12.

Theorem (K, Suda, EJC 2023)

Let n be the order of a Hadamard matrix. The existence of a projective plane of order n is equivalent to the existence of a balancedly multi-splittable Hadamard matrix of order n^{2}.

We have used an $\mathrm{OA}(5,4)$ on 4 symbols and a H_{4}, an $\mathrm{OA}(9,8)$ on 8 symbols and a H_{8} to construct BMS Hadamard matrices.

What happens if one uses an $\mathrm{OA}(13,12)$ and a H_{12} ?
It is not known if there is an $\mathrm{OA}(13,12)$ on 12 symbols, OR equivalently a projective plane of order 12 .

Theorem (K, Suda, EJC 2023)

Let n be the order of a Hadamard matrix. The existence of a projective plane of order n is equivalent to the existence of a balancedly multi-splittable Hadamard matrix of order n^{2}.

From an $\mathrm{OA}(13,12)$ on 12 symbols one can construct a BMS Hadamard matrix of order 144 in such a way that there are 1716 different choices of 66 columns generating ETF in \mathbb{R}^{66} meeting the DGS upper bound.

We have used an $\mathrm{OA}(5,4)$ on 4 symbols and a H_{4}, an $\mathrm{OA}(9,8)$ on 8 symbols and a H_{8} to construct BMS Hadamard matrices.

What happens if one uses an $\mathrm{OA}(13,12)$ and a H_{12} ?
It is not known if there is an $\operatorname{OA}(13,12)$ on 12 symbols, $O R$ equivalently a projective plane of order 12 .

Theorem (K, Suda, EJC 2023)

Let n be the order of a Hadamard matrix. The existence of a projective plane of order n is equivalent to the existence of a balancedly multi-splittable Hadamard matrix of order n^{2}.

From an $\mathrm{OA}(13,12)$ on 12 symbols one can construct a BMS Hadamard matrix of order 144 in such a way that there are 1716 different choices of 66 columns generating ETF in \mathbb{R}^{66} meeting the DGS upper bound. Assuming the existence of an $\mathrm{OA}(13,12)$ on 12 symbols and using any H_{12}, the construction is similar to the cases of $\mathrm{OA}(\mathrm{n}+1, \mathrm{n})$ on n symbols, $n=4,8$.

We have used an $\mathrm{OA}(5,4)$ on 4 symbols and a H_{4}, an $\mathrm{OA}(9,8)$ on 8 symbols and a H_{8} to construct BMS Hadamard matrices.

What happens if one uses an $\mathrm{OA}(13,12)$ and a H_{12} ?
It is not known if there is an $\operatorname{OA}(13,12)$ on 12 symbols, $O R$ equivalently a projective plane of order 12 .

Theorem (K, Suda, EJC 2023)

Let n be the order of a Hadamard matrix. The existence of a projective plane of order n is equivalent to the existence of a balancedly multi-splittable Hadamard matrix of order n^{2}.

From an $\mathrm{OA}(13,12)$ on 12 symbols one can construct a BMS Hadamard matrix of order 144 in such a way that there are 1716 different choices of 66 columns generating ETF in \mathbb{R}^{66} meeting the DGS upper bound. Assuming the existence of an $\mathrm{OA}(13,12)$ on 12 symbols and using any H_{12}, the construction is similar to the cases of $O A(n+1, n)$ on n symbols, $n=4,8$. Next are the steps for the proof of the reverse implication.

We have used an $\mathrm{OA}(5,4)$ on 4 symbols and a H_{4}, an $\mathrm{OA}(9,8)$ on 8 symbols and a H_{8} to construct BMS Hadamard matrices.

What happens if one uses an $\mathrm{OA}(13,12)$ and a H_{12} ?
It is not known if there is an $\operatorname{OA}(13,12)$ on 12 symbols, $O R$ equivalently a projective plane of order 12 .

Theorem (K, Suda, EJC 2023)

Let n be the order of a Hadamard matrix. The existence of a projective plane of order n is equivalent to the existence of a balancedly multi-splittable Hadamard matrix of order n^{2}.

From an $\mathrm{OA}(13,12)$ on 12 symbols one can construct a BMS Hadamard matrix of order 144 in such a way that there are 1716 different choices of 66 columns generating ETF in \mathbb{R}^{66} meeting the DGS upper bound. Assuming the existence of an $\mathrm{OA}(13,12)$ on 12 symbols and using any H_{12}, the construction is similar to the cases of $O A(n+1, n)$ on n symbols, $n=4,8$. Next are the steps for the proof of the reverse implication.

Assume that H is a balancedly multi-splittable Hadamard matrix of order

 $16 n^{2}$ with respect to the following block form:Assume that H is a balancedly multi-splittable Hadamard matrix of order $16 n^{2}$ with respect to the following block form:

$$
H=\left[\begin{array}{llll}
1 & H_{1} & \cdots & H_{4 n+1}
\end{array}\right],
$$

where each H_{i} is a $16 n^{2} \times(4 n-1)$ matrix.

Assume that H is a balancedly multi-splittable Hadamard matrix of order $16 n^{2}$ with respect to the following block form:

$$
H=\left[\begin{array}{llll}
1 & H_{1} & \cdots & H_{4 n+1}
\end{array}\right],
$$

where each H_{i} is a $16 n^{2} \times(4 n-1)$ matrix.

Lemma

For any $i, H_{i} H_{i}^{\top}$ is a matrix with entries in $\{-1,4 n-1\}$.

Assume that H is a balancedly multi-splittable Hadamard matrix of order $16 n^{2}$ with respect to the following block form:

$$
H=\left[\begin{array}{llll}
1 & H_{1} & \cdots & H_{4 n+1}
\end{array}\right],
$$

where each H_{i} is a $16 n^{2} \times(4 n-1)$ matrix.

Lemma

For any $i, H_{i} H_{i}^{\top}$ is a matrix with entries in $\{-1,4 n-1\}$.
For each i, consider the matrix $\tilde{H}_{i}=\left[\begin{array}{ll}1 & H_{i}\end{array}\right]$.

Assume that H is a balancedly multi-splittable Hadamard matrix of order $16 n^{2}$ with respect to the following block form:

$$
H=\left[\begin{array}{llll}
1 & H_{1} & \cdots & H_{4 n+1}
\end{array}\right],
$$

where each H_{i} is a $16 n^{2} \times(4 n-1)$ matrix.

Lemma

For any $i, H_{i} H_{i}^{\top}$ is a matrix with entries in $\{-1,4 n-1\}$.
For each i, consider the matrix $\tilde{H}_{i}=\left[\begin{array}{ll}1 & H_{i}\end{array}\right]$. It follows that $\tilde{H}_{i} \tilde{H}_{i}^{\top}$ is a $(4 n, 0)$-matrix.

Assume that H is a balancedly multi-splittable Hadamard matrix of order $16 n^{2}$ with respect to the following block form:

$$
H=\left[\begin{array}{llll}
1 & H_{1} & \cdots & H_{4 n+1}
\end{array}\right],
$$

where each H_{i} is a $16 n^{2} \times(4 n-1)$ matrix.

Lemma

For any $i, H_{i} H_{i}^{\top}$ is a matrix with entries in $\{-1,4 n-1\}$.
For each i, consider the matrix $\tilde{H}_{i}=\left[\begin{array}{ll}1 & H_{i}\end{array}\right]$.
It follows that $\tilde{H}_{i} \tilde{H}_{i}^{\top}$ is a $(4 n, 0)$-matrix. Thus some rows of \tilde{H}_{i} coincide.

Assume that H is a balancedly multi-splittable Hadamard matrix of order $16 n^{2}$ with respect to the following block form:

$$
H=\left[\begin{array}{llll}
1 & H_{1} & \cdots & H_{4 n+1}
\end{array}\right],
$$

where each H_{i} is a $16 n^{2} \times(4 n-1)$ matrix.

Lemma

For any $i, H_{i} H_{i}^{\top}$ is a matrix with entries in $\{-1,4 n-1\}$.
For each i, consider the matrix $\tilde{H}_{i}=\left[\begin{array}{ll}1 & H_{i}\end{array}\right]$.
It follows that $\tilde{H}_{i} \tilde{H}_{i}^{\top}$ is a $(4 n, 0)$-matrix. Thus some rows of \tilde{H}_{i} coincide. Since $\tilde{H}_{i}^{\top} \tilde{H}_{i}=16 n^{2} I_{4 n}$, the rank of \tilde{H}_{i} is $4 n$.

Assume that H is a balancedly multi-splittable Hadamard matrix of order $16 n^{2}$ with respect to the following block form:

$$
H=\left[\begin{array}{llll}
1 & H_{1} & \cdots & H_{4 n+1}
\end{array}\right],
$$

where each H_{i} is a $16 n^{2} \times(4 n-1)$ matrix.

Lemma

For any $i, H_{i} H_{i}^{\top}$ is a matrix with entries in $\{-1,4 n-1\}$.
For each i, consider the matrix $\tilde{H}_{i}=\left[\begin{array}{ll}1 & H_{i}\end{array}\right]$. It follows that $\tilde{H}_{i} \tilde{H}_{i}^{\top}$ is a $(4 n, 0)$-matrix. Thus some rows of \tilde{H}_{i} coincide. Since $\tilde{H}_{i}^{\top} \tilde{H}_{i}=16 n^{2} I_{4 n}$, the rank of \tilde{H}_{i} is $4 n$.
Therefore there exist exactly $4 n$ distinct rows of \tilde{H}_{i} that correspond to the rows of a Hadamard matrix, say \tilde{K}_{i}, of order $4 n$.

Assume that H is a balancedly multi-splittable Hadamard matrix of order $16 n^{2}$ with respect to the following block form:

$$
H=\left[\begin{array}{llll}
1 & H_{1} & \cdots & H_{4 n+1}
\end{array}\right],
$$

where each H_{i} is a $16 n^{2} \times(4 n-1)$ matrix.

Lemma

For any $i, H_{i} H_{i}^{\top}$ is a matrix with entries in $\{-1,4 n-1\}$.
For each i, consider the matrix $\tilde{H}_{i}=\left[\begin{array}{ll}1 & H_{i}\end{array}\right]$. It follows that $\tilde{H}_{i} \tilde{H}_{i}^{\top}$ is a $(4 n, 0)$-matrix. Thus some rows of \tilde{H}_{i} coincide. Since $\tilde{H}_{i}^{\top} \tilde{H}_{i}=16 n^{2} I_{4 n}$, the rank of \tilde{H}_{i} is $4 n$.
Therefore there exist exactly $4 n$ distinct rows of \tilde{H}_{i} that correspond to the rows of a Hadamard matrix, say \tilde{K}_{i}, of order $4 n$.
Write $\tilde{K}_{i}=\left[\begin{array}{ll}1 & K_{i}\end{array}\right]$.

Assume that H is a balancedly multi-splittable Hadamard matrix of order $16 n^{2}$ with respect to the following block form:

$$
H=\left[\begin{array}{llll}
1 & H_{1} & \cdots & H_{4 n+1}
\end{array}\right],
$$

where each H_{i} is a $16 n^{2} \times(4 n-1)$ matrix.

Lemma

For any $i, H_{i} H_{i}^{\top}$ is a matrix with entries in $\{-1,4 n-1\}$.
For each i, consider the matrix $\tilde{H}_{i}=\left[\begin{array}{ll}1 & H_{i}\end{array}\right]$.
It follows that $\tilde{H}_{i} \tilde{H}_{i}^{\top}$ is a $(4 n, 0)$-matrix. Thus some rows of \tilde{H}_{i} coincide. Since $\tilde{H}_{i}^{\top} \tilde{H}_{i}=16 n^{2} I_{4 n}$, the rank of \tilde{H}_{i} is $4 n$.
Therefore there exist exactly $4 n$ distinct rows of \tilde{H}_{i} that correspond to the rows of a Hadamard matrix, say \tilde{K}_{i}, of order $4 n$.
Write $\tilde{K}_{i}=\left[\begin{array}{ll}1 & K_{i}\end{array}\right]$. Some rows of H_{i} also coincide and any row of H_{i} coincides with some row of K_{i}. In the matrix $\left[\begin{array}{llll}1 & H_{1} & \cdots & H_{4 n+1}\end{array}\right]$

Assume that H is a balancedly multi-splittable Hadamard matrix of order $16 n^{2}$ with respect to the following block form:

$$
H=\left[\begin{array}{llll}
1 & H_{1} & \cdots & H_{4 n+1}
\end{array}\right],
$$

where each H_{i} is a $16 n^{2} \times(4 n-1)$ matrix.

Lemma

For any $i, H_{i} H_{i}^{\top}$ is a matrix with entries in $\{-1,4 n-1\}$.
For each i, consider the matrix $\tilde{H}_{i}=\left[\begin{array}{ll}1 & H_{i}\end{array}\right]$.
It follows that $\tilde{H}_{i} \tilde{H}_{i}^{\top}$ is a $(4 n, 0)$-matrix. Thus some rows of \tilde{H}_{i} coincide. Since $\tilde{H}_{i}^{\top} \tilde{H}_{i}=16 n^{2} I_{4 n}$, the rank of \tilde{H}_{i} is $4 n$.
Therefore there exist exactly $4 n$ distinct rows of \tilde{H}_{i} that correspond to the rows of a Hadamard matrix, say \tilde{K}_{i}, of order $4 n$.
Write $\tilde{K}_{i}=\left[\begin{array}{ll}1 & K_{i}\end{array}\right]$. Some rows of H_{i} also coincide and any row of H_{i} coincides with some row of K_{i}. In the matrix $\left[\begin{array}{llll}1 & H_{1} & \cdots & H_{4 n+1}\end{array}\right]$ we assign a symbol j to any row in H_{i}, which equals the j-th row of K_{i}.

Let A be the resulting $16 n^{2} \times(4 n+1)$ matrix over the symbol set $\{1, \ldots, 4 n\}$.

Let A be the resulting $16 n^{2} \times(4 n+1)$ matrix over the symbol set $\{1, \ldots, 4 n\}$.

Lemma

The code C with codewords consisting of the rows of A is an equidistance code with the number of codewords $16 n^{2}$, of equidistance $4 n$, and length $4 n+1$.

Let A be the resulting $16 n^{2} \times(4 n+1)$ matrix over the symbol set $\{1, \ldots, 4 n\}$.

Lemma

The code C with codewords consisting of the rows of A is an equidistance code with the number of codewords $16 n^{2}$, of equidistance $4 n$, and length $4 n+1$.

Lemma

Let C be an equidistance code of length $q+1$ over the symbol set $\{1, \ldots, q\}$. Then

$$
|C| \leq q^{2}
$$

holds. Equality holds if and only if the matrix whose rows consists of the codewords of C is an orthogonal array $O A(q+1, q)$.

Since the code C attains the upper bound in Lemma A is an orthogonal array $\mathrm{OA}(4 n+1,4 n)$.

That explains the difficulty in constructing a balancedly splittable Hadamard matrix of order 144!

That explains the difficulty in constructing a balancedly splittable Hadamard matrix of order 144! Such a matrix, if it exists and most probably doesn't exist, must have a very complex structure.

That explains the difficulty in constructing a balancedly splittable Hadamard matrix of order 144! Such a matrix, if it exists and most probably doesn't exist, must have a very complex structure.

Open Question: Is there a balancedly splittable Hadamard matrix of order 144?

That explains the difficulty in constructing a balancedly splittable Hadamard matrix of order 144 ! Such a matrix, if it exists and most probably doesn't exist, must have a very complex structure.

Open Question: Is there a balancedly splittable Hadamard matrix of order 144?

An easier Open Question: Is there a balancedly muti-splittable Hadamard matrix of order 144?

That explains the difficulty in constructing a balancedly splittable Hadamard matrix of order 144! Such a matrix, if it exists and most probably doesn't exist, must have a very complex structure.

Open Question: Is there a balancedly splittable Hadamard matrix of order 144 ?

An easier Open Question: Is there a balancedly muti-splittable Hadamard matrix of order 144?

An even easier Open Question: Five MOLS of order 12 is known from which one can construct an $\mathrm{OA}(7,12)$ and thus a BMS partial Hadamard matrix of order 78×144 providing seven choices of selecting 66 rows forming 144 ETF meeting the DGS upper bound.

That explains the difficulty in constructing a balancedly splittable Hadamard matrix of order 144 ! Such a matrix, if it exists and most probably doesn't exist, must have a very complex structure.

Open Question: Is there a balancedly splittable Hadamard matrix of order 144?

An easier Open Question: Is there a balancedly muti-splittable Hadamard matrix of order 144 ?

An even easier Open Question: Five MOLS of order 12 is known from which one can construct an $\mathrm{OA}(7,12)$ and thus a BMS partial Hadamard matrix of order 78×144 providing seven choices of selecting 66 rows forming 144 ETF meeting the DGS upper bound. Is it possible to extend it by adding only ONE row?

That explains the difficulty in constructing a balancedly splittable Hadamard matrix of order 144 ! Such a matrix, if it exists and most probably doesn't exist, must have a very complex structure.

Open Question: Is there a balancedly splittable Hadamard matrix of order 144?

An easier Open Question: Is there a balancedly muti-splittable Hadamard matrix of order 144 ?

An even easier Open Question: Five MOLS of order 12 is known from which one can construct an $\mathrm{OA}(7,12)$ and thus a BMS partial Hadamard matrix of order 78×144 providing seven choices of selecting 66 rows forming 144 ETF meeting the DGS upper bound. Is it possible to extend it by adding only ONE row?

Quaternary Hadamard matrices related to Projective planes

Quaternary Hadamard matrices related to Projective planes

There are parallel results for quaternary Hadamard matrices related to projective planes.

Quaternary Hadamard matrices related to Projective planes

There are parallel results for quaternary Hadamard matrices related to projective planes.

Theorem (K, Suda EJC 2023)

Let n be the order of a quaternary Hadamard matrix. The existence of a projective plane of order n is equivalent to the existence of a balancedly multi-splittable quaternary Hadamard matrix of order n^{2}.

Example

Let $n=10$. Then the existence of an $\mathrm{OA}(11,10)$ on 10 symbols is equivalent to the existence of a BMS quaternary Hadamard matrix of order 100.

Balanced designs related to projective planes

BMS Partial Hadamard matrices

BMS Partial Hadamard matrices

For odd prime powers p there seems to be plenty of nice configurations arising from projective planes.

BMS Partial Hadamard matrices

For odd prime powers p there seems to be plenty of nice configurations arising from projective planes.

Theorem

For the prime power $p \equiv 3(\bmod 4)$ there is a regular BMS partial Hadamard of order $p^{2} \times p(p+1)$ that can be extended to a Hadamard matrix of order $p^{2}+p$.

BMS Partial Hadamard matrices

For odd prime powers p there seems to be plenty of nice configurations arising from projective planes.

Theorem

For the prime power $p \equiv 3(\bmod 4)$ there is a regular BMS partial Hadamard of order $p^{2} \times p(p+1)$ that can be extended to a Hadamard matrix of order $p^{2}+p$.

The tools needed for the construction is an $\mathrm{OA}(p+1, p)$ on p symbols and a Hadamard matrix of order $p+1$.

BMS Partial Hadamard matrices

For odd prime powers p there seems to be plenty of nice configurations arising from projective planes.

Theorem

For the prime power $p \equiv 3(\bmod 4)$ there is a regular BMS partial Hadamard of order $p^{2} \times p(p+1)$ that can be extended to a Hadamard matrix of order $p^{2}+p$.

The tools needed for the construction is an $\mathrm{OA}(p+1, p)$ on p symbols and a Hadamard matrix of order $p+1$.

An example for $p=7$

An example for $p=7$

$\mathrm{OA}(8,7):$

49×56 multi-splittable partial Hadamard:

56x56 Hadamard matrix

For the prime $p=7$ the partial Hadamard matrix of order 49×56 has the following properties;

For the prime $p=7$ the partial Hadamard matrix of order 49×56 has the following properties;

- it is regular and has row sums of 8 and column sums of 7

For the prime $p=7$ the partial Hadamard matrix of order 49×56 has the following properties;

- it is regular and has row sums of 8 and column sums of 7
- it is BMS and any selection of four block columns provide a set of equiangular lines consisting of 49 lines in \mathbb{R}^{28}

For the prime $p=7$ the partial Hadamard matrix of order 49×56 has the following properties;

- it is regular and has row sums of 8 and column sums of 7
- it is BMS and any selection of four block columns provide a set of equiangular lines consisting of 49 lines in \mathbb{R}^{28}
- there is a corresponding $\operatorname{BMS} \operatorname{BIBD}(49,56,24,21,10)$

For the prime $p=7$ the partial Hadamard matrix of order 49×56 has the following properties;

- it is regular and has row sums of 8 and column sums of 7
- it is BMS and any selection of four block columns provide a set of equiangular lines consisting of 49 lines in \mathbb{R}^{28}
- there is a corresponding $\operatorname{BMS} \operatorname{BIBD}(49,56,24,21,10)$
- it has the largest possible sum of 392

For the prime $p=7$ the partial Hadamard matrix of order 49×56 has the following properties;

- it is regular and has row sums of 8 and column sums of 7
- it is BMS and any selection of four block columns provide a set of equiangular lines consisting of 49 lines in \mathbb{R}^{28}
- there is a corresponding $\operatorname{BMS} \operatorname{BIBD}(49,56,24,21,10)$
- it has the largest possible sum of 392
- The 49 equiangular lines can be extended to a maximal set of 50 lines

For the prime $p=7$ the partial Hadamard matrix of order 49×56 has the following properties;

- it is regular and has row sums of 8 and column sums of 7
- it is BMS and any selection of four block columns provide a set of equiangular lines consisting of 49 lines in \mathbb{R}^{28}
- there is a corresponding $\operatorname{BMS} \operatorname{BIBD}(49,56,24,21,10)$
- it has the largest possible sum of 392
- The 49 equiangular lines can be extended to a maximal set of 50 lines

For the prime power p the partial Hadamard matrix of order $p^{2} \times p(p+1)$ has the following properties;

For the prime power p the partial Hadamard matrix of order $p^{2} \times p(p+1)$ has the following properties;

- it is regular and has row sums of $p+1$ and column sums of p

For the prime power p the partial Hadamard matrix of order $p^{2} \times p(p+1)$ has the following properties;

- it is regular and has row sums of $p+1$ and column sums of p
- it is BMS and any selection of $\frac{p+1}{2}$ block columns provide a set of equiangular lines consisting of p^{2} lines in $\mathbb{R}^{\frac{p^{2}+p}{2}}$

For the prime power p the partial Hadamard matrix of order $p^{2} \times p(p+1)$ has the following properties;

- it is regular and has row sums of $p+1$ and column sums of p
- it is BMS and any selection of $\frac{p+1}{2}$ block columns provide a set of equiangular lines consisting of p^{2} lines in $\mathbb{R}^{\frac{p^{2}+p}{2}}$
- there is a corresponding $\operatorname{BMS} \operatorname{BIBD}\left(p^{2}, p^{2}+p, \frac{p^{2}-1}{2}, \frac{p^{2}-p}{2}, \frac{p^{2}-p-2}{4}\right)$

For the prime power p the partial Hadamard matrix of order $p^{2} \times p(p+1)$ has the following properties;

- it is regular and has row sums of $p+1$ and column sums of p
- it is BMS and any selection of $\frac{p+1}{2}$ block columns provide a set of equiangular lines consisting of p^{2} lines in $\mathbb{R}^{\frac{p^{2}+p}{2}}$
- there is a corresponding $\operatorname{BMS} \operatorname{BIBD}\left(p^{2}, p^{2}+p, \frac{p^{2}-1}{2}, \frac{p^{2}-p}{2}, \frac{p^{2}-p-2}{4}\right)$
- it has the largest possible sum of $p^{2}(p+1)$

For the prime power p the partial Hadamard matrix of order $p^{2} \times p(p+1)$ has the following properties;

- it is regular and has row sums of $p+1$ and column sums of p
- it is BMS and any selection of $\frac{p+1}{2}$ block columns provide a set of equiangular lines consisting of p^{2} lines in $\mathbb{R}^{\frac{p^{2}+p}{2}}$
- there is a corresponding $\operatorname{BMS} \operatorname{BIBD}\left(p^{2}, p^{2}+p, \frac{p^{2}-1}{2}, \frac{p^{2}-p}{2}, \frac{p^{2}-p-2}{4}\right)$
- it has the largest possible sum of $p^{2}(p+1)$
- The p^{2} equiangular lines can be extended to a maximal set of $p^{+} 1$ lines

For the prime power p the partial Hadamard matrix of order $p^{2} \times p(p+1)$ has the following properties;

- it is regular and has row sums of $p+1$ and column sums of p
- it is BMS and any selection of $\frac{p+1}{2}$ block columns provide a set of equiangular lines consisting of p^{2} lines in $\mathbb{R}^{\frac{p^{2}+p}{2}}$
- there is a corresponding $\operatorname{BMS} \operatorname{BIBD}\left(p^{2}, p^{2}+p, \frac{p^{2}-1}{2}, \frac{p^{2}-p}{2}, \frac{p^{2}-p-2}{4}\right)$
- it has the largest possible sum of $p^{2}(p+1)$
- The p^{2} equiangular lines can be extended to a maximal set of $p^{+} 1$ lines

A huse T Thank you to the organiers

A huge Thank you to the orgariess

NSERC
CRSNG

