Rank 3 graphs and the Delsarte and Hoffman bounds

Jesse Lansdown

School of Mathematics and Statistics, University of Canterbury

(Joint work with John Bamberg, Michael Giudici and Gordon F. Royle)

Paley graph P_9 | Hamming graph H(2,3) | 3 × 3 grid

Automorphism group: $S_3 \wr S_2$

Orbitals of $S_3 \wr S_2$

[1,1][1,2], [2,1], [1,6], [6,1], [2,2] [1,7], [7,1], [1,8], [8,1], [1,5], [5,1], [1,9], [9,1], [3,3] [2,3], [3,2], [2,7], [7,2], [4,4] [2,9], [9,2], [3,4], [4,3], [3,8], [8,3], [3,9], [9,3], [5,5] [6,6] [4,5], [5,4], [4,7], [7,4], [7,7] [4,8], [8,4], [5,6], [6,5], [4,9], [9,4], [5,8], [8,5], [5,7], [7,5], [5,9], [9,5], [8,8] [9,9] [6,8], [8,6], [6,9], [9,2],

trivial

edges

non-edges

Rank 3 graph: Automorphism group has one orbit on edges/non-edges.

Paley graph P_9 | Hamming graph H(2,3) | 3 × 3 grid

 $\operatorname{srg}(v, k, \lambda, \mu) = \operatorname{srg}(9, 4, 1, 2)$

Eigenvalues of strongly regular graphs

(connected) strongly regular graphs have 3 eigenvalues: k, r, s

$$r = \frac{\lambda - \mu + \sqrt{(\lambda - \mu)^2 + 4(k - \mu)}}{2}$$
$$s = \frac{\lambda - \mu - \sqrt{(\lambda - \mu)^2 + 4(k - \mu)}}{2}$$

Eigenvalues of strongly regular graphs

(connected) strongly regular graphs have 3 eigenvalues: k, r, s

$$r = \frac{\lambda - \mu + \sqrt{(\lambda - \mu)^2 + 4(k - \mu)}}{2}$$
$$s = \frac{\lambda - \mu - \sqrt{(\lambda - \mu)^2 + 4(k - \mu)}}{2}$$

Spectrum: $4^{1}1^{4}(-2)^{4}$

Cliques and the Delsarte bound

Cliques and the Delsarte bound

Theorem (Delsarte Bound): $\omega \leq 1 - \frac{k}{s}$ for $srg(v, k, \lambda, \mu)$.

Cliques and the Delsarte bound

Theorem (Delsarte Bound): $\omega \leq 1 - \frac{k}{5}$ for $\operatorname{srg}(v, k, \lambda, \mu)$.

Spectrum: $4^{1}1^{4}(-2)^{4} \rightarrow \omega \leq 1 - \frac{4}{-2} = 3.$

Coliques and the Hoffman bound

Coliques and the Hoffman bound

Theorem (Hoffman Bound): $\alpha \leq \frac{vs}{s-k}$ for $srg(v, k, \lambda, \mu)$.

Coliques and the Hoffman bound

Theorem (Hoffman Bound): $\alpha \leq \frac{vs}{s-k}$ for $\operatorname{srg}(v, k, \lambda, \mu)$.

Spectrum: $4^{1}1^{4}(-2)^{4} \rightarrow \alpha \leq \frac{9(-2)}{-2-4} = 3.$

non-separating: Delsarte and Hoffman bounds are both met.

But why though?

Motivation: synchronisation hierarchy of permutation groups.

2-transitive ↓ Separating ↓ Synchronising ↓ Primitive

(im)primitive

(im)primitive

(non)synchronising

(im)primitive

(non)synchronising

(non)separating

Synchronisation heirarchy

	Set version	
non-separating	$\exists \text{ sets } S, T \text{ s.t. } S \cap T^g = 1, \ \forall g \in G$	
↑ non-synchronising ↑	\exists partition Π , set T s.t. $ B \cap T^g = 1$ $\forall g \in G, \forall B \in \Pi$	
Imprimitive	$\exists \; partition \; \Pi \; s.t. \; \; \Pi^{g} = \Pi, \; \forall g \in G$	

Synchronisation heirarchy

	Set version	Graph version
non-separating	$\exists \text{ sets } S, T \text{ s.t. } S \cap T^g = 1, \ \forall g \in G$	\exists <i>G</i> -invariant Γ s.t. $\omega(\Gamma)\alpha(\Gamma) = V(\Gamma) $
↑ non-synchronising ↑	$\exists \; partition \; \Pi, \; set \; \mathcal{T} \; s.t. \; \left B \cap \mathcal{T}^g \right = 1$ $\forall g \in G, \; \forall B \in \Pi$	\exists <i>G</i> -invariant Γ s.t. $\chi(\Gamma) = \omega(\Gamma)$
Imprimitive	\exists partition Π s.t. $\Pi^g = \Pi$, $orall g \in G$	∃ G-invariant Г s.t. Г is disconnected

Classification of rank 3 primitive groups and graphs

Rank 3 primitive groups are classified (including work by Bannai, Brouwer, Foulser, Kallaher, Kantor, Liebler, Liebeck, Saxl, Soicher, Wilson)

Classification of rank 3 primitive groups and graphs

Rank 3 primitive groups are classified (including work by Bannai, Brouwer, Foulser, Kallaher, Kantor, Liebler, Liebeck, Saxl, Soicher, Wilson)

Corresponding graphs described in Brouwer and Van Maldeghem's new book, *Strongly Regular Graphs*.

"aim to give the classification of rank 3 graphs and to describe these graphs ... the project was widened to include the theory of general strongly regular graphs." - Preface of BVM

Classification of rank 3 graphs

Theorem 2.4 (cf. [7, Theorems 11.3.1, 11.3.2, 11.3.3, 11.3.4, 11.4.1]). Let Γ be a strongly regular graph admitting a primitive rank 3 group of automorphisms of almost simple or affine type. Then Γ is either one of the special cases listed in Table 2, or it belongs to one of the following families:

(1)	The triangular graph, $T(n)$, for $n \ge 4$;	[7, 1.1.7]
(2)	The collinearity graph of a finite classical polar space or the dual of a f	finite classical polar space,
	with rank at least 2 or rank exactly 2, respectively;	[7, Thm 2.2.12 & 2.2.19]
(3)	A connected component of the distance-2 graph of the dual polar graph	arising from a polar space
	of rank 5 and order (q, 1);	[7, Thm 2.2.20]
(4)	$NU_m(2)$, for $m > 3$;	[7, §3.1.6]
(5)	$NO_{2m}^{\epsilon}(q)$, for $\epsilon = \pm 1$, $m \ge 3$, and $q \in \{2, 3\}$;	[7, §3.1.2]
(6)	$\operatorname{NO}_{2m+1}^{\epsilon}(q)$, for $\epsilon = \pm 1$, $m \ge 2$ and $q \in \{3, 4, 8\}$;	[7 , §3.1.4]
(7)	The Grassmann graph $J_q(n, 2)$ for $n \ge 4$;	[7, §3.5.1]
(8)	$E_{6,1}(q);$	[7, §4.9]
(9)	The Paley graph, P _q ;	[7, §1.1.9]
(10)	The Peisert graph, $P^*(p^{2t})$;	[7, §7.3.6]
(11)	The van Lint–Schrijver graph, vLS(p, e, t);	[7, §7.3.1]
(12)	The $n \times n$ grid;	[7, §1.1.8]
(13)	The Bilinear forms graph $H_q(2, m)$;	[7, §3.4.1]
(14)	$VO_{2m}^\epsilon(q);$	[7, §3.3.1]
(15)	The alternating forms graph, $Alt(5, p^m)$;	[7, §3.4.2]
(16)	The affine half spin graph, $VD_{5,5}(q)$;	[7, §3.3.3]
(17)	$VSz(q)$, for $q = 2^{2e-1}$.	[7, §3.3.1]

(Almost) classification of rank 3 separating graphs (Bamberg, Giudici, JL, Royle, 2023)

Theorem 1.1. Let Γ be a rank 3 graph. Then Γ is separating if it or its complement is one of the following:

- (1) The triangular graph, T(n), for $n \ge 5$, n odd;
- (2) The collinearity graph of a polar space in Table 4;
- (3) A connected component of the distance-2 graph of the dual polar graph arising from a polar space of rank 5 and order (q, 1);
- (4) $NU_m(2)$, for m > 3;
- (5) $NO_{2m}^{\epsilon}(q)$, for $\epsilon = \pm 1$, $m \ge 3$ and $q \in \{2, 3\}$;
- (6) $NO^+_{2m+1}(q)$, for $m \ge 2$, and $q \in \{4, 8\}$;
- (7) $NO_{2m+1}^{-}(q)$, for $m \ge 2$, $q \in \{3, 4, 8\}$ and $(m, q) \ne (2, 3)$;
- (8) The Grassmann graph $J_q(n, 2)$, for $n \ge 5$, n odd;
- (9) $E_{6,1}(q)$;
- (10) NO⁺_{2m+1}(3), for $m \ge 3$;
- (11) The van Lint-Schrijver graph, vLS(p, e, t), for t even;
- (12) $VO_{2m}^{-}(q)$, for $m \ge 2$;
- (13) VD_{5,5}(q);
- (14) VSz(2^{2e+1}), for $e \ge 0$;
- (15) Γ belongs to Table 1;

or is possibly one of the following unresolved cases:

(I) The collinearity graph of a polar space not listed in Table 3 or Table 4;

- (II) $VO_{2m}^+(q)$, for m > 3;
- (III) The Peisert graph $P^*(p^{2t})$, for t even.

Paley graphs

Lemma

The Paley graph P_q of order q is separating if an only if q is a non-square.

Proof.

Require $q \equiv 1 \pmod{4}$ to be undirected. If $q = q_0^2$ then subfield of order q_0 is a clique. Since P_q is self-complementary there is a coclique of the same size. These meet the bounds.

If q is not a square, then $\alpha, \omega < \sqrt{q}$.

The hard cases

Non-separation in the collinearity graph of the polar spaces is equivalent to existence of ovoids. Non-separation in $VO_{2m}^+(q)$ is equivalent to existence of ovoids of $Q_{2m+1}^+(q)$.

Peisert graphs are self-complementary: determining one of α or ω is sufficient.

Conjecture (Yip, 2022): If q is a power of a prime $p \equiv 3 \pmod{4}$ and q > 3, then the clique number of the Peisert graph of order q^4 is strictly less than q^2 .

The hard cases

Non-separation in the collinearity graph of the polar spaces is equivalent to existence of ovoids. Non-separation in $VO_{2m}^+(q)$ is equivalent to existence of ovoids of $Q_{2m+1}^+(q)$.

Peisert graphs are self-complementary: determining one of α or ω is sufficient.

Conjecture (Yip, 2022): If q is a power of a prime $p \equiv 3 \pmod{4}$ and q > 3, then the clique number of the Peisert graph of order q^4 is strictly less than q^2 .

Open problems:

- Resolve existence of ovoids in polar spaces :)
- Determine the clique number of $P^*(q^{2t})$ for t even.

