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Paley graph Py | Hamming graph H(2,3) | 3 x 3 grid

Automorphism group: S31 5



Orbitals of S35,

[1,1] [1.2], [2,1], [1,6],
[2,2] [1.7], [7.1], [1.8],
33] [23]. [3.2], [27]
[4,4]  [2,9], [9.2], [3.4],
[5,5] [3.8], [8.3]. [3.9],
[6,6] [4.5], [5.4], [4,7],
[7,7] [4.8], [8.4], [5.6],
[8,8] [5.7], [7.5], [5.9],
[9,9] [6.8], [8.6], [6.9],

trivial

edges

[6,1],
[8,1],
[7,2],
[4.3],
[9.3]
[7,4],
[6.5],
[9.5].
[9,2],

[1,3],
[1,5],
[2,4],
[2,6],
[3.5],
[3,7],
[4.9],
[6,7],
[7,9],

3.1], [1.4],
5.1], [1.9],
[4.2], [25],
(6.2, [2.8],
[5,3], [3.6],
[7,3], [4.6],
[9,4], [5.8],
[7,6], [7.8],
[9,7], [8.9],

non-edges

[4.1],
B,
[5.2],
[8,2],
[6,3],
[6,4],
[8.5],
[8,7],
[9,8].

Rank 3 graph: Automorphism group has one orbit on

edges/non-edges.



Paley graph Py | Hamming graph H(2,3) | 3 x 3 grid

srg(v, k, A\, u) = srg(9,4,1,2)



Eigenvalues of strongly regular graphs

(connected) strongly regular graphs have 3 eigenvalues: k,r,s
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Eigenvalues of strongly regular graphs

(connected) strongly regular graphs have 3 eigenvalues: k,r,s
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Spectrum: 4114(—2)4



Cliques and the Delsarte bound



Cliques and the Delsarte bound

Theorem (Delsarte Bound): w <1 — f for srg(v, k, A\, i).




Cliques and the Delsarte bound

Theorem (Delsarte Bound): w <1 — f for srg(v, k, A\, i).
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Coliques and the Hoffman bound



Coliques and the Hoffman bound

Theorem (Hoffman Bound): a < ;% for srg(v, k, A, ).




Coliques and the Hoffman bound

Theorem (Hoffman Bound): a < ;% for srg(v, k, A, ).

Spectrum: 4114(=2)* = a < =2y




Separating graphs



Separating graphs

BABARR
RABRARR

non-separating: Delsarte and Hoffman bounds are both met.



But why though?

Motivation: synchronisation hierarchy of permutation groups.
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Synchronisation heirarchy

Set version...

non-separating

i)

non-synchronising

ﬂ

Imprimitive

Jsets S, Tst. [SNTE|=1,Vg¢€
G

3 partition I, set T s.t. |[BNT&| =1
Vg e G, VBell

3 partition M s.t. M& =111, Vg € G




Synchronisation heirarchy

Set version...

Graph version...

non-separating

ﬂ

non-synchronising

ﬂ

Imprimitive

Jsets S, Tst. [SNTE|=1,Vg¢€
G

3 partition I, set T s.t. |[BNT&| =1
Vg e G, VBell

3 partition M s.t. M& =111, Vg € G

3  G-invariant [ s.t.
w(M)a(r) = [V()]

3 G-invariant [ s.t.
x() = w(I)

3 G-invariant [ s.t. T is
disconnected



Classification of rank 3 primitive groups and graphs

Rank 3 primitive groups are classified (including work by Bannai,
Brouwer, Foulser, Kallaher, Kantor, Liebler, Liebeck, Saxl, Soicher,
Wilson)



Classification of rank 3 primitive groups and graphs

Rank 3 primitive groups are classified (including work by Bannai,
Brouwer, Foulser, Kallaher, Kantor, Liebler, Liebeck, Saxl, Soicher,
Wilson)

Corresponding graphs described in Brouwer and Van Maldeghem'’s
new book, Strongly Regular Graphs.

‘aim to give the classification of rank 3 graphs and to de-
scribe these graphs ... the project was widened to include
the theory of general strongly regular graphs.”

- Preface of BVM



Classification of rank 3 graphs

Theorem 2.4 (cf. [7, Theorems 11.3.1, 11.3.2, 11.3.3, 11.3.4,11.4.1]). Let I" be a strongly regular graph
admitting a primitive rank 3 group of automorphisms of almost simple or affine type. Then I" is either
one of the special cases listed in Table 2, or it belongs to one of the following families:

(1) The triangular graph, T(n), for n > 4; [7, 1.1.7]
(2) The collinearity graph of a finite classical polar space or the dual of a finite classical polar space,
with rank at least 2 or rank exactly 2, respectively; [7, Thm 2.2.12 & 2.2.19]

(3) A connected component of the distance-2 graph of the dual polar graph arising from a polar space
of rank 5 and order (q, 1); [7, Thm 2.2.20]

(4) NU(2), for m > 3; [7, §3.1.6]
(5) NO5,,,(q), for e = £1,m > 3, and q € {2, 3}; [7,83.1.2]
(6) NO3,,,,1(q), fore =1, m>2and q € {3, 4, 8); [7,§3.14]
(7) The Grassmann graph Jy(n, 2) for n > 4; [7, §3.5.1]
(8) Es.1(q): [7, §49]
(9) The Paley graph, Py; [7,§1.1.9]
(10) The Peisert graph, P*(p*); [7, §7.3.6]
(11) The van Lint-Schrijver graph, vLS(p, e, t); [7, §7.3.1]
(12) The n x n grid; [7,§1.1.8]
(13) The Bilinear forms graph Hq(2, m); [7, §3.4.1]
(14) VO3,,(q); [7, §3.3.1]
(15) The alternating forms graph, Alt(5, p™); [7,§3.4.2]
(16) The affine half spin graph, VDs 5(q); [7,§3.3.3]
(17) VSz(q), for q = 221, [7, §3.3.1]




(Almost) classification of rank 3 separating graphs
(Bamberg, Giudici, JL, Royle, 2023)

Theorem 1.1. Let I" be a rank 3 graph. Then I' is separating if it or its complement is one of the
following:

(1) The triangular graph, T(n), for n > 5, n odd;
(2) The collinearity graph of a polar space in Table 4;
(3) A connected component of the distance-2 graph of the dual polar graph arising from a polar space
of rank 5 and order (g, 1);
(4) NU,(2), form > 3;
(5) NO5,.(q), for e =1, m >3 and q € {2, 3};
(6) NO3,,,+(q), for m > 2, and q € {4,8);
(7) NO3,,,4(q), form > 2, q € {3, 4, 8} and (m, q) # (2, 3);
(8) The Grassmann graph Jo(n, 2), for n > 5, n odd;
(9) Es1(q):
(10) NOF,,,,(3), for m > 3;
(11) The van Lint-Schrijver graph, vLS(p, e, t), for t even;
(12) VO,,,(q), for m > 2;
(13) VDs 5(q);
(14) VSz(2%*1), fore > 0;
(15) I" belongs to Table 1;

or is possibly one of the following unresolved cases:

(I) The collinearity graph of a polar space not listed in Table 3 or Table 4;
(1) vOi,.(q), for m > 3;
(IlI) The Peisert graph P*(p®), for t even.




Paley graphs

Lemma
The Paley graph P of order q is separating if an only if q is a
non-square.

Proof.

Require ¢ = 1 (mod 4) to be undirected. If g = g3 then subfield of
order qq is a clique. Since Py is self-complementary there is a
coclique of the same size. These meet the bounds.

If g is not a square, then a,w < |/q.



The hard cases

Non-separation in the collinearity graph of the polar spaces is
equivalent to existence of ovoids. Non-separation in VO;m(q) is
equivalent to existence of ovoids of QF, . ;(q).

Peisert graphs are self-complementary: determining one of o or w is
sufficient.

Conjecture (Yip, 2022): If q is a power of a prime p =3 (mod 4)

and g > 3, then the clique number of the Peisert graph of order g*
is strictly less than g2.



The hard cases

Non-separation in the collinearity graph of the polar spaces is
equivalent to existence of ovoids. Non-separation in VO~ (q) is
equivalent to existence of ovoids of QF, . ;(q).

Peisert graphs are self-complementary: determining one of o or w is
sufficient.

Conjecture (Yip, 2022): If q is a power of a prime p =3 (mod 4)

and g > 3, then the clique number of the Peisert graph of order g*
is strictly less than g2.

Open problems:
- Resolve existence of ovoids in polar spaces :)

- Determine the clique number of P*(g?t) for t even.







