# Rank 3 graphs and the Delsarte and Hoffman bounds 

Jesse Lansdown

School of Mathematics and Statistics, University of Canterbury
(Joint work with John Bamberg, Michael Giudici
and Gordon F. Royle)

## Paley graph $P_{9} \mid$ Hamming graph $H(2,3) \mid 3 \times 3$ grid



Automorphism group: $S_{3}$ Z $S_{2}$

Orbitals of $S_{3}$ \{ $S_{2}$

| [1,1] | [1,2], [2, | [1,6], [6,1] |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| [2,2] | [1,7], [7, 1] | [1,8], [8,1], | [1,5], | , [5,1], | [1,9 |  |
| [3,3] | [2,3], [3, 2] | [2,7], [7, 2], | [2,4]. | [4,2] | [2,5 |  |
| [4,4] | [2,9], [9, 2], | [3,4], [4,3], | [2,6]. |  |  |  |
| [5,5] | [3,8], [8,3], | [3,9], [9,3], | [3,5], | [ [5,3] | [3,6 |  |
| [0,6] | [4,5], [5,4], | [4,7], [7,4], | [3,7]. | [7,3] | [4,6] |  |
| [7,7] | [4, 8, ], [8,4], | [5,6], [6,5], | [4,9], | [9,4]. | [5,8 | ], [8, |
| [8,8] | [5,7]. [7, [5], | [5,9], 0,5$]$, | [6,7], | [7,6] | [7,8 | 8, ${ }^{\text {a }}$ [8. |
| [0,9] | [6,8], [8,6], | $[6,9],[0,2]$, |  |  |  |  |

trivial edges
non-edges
Rank 3 graph: Automorphism group has one orbit on edges/non-edges.

## Paley graph $P_{9} \mid$ Hamming graph $H(2,3) \mid 3 \times 3$ grid



$$
\operatorname{srg}(v, k, \lambda, \mu)=\operatorname{srg}(9,4,1,2)
$$

## Eigenvalues of strongly regular graphs

(connected) strongly regular graphs have 3 eigenvalues: $k, r, s$

$$
\begin{aligned}
& r=\frac{\lambda-\mu+\sqrt{(\lambda-\mu)^{2}+4(k-\mu)}}{2}, \\
& s=\frac{\lambda-\mu-\sqrt{(\lambda-\mu)^{2}+4(k-\mu)}}{2}
\end{aligned}
$$

## Eigenvalues of strongly regular graphs

(connected) strongly regular graphs have 3 eigenvalues: $k, r, s$

$$
\begin{aligned}
& r=\frac{\lambda-\mu+\sqrt{(\lambda-\mu)^{2}+4(k-\mu)}}{2}, \\
& s=\frac{\lambda-\mu-\sqrt{(\lambda-\mu)^{2}+4(k-\mu)}}{2}
\end{aligned}
$$



Spectrum: $4^{1} 1^{4}(-2)^{4}$

## Cliques and the Delsarte bound



## Cliques and the Delsarte bound



Theorem (Delsarte Bound): $\omega \leqslant 1-\frac{k}{s}$ for $\operatorname{srg}(v, k, \lambda, \mu)$.

## Cliques and the Delsarte bound



Theorem (Delsarte Bound): $\omega \leqslant 1-\frac{k}{s}$ for $\operatorname{srg}(v, k, \lambda, \mu)$.
Spectrum: $4^{1} 1^{4}(-2)^{4} \rightarrow \omega \leqslant 1-\frac{4}{-2}=3$.

## Coliques and the Hoffman bound



## Coliques and the Hoffman bound



Theorem (Hoffman Bound): $\alpha \leqslant \frac{v s}{s-k}$ for $\operatorname{srg}(v, k, \lambda, \mu)$.

## Coliques and the Hoffman bound



Theorem (Hoffman Bound): $\alpha \leqslant \frac{v s}{s-k}$ for $\operatorname{srg}(v, k, \lambda, \mu)$.

$$
\text { Spectrum: } 4^{1} 1^{4}(-2)^{4} \rightarrow \alpha \leqslant \frac{9(-2)}{-2-4}=3 .
$$

Separating graphs


## Separating graphs


non-separating: Delsarte and Hoffman bounds are both met.

## But why though?

Motivation: synchronisation hierarchy of permutation groups.


## Separating graphs

(im) primitive


## Separating graphs

(im)primitive

(non)synchronising


## Separating graphs



## Synchronisation heirarchy

|  | Set version... |
| :---: | :---: |
| non-separating | $\begin{aligned} & \exists \text { sets } S, T \text { s.t. }\left\|S \cap T^{g}\right\|=1, \forall g \in \\ & G \end{aligned}$ |
| non-synchronising | $\exists$ partition $\Pi$, set $T$ s.t. $\left\|B \cap T^{g}\right\|=1$ $\forall g \in G, \forall B \in \Pi$ |
| Imprimitive | $\exists \text { partition } \Pi \text { s.t. } \Pi^{g}=\Pi, \forall g \in G$ |

## Synchronisation heirarchy

|  | Set version... | Graph version... |
| :---: | :---: | :---: |
| non-separating | $\begin{aligned} & \exists \text { sets } S, T \text { s.t. }\left\|S \cap T^{g}\right\|=1, \forall g \in, \\ & G \end{aligned}$ | $\exists \quad$-invariant $\Gamma$ s.t. $\omega(\Gamma) \alpha(\Gamma)=\|V(\Gamma)\|$ |
| non-synchronising | $\begin{aligned} & \exists \text { partition } \Pi \text {, set } T \text { s.t. }\left\|B \cap T^{g}\right\|=1 \\ & \forall g \in G, \forall B \in \Pi \end{aligned}$ | $\exists \quad$ G-invariant $\Gamma$ s.t. $\chi(\Gamma)=\omega(\Gamma)$ |
| Imprimitive | $\exists$ partition $\Pi$ s.t. $\Pi^{g}=\Pi, \forall g \in G$ | $\exists G$-invariant $\Gamma$ s.t. $\Gamma$ is disconnected |

## Classification of rank 3 primitive groups and graphs

Rank 3 primitive groups are classified (including work by Bannai, Brouwer, Foulser, Kallaher, Kantor, Liebler, Liebeck, Saxl, Soicher, Wilson)

## Classification of rank 3 primitive groups and graphs

Rank 3 primitive groups are classified (including work by Bannai, Brouwer, Foulser, Kallaher, Kantor, Liebler, Liebeck, Saxl, Soicher, Wilson)

Corresponding graphs described in Brouwer and Van Maldeghem's new book, Strongly Regular Graphs.
"aim to give the classification of rank 3 graphs and to describe these graphs ... the project was widened to include the theory of general strongly regular graphs."

- Preface of BVM


## Classification of rank 3 graphs

Theorem 2.4 (cf. [7, Theorems 11.3.1, 11.3.2, 11.3.3, 11.3.4,11.4.1]). Let $\Gamma$ be a strongly regular graph admitting a primitive rank 3 group of automorphisms of almost simple or affine type. Then $\Gamma$ is either one of the special cases listed in Table 2, or it belongs to one of the following families:
(1) The triangular graph, $T(n)$, for $n \geqslant 4$;
[7, 1.1.7]
(2) The collinearity graph of a finite classical polar space or the dual of a finite classical polar space, with rank at least 2 or rank exactly 2 , respectively;
[7, Thm 2.2.12 \& 2.2.19]
(3) A connected component of the distance-2 graph of the dual polar graph arising from a polar space of rank 5 and order ( $q, 1$ );
[7, Thm 2.2.20]
(4) $\mathrm{NU}_{m}(2)$, for $m>3$;
[7, §3.1.6]
(5) $\mathrm{NO}_{2 m}^{\epsilon}(q)$, for $\epsilon= \pm 1, m \geqslant 3$, and $q \in\{2,3\}$;
[7, §3.1.2]
(6) $\mathrm{NO}_{2 m+1}^{\epsilon}(q)$, for $\epsilon= \pm 1, m \geqslant 2$ and $q \in\{3,4,8\}$;
[7, §3.1.4]
(7) The Grassmann graph $J_{q}(n, 2)$ for $n \geqslant 4$;
[7, §3.5.1]
(8) $E_{6,1}(q)$;
[7, §4.9]
(9) The Paley graph, $P_{q}$;
[7, §1.1.9]
(10) The Peisert graph, $P^{*}\left(p^{2 t}\right)$;
[7, §7.3.6]
(11) The van Lint-Schrijver graph, $\mathrm{vLS}(p, e, t)$;
[7, §7.3.1]
(12) The $n \times n$ grid;
[7, §1.1.8]
(13) The Bilinear forms graph $H_{q}(2, m)$;
[7, §3.4.1]
(14) $\mathrm{VO}_{2 m}^{\epsilon}(q)$;
[7, §3.3.1]
(15) The alternating forms graph, $\operatorname{Alt}\left(5, p^{m}\right)$;
[7, §3.4.2]
(16) The affine half spin graph, $\mathrm{VD}_{5,5}(q)$;
[7, §3.3.3]
(17) $\operatorname{VSz}(q)$, for $q=2^{2 e-1}$.
[7, §3.3.1]

## (Almost) classification of rank 3 separating graphs (Bamberg, Giudici, JL, Royle, 2023)

Theorem 1.1. Let $\Gamma$ be a rank 3 graph. Then $\Gamma$ is separating if it or its complement is one of the following:
(1) The triangular graph, $T(n)$, for $n \geqslant 5, n$ odd;
(2) The collinearity graph of a polar space in Table 4;
(3) A connected component of the distance-2 graph of the dual polar graph arising from a polar space of rank 5 and order ( $q, 1$ );
(4) $\mathrm{NU}_{m}(2)$, for $m>3$;
(5) $\mathrm{NO}_{2 m}^{\epsilon}(q)$, for $\epsilon= \pm 1, m \geqslant 3$ and $q \in\{2,3\}$;
(6) $\mathrm{NO}_{2 m+1}^{+}(q)$, for $m \geqslant 2$, and $q \in\{4,8\}$;
(7) $\mathrm{NO}_{2 m+1}^{-}(q)$, for $m \geqslant 2, q \in\{3,4,8\}$ and $(m, q) \neq(2,3)$;
(8) The Grassmann graph $J_{q}(n, 2)$, for $n \geqslant 5, n$ odd;
(9) $E_{6,1}(q)$;
(10) $\mathrm{NO}_{2 m+1}^{+}(3)$, for $m \geqslant 3$;
(11) The van Lint-Schrijver graph, vLS( $p, e, t$ ), for $t$ even;
(12) $\mathrm{VO}_{2 m}^{-}(q)$, for $m \geqslant 2$;
(13) $\mathrm{VD}_{5,5}(q)$;
(14) VSz $\left(2^{2 e+1}\right)$, for $e \geqslant 0$;
(15) $\Gamma$ belongs to Table 1;
or is possibly one of the following unresolved cases:
(I) The collinearity graph of a polar space not listed in Table 3 or Table 4;
(II) $\mathrm{VO}_{2 m}^{+}(q)$, for $m>3$;
(III) The Peisert graph $P^{*}\left(p^{2 t}\right)$, for $t$ even.

## Paley graphs



Lemma
The Paley graph $P_{q}$ of order $q$ is separating if an only if $q$ is a non-square.

Proof.
Require $q \equiv 1(\bmod 4)$ to be undirected. If $q=q_{0}^{2}$ then subfield of order $q_{0}$ is a clique. Since $P_{q}$ is self-complementary there is a coclique of the same size. These meet the bounds.

If $q$ is not a square, then $\alpha, \omega<\sqrt{q}$.

## The hard cases

Non-separation in the collinearity graph of the polar spaces is equivalent to existence of ovoids. Non-separation in $\mathrm{VO}_{2 m}^{+}(q)$ is equivalent to existence of ovoids of $Q_{2 m+1}^{+}(q)$.
Peisert graphs are self-complementary: determining one of $\alpha$ or $\omega$ is sufficient.

Conjecture (Yip, 2022): If $q$ is a power of a prime $p \equiv 3(\bmod 4)$ and $q>3$, then the clique number of the Peisert graph of order $q^{4}$ is strictly less than $q^{2}$.

## The hard cases

Non-separation in the collinearity graph of the polar spaces is equivalent to existence of ovoids. Non-separation in $\mathrm{VO}_{2 m}^{+}(q)$ is equivalent to existence of ovoids of $Q_{2 m+1}^{+}(q)$.
Peisert graphs are self-complementary: determining one of $\alpha$ or $\omega$ is sufficient.

Conjecture (Yip, 2022): If $q$ is a power of a prime $p \equiv 3(\bmod 4)$ and $q>3$, then the clique number of the Peisert graph of order $q^{4}$ is strictly less than $q^{2}$.

Open problems:

- Resolve existence of ovoids in polar spaces :)
- Determine the clique number of $P^{*}\left(q^{2 t}\right)$ for $t$ even.

Thank you!

