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Rorschach Test

What do you see in the picture?

a crab

an octopus

a sky rocket

an hermitian surface, an hyperbolic quadric, a subgeometry in non-canonical position,
two families of surfaces giving rise to some quasi-polar spaces.
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Outline

Finite semifields and their relation with threefold tensors

A geometric interpretation of the non-singularity of tensors which leads to the picture

a geometric interpretation of a semifield-invariant

new quasi-Hermitian surfaces from the picture
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Finite semi-fields

Definition

A finite semi-field (S,+, ◦) is a finite not-necessarily commutative, not-necessarily
associative division algebra.

Theorem

S a finite semi-field =⇒ | S |= qn a prime power, and it is a vector space of dimension n
over a finite field, namely S = Fn

q .

A common thing is to identify S, namely Fn
q , with Fqn and define a new product between

elements which coincides with the classical if they are in Fq .

Example

Generalized twisted fields (Albert, 1965): (Fqn ,+, ◦) with

x ◦ y = xy − cxqiyq
j

N(c) ̸= 1
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Tensors and semifields

Theorem

V ∨ ⊗ V ∨ ⊗ V ≃ Hom(V ⊗ V, V ).

Hom(V ⊗ V, V ) is precisely the set of n-dimensional algebras over Fq (where multiplication
is not assumed to be associative). So each tensor defines an algebra, and vice-versa.

The bilinear form defined by a∨ ⊗ b∨ ⊗ c is the one mapping x⊗ y in a∨(x)b∨(y)c.

Theorem

For every Fq-bilinear map (multiplication) from Fqn × Fqn to Fqn there exist unique
ci,j ∈ Fqn such that

x ◦ y =
n∑

i,j=0

ci,jx
qiyq

j

It turns out that
(cij)i,j = âtb̂c

where â = (a, aq , . . . , aq
n−1

), b̂ = (b, bq , . . . , bq
n−1

)
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General Linear Group actions

In particular, we have that

Yellow Correspondence

Tensors in (Fn
q )

⊗3 ⇐⇒ matrices n× n over Fqn ⇐⇒ points in PG(n2 − 1,Fqn )

On tensors of the format V ∨ ⊗ V ∨ ⊗ V , we have a natural action of
GL(n, q)×GL(n, q)×GL(n, q), given by

(a∨ ⊗ b∨ ⊗ c)(f,g,h) := f(a)∨ ⊗ g(b)∨ ⊗ h(c);

namely (x ◦T y)(f,g,h) = (xf ◦T yg)h.

Warning

Under the Yellow Correspondence, only f and g will be linear, not h!
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The Segre Embedding

The Segre embedding, named after Corrado Segre, is the map

σ = σn1,...,nl : PG(n1 − 1,K)× · · · × PG(nl − 1,K) 7−→ PG(N − 1,K)

where N = n1 · · ·nl, K is any field and σ:

σ(v1, . . . , vl) = v1 ⊗ · · · ⊗ vl

The Segre variety is the image S of σ.
Rank of a tensor corresponds now to lying in some secant variety of S

Blue Correspondence

Tensors in (Fn
q )

⊗3 ⇐⇒ points in PG(n3 − 1,Fq)

Not-Warning

Under the Blue Correspondence, everything is linear!
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Contracting tensors

We want to talk about non-singular tensors:

Definition

A vector is non-singular if it is non-zero. Recursively, a tensor is nonsingular if every
contraction of it is nonsingular.

A matrix (2-tensor) is nonsingular if whenever you multiply it with a non-zero vector, you
get a non-zero vector.

In the case of threefold tensors, this coincides precisely with the associated algebra having
no zero divisors (namely: NS-3-tensors ⇐⇒ semifields!!!)

Observation

You can contract a matrix in 2 ways, but you can contract a threefold tensor in 6 different
ways.
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The setting of the picture

In our setting:

V ≃ F2
q ≃ Fq2

Tensors in (F2
q)

⊗3 ⇐⇒ matrices 2× 2 over Fq2 ⇐⇒ points in PG(3,Fq2 )

semifields two dimensional over their centre

Nota Bene:

The results on semifields generalize in higher dimension, and are actually interesting mainly
there. Here the geometry is nicer and leads to quasi-Hermitian things.
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If you ask when a tensor is non-singular, for a particular choice of the contraction, you end
up with the system: {

Q+Hz +Qqz2 ̸= 0

zq+1 = 1;

where Q = αδ − βγ and H = αq+1 − βq+1 − γq+1 + δq+1.
Let’s call Q+ and H the varieties defined in PG(3, q2) by Q and H respectively.

Very nice fact:

Q+ and H are in permutable position!

If ⊥Q+ and ⊥H are the polarities of Q+ and H, then ρ =⊥Q+⊥H is an involution =⇒
there is a fixed subgeometry Σ

Σ ∩H = Σ ∩Q+ = Q+
0
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A crab-looking picture
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Singularity of tensors

How do I see the contraction of a point in the picture?

the contraction space is given by

c(P ) = {(αz + δqzqγqzq + βz γz + βqzqzαqzq + δz | z ∈ Fq2} = {zP + (zP )ρ : z ∈ Fq2}

In other words, the contraction space is the unique Σ-subline on which P lies

Lemma (SL, John Sheekey)

P is non-singular if and only if ∆(P ) ∈ □×
q , where ∆ = H2 − 4Qq+1.

P non-singular =⇒ each of it’s contractions non-singular =⇒ c(P ) does not meet
Q+

0 .

Theorem (SL, J. Sheekey)

Non-singular points P are points not in Σ, lying on extended sublines external to Q+
0 .

Equivalently, non-singular points are points not in Σ and not on extended Q+
0 -tangent

planes.
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Isotopy invariants: BEL-rank

Write

x ◦ y =
r∑

k=1

fk(x)gk(y)

for some Fq-linear maps fk, gk, where r is the rank of the matrix (ci,j).

Definition

The BEL-rank of a semifield as the minimum such rank across the equivalence(isotopy)
class.

Every generalised twisted field has BEL-rank two, as does every semifields two-dimensional
over a nucleus.

Theorem (SL-J.Sheekey)

In the picture, semifields are points corresponding to non-singular tensors =⇒ they are on
an extended line =⇒ they are linear combination of two things of rank one =⇒
BEL-rank at most 2!
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Isotopy invariants: BEL-rank

In the general case, we have:

A subgeometry Σ = PG(n2 − 1, q) of PG(n2 − 1, qn)

The contraction of a point is again the subspace of Σ of minimum dimension on
whose extension the point lies

All points on one of these extended subspaces (in the same secant variety with respect
to the subspace) correspond to equivalent tensors under the full group

Theorem (SL, J. Sheekey)

The BEL-rank of a finite semifield is at most n− 1.

Corollary (Dickson, 1905)

Every semifield of dimension two over its centre is isotopic to a field.
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The general case
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(Beniamino)Segre-type problems

Segre 1955

A set of q + 1 points in PG(2, q), q odd, no three of which are collinear, is a conic.

Moral of the story

A conic, namely a algebraically defined object is characterized by it’s combinatorial
properties

Which combinatorial properties do we need to characterize a given algebraically defined
object?

Example - De Winter - Schillewaert 2010

Let K be a point set of PG(n, q2), n > 3, having the same intersection numbers with
respect to hyperplanes and codimension two subspaces as the Hermitian variety H(n, q2).
Then K is the point set of H(n, q2).
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What about general polar spaces?

F. De Clerck, N. Hamilton, C. O’Keefe, and T. Penttila 2000

Quadrics are not characterized by their intersections with hyperplanes: there exist
quasi-quadrics

S. De Winter and J. Schillewaert 2010

Hermitian varieties are not characterized by their intersections with hyperplanes: there
exist quasi-Hermitian varieties

Schillewaert, Van De Voorde 2022

Up to small cases, the size of a polar space is characterized by the intersection with
hyperplanes.

Other reasons of interest:

Two character sets =⇒ two-weight codes =⇒ strongly regular graphs.

Therefore

new quasi-polar spaces =⇒ new strongly regular graphs!
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Quasi-Hermitian varieties in PG(3, q2)

1 De Winter, Schillewaert: A note on quasi-Hermitian varieties and singular quasi-
quadrics, 2010

2 Aguglia, Cossidente, Korchmaros: On quasi-Hermitian varieties, 2012

3 Aguglia:Quasi-Hermitian varieties in PG(r, q2), 2013

4 Pavese: Geometric constructions of two-character sets, 2015.

5 Cossidente, Pavese: On line covers of finite projective and polar spaces, 2019

6 Aguglia, Giuzzi: On the equivalence of certain quasi-Hermitian varieties 2022

7 Lavrauw-SL-Pavese: On the geometry of the Hermitian Veronese curve and its
quasi-hermitian varieties 2023

Stefano Lia ( UCD, Dublin) A geometrical picture: semifields and non-singular sublines 19 / 23



Known construction of Quasi-Hermitian surfaces

1 De Winter-Schillewaert 2010–Schillewaert Van De Voorde 2022: pivoting

2 Aguglia, Cossidente, Korchmaros 2012: α ∈ F∗
q2

, β ∈ Fq2 \ Fq , with

4αq+1 + (βq − β)2 ̸= 0.

H2 = {(1, x, y, z) | x, y, z ∈ Fq2 , G(x, y, z) = 0}∪

{(0, x, y, x) | x, y, z ∈ Fq2 , x
q+1 + yq+1 = 0},

G(x, y, z) = zq − z + αq(x2q + y2q)− α(x2 + y2)− (βq − β)(xq+1 + yq+1)

3 Pavese 2015: Σ Baer subgeometry of PG(3, q2), Q a non-degenerate
quadric of Σ; L the set of lines of PG(3, q2) having q + 1 points on Σ and
intersecting Q in either one or q + 1 points.

H3 =
⋃
ℓ∈L

ℓ

4 Lavrauw, SL, Pavese 2023: joining surfaces in a setting similar to today’s
setting

Stefano Lia ( UCD, Dublin) A geometrical picture: semifields and non-singular sublines 20 / 23



The crab is back
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Quasi-Hermitian surfaces from the crab

The stabiliser of the small, green subquadric Q+
0 is isomorphic to PCGO+(4, q), and

all the objects in the picture are orbits under this group.

In particular, the surfaces S1
t and S2

t are defined via

St := {⟨v⟩ : H − 2tQ
q+1
2 = 0}

and they partition the points outside of H∪Q+ ∪ Σ.

The surfaces S1
t contain only nonsingular tensors the surfaces S2

t contain only singular
tensors.

Theorem (SL, J. Sheekey)

For any admissible choice of t1 and t2 in Fq2 , the join of S1
t1

and S2
t2

is a new
quasi-Hermitian surface.
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...and now?

The picture still requires more explorations: understanding non-singular sublines in
our picture implies some understanding of the four tensors, whose contractions are
NS-sublines

Is this a happy island or also the general dimension case is so full of nice geometry?

There are some more geometrical structures related, among which a partition of the
subgeometry in quadrics and some relations with the twisted cubic..the picture is
much more rich!
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