A geometrical picture: semifields and non-singular sublines

Stefano Lia
RICCOTA, Rijeka

joint work with John Sheekey

UCD, Dublin

A crab-looking picture

Rorschach Test

What do you see in the picture?

- a crab
- an octopus
- a sky rocket
- an hermitian surface, an hyperbolic quadric, a subgeometry in non-canonical position, two families of surfaces giving rise to some quasi-polar spaces.

Rorschach Test

What do you see in the picture?

- a crab
- an octopus
- a sky rocket
- an hermitian surface, an hyperbolic quadric, a subgeometry in non-canonical position, two families of surfaces giving rise to some quasi-polar spaces.

Rorschach Test

What do you see in the picture?

- a crab
- an octopus
- a sky rocket
- an hermitian surface, an hyperbolic quadric, a subgeometry in non-canonical position, two families of surfaces giving rise to some quasi-polar spaces.

Rorschach Test

What do you see in the picture?

- a crab
- an octopus
- a sky rocket
- an hermitian surface, an hyperbolic quadric, a subgeometry in non-canonical position, two families of surfaces giving rise to some quasi-polar spaces.

Rorschach Test

What do you see in the picture?

- a crab
- an octopus
- a sky rocket
- an hermitian surface, an hyperbolic quadric, a subgeometry in non-canonical position, two families of surfaces giving rise to some quasi-polar spaces.

Outline

- Finite semifields and their relation with threefold tensors
- A geometric interpretation of the non-singularity of tensors which leads to the picture
- a geometric interpretation of a semifield-invariant
- new quasi-Hermitian surfaces from the picture

Outline

- Finite semifields and their relation with threefold tensors
- A geometric interpretation of the non-singularity of tensors which leads to the picture
- a geometric interpretation of a semifield-invariant
- new quasi-Hermitian surfaces from the picture

Outline

- Finite semifields and their relation with threefold tensors
- A geometric interpretation of the non-singularity of tensors which leads to the picture
- a geometric interpretation of a semifield-invariant
- new quasi-Hermitian surfaces from the picture

Outline

- Finite semifields and their relation with threefold tensors
- A geometric interpretation of the non-singularity of tensors which leads to the picture
- a geometric interpretation of a semifield-invariant
- new quasi-Hermitian surfaces from the picture

Finite semi-fields

Definition

A finite semi-field $(\mathbb{S},+, \circ)$ is a finite not-necessarily commutative, not-necessarily associative division algebra.

Theorem

\mathbb{S} a finite semi-field $\Longrightarrow|\mathbb{S}|=q^{n}$ a prime power, and it is a vector space of dimension n over a finite field, namely $\mathbb{S}=\mathbb{F}_{q}^{n}$.

A common thing is to identify \mathbb{S}, namely \mathbb{F}_{q}^{n}, with $\mathbb{E}_{q^{n}}$ and define a new product between elements which coincides with the classical if they are in \mathbb{F}_{q}

Finite semi-fields

Definition

A finite semi-field $(\mathbb{S},+, \circ)$ is a finite not-necessarily commutative, not-necessarily associative division algebra.

Theorem

\mathbb{S} a finite semi-field $\Longrightarrow|\mathbb{S}|=q^{n}$ a prime power, and it is a vector space of dimension n over a finite field, namely $\mathbb{S}=\mathbb{F}_{q}^{n}$.

A common thing is to identify \mathbb{S}, namely \mathbb{F}_{q}^{n}, with $\mathbb{F}_{q^{n}}$ and define a new product between elements which coincides with the classical if they are in \mathbb{F}_{q}.

Finite semi-fields

Definition

A finite semi-field $(\mathbb{S},+, \circ)$ is a finite not-necessarily commutative, not-necessarily associative division algebra.

Theorem

\mathbb{S} a finite semi-field $\Longrightarrow|\mathbb{S}|=q^{n}$ a prime power, and it is a vector space of dimension n over a finite field, namely $\mathbb{S}=\mathbb{F}_{q}^{n}$.

A common thing is to identify \mathbb{S}, namely \mathbb{F}_{q}^{n}, with $\mathbb{F}_{q^{n}}$ and define a new product between elements which coincides with the classical if they are in \mathbb{F}_{q}.

Example

Generalized twisted fields (Albert, 1965): $\left(\mathbb{F}_{q^{n}},+, \circ\right)$ with

$$
x \circ y=x y-c x^{q^{i}} y^{q^{j}}
$$

$N(c) \neq 1$

Tensors and semifields

Theorem

$$
V^{\vee} \otimes V^{\vee} \otimes V \simeq \operatorname{Hom}(V \otimes V, V)
$$

$\operatorname{Hom}(V \otimes V, V)$ is precisely the set of n-dimensional algebras over \mathbb{F}_{q} (where multiplication is not assumed to be associative). So each tensor defines an algebra, and vice-versa.

The bilinear form defined by $a^{\vee} \otimes b^{\vee} \otimes c$ is the one mapping $x \otimes y$ in $a^{\vee}(x) b^{\vee}(y) c$.

It turns out that
where $\hat{a}=\left(a, a^{q}\right.$,

Tensors and semifields

Theorem

$$
V^{\vee} \otimes V^{\vee} \otimes V \simeq \operatorname{Hom}(V \otimes V, V)
$$

$\operatorname{Hom}(V \otimes V, V)$ is precisely the set of n-dimensional algebras over \mathbb{F}_{q} (where multiplication is not assumed to be associative). So each tensor defines an algebra, and vice-versa.

The bilinear form defined by $a^{\vee} \otimes b^{\vee} \otimes c$ is the one mapping $x \otimes y$ in $a^{\vee}(x) b^{\vee}(y) c$.

Theorem

For every \mathbb{F}_{q}-bilinear map (multiplication) from $\mathbb{F}_{q^{n}} \times \mathbb{F}_{q^{n}}$ to $\mathbb{F}_{q^{n}}$ there exist unique $c_{i, j} \in \mathbb{F}_{q^{n}}$ such that

$$
x \circ y=\sum_{i, j=0}^{n} c_{i, j} x^{q^{i}} y^{q^{j}}
$$

It turns out that

Tensors and semifields

Theorem

$$
V^{\vee} \otimes V^{\vee} \otimes V \simeq \operatorname{Hom}(V \otimes V, V)
$$

$\operatorname{Hom}(V \otimes V, V)$ is precisely the set of n-dimensional algebras over \mathbb{F}_{q} (where multiplication is not assumed to be associative). So each tensor defines an algebra, and vice-versa.

The bilinear form defined by $a^{\vee} \otimes b^{\vee} \otimes c$ is the one mapping $x \otimes y$ in $a^{\vee}(x) b^{\vee}(y) c$.

Theorem

For every \mathbb{F}_{q}-bilinear map (multiplication) from $\mathbb{F}_{q^{n}} \times \mathbb{F}_{q^{n}}$ to $\mathbb{F}_{q^{n}}$ there exist unique $c_{i, j} \in \mathbb{F}_{q^{n}}$ such that

$$
x \circ y=\sum_{i, j=0}^{n} c_{i, j} x^{q^{i}} y^{q^{j}}
$$

It turns out that

$$
\left(c_{i j}\right)_{i, j}=\hat{a}^{t} \hat{b} c
$$

where $\hat{a}=\left(a, a^{q}, \ldots, a^{q^{n-1}}\right), \hat{b}=\left(b, b^{q}, \ldots, b^{q^{n-1}}\right)$

General Linear Group actions

In particular, we have that

Yellow Correspondence

Tensors in $\left(\mathbb{F}_{q}^{n}\right)^{\otimes 3} \Longleftrightarrow$ matrices $n \times n$ over $\mathbb{F}_{q^{n}} \Longleftrightarrow$ points in $P G\left(n^{2}-1, \mathbb{F}_{q^{n}}\right)$
On tensors of the format $V^{\vee} \otimes V^{\vee} \otimes V$, we have a natural action of $G L(n, q) \times G L(n, q) \times G L(n, q)$, given by

$$
\left(a^{\vee} \otimes b^{\vee} \otimes c\right)^{(f, g, h)}:=f(a)^{\vee} \otimes g(b)^{\vee} \otimes h(c)
$$

namely $\left(x \circ_{T} y\right)^{(f, g, h)}=\left(x^{f} \circ_{T} y^{g}\right)^{h}$.

Warning

Under the Yellow Correspondence, only f and g will be linear, not h !

The Segre Embedding

The Segre embedding, named after Corrado Segre, is the map

$$
\sigma=\sigma_{n_{1}, \ldots, n_{l}}: \mathrm{PG}\left(n_{1}-1, \mathbb{K}\right) \times \cdots \times \mathrm{PG}\left(n_{l}-1, \mathbb{K}\right) \longmapsto \mathrm{PG}(N-1, \mathbb{K})
$$

where $N=n_{1} \cdots n_{l}, \mathbb{K}$ is any field and σ :

$$
\sigma\left(v_{1}, \ldots, v_{l}\right)=v_{1} \otimes \cdots \otimes v_{l}
$$

The Segre variety is the image \mathcal{S} of σ.
Rank of a tensor corresponds now to lying in some secant variety of \mathcal{S}

Blue Correspondence

Not-Warning

The Segre Embedding

The Segre embedding, named after Corrado Segre, is the map

$$
\sigma=\sigma_{n_{1}, \ldots, n_{l}}: \mathrm{PG}\left(n_{1}-1, \mathbb{K}\right) \times \cdots \times \mathrm{PG}\left(n_{l}-1, \mathbb{K}\right) \longmapsto \mathrm{PG}(N-1, \mathbb{K})
$$

where $N=n_{1} \cdots n_{l}, \mathbb{K}$ is any field and σ :

$$
\sigma\left(v_{1}, \ldots, v_{l}\right)=v_{1} \otimes \cdots \otimes v_{l}
$$

The Segre variety is the image \mathcal{S} of σ.
Rank of a tensor corresponds now to lying in some secant variety of \mathcal{S}

Blue Correspondence

The Segre Embedding

The Segre embedding, named after Corrado Segre, is the map

$$
\sigma=\sigma_{n_{1}, \ldots, n_{l}}: \mathrm{PG}\left(n_{1}-1, \mathbb{K}\right) \times \cdots \times \mathrm{PG}\left(n_{l}-1, \mathbb{K}\right) \longmapsto \mathrm{PG}(N-1, \mathbb{K})
$$

where $N=n_{1} \cdots n_{l}, \mathbb{K}$ is any field and σ :

$$
\sigma\left(v_{1}, \ldots, v_{l}\right)=v_{1} \otimes \cdots \otimes v_{l}
$$

The Segre variety is the image \mathcal{S} of σ.
Rank of a tensor corresponds now to lying in some secant variety of \mathcal{S}

Blue Correspondence

Not-Warning

Under the Blue Correspondence, everything is linear!

Contracting tensors

We want to talk about non-singular tensors:

Definition

A vector is non-singular if it is non-zero. Recursively, a tensor is nonsingular if every contraction of it is nonsingular.

A matrix (2-tensor) is nonsingular if whenever you multiply it with a non-zero vector, you get a non-zero vector.

In the case of threefold tensors, this coincides precisely with the associated algebra having no zero divisors (namely: NS-3-tensors \Longleftrightarrow semifields!!!)

Observation

You can contract a matrix in 2 ways, but you can contract a threefold tensor in 6 different ways.

The setting of the picture

In our setting:

- $V \simeq \mathbb{F}_{q}^{2} \simeq \mathbb{F}_{q^{2}}$
- Tensors in $\left(\mathbb{F}_{q}^{2}\right)^{\otimes 3} \Longleftrightarrow$ matrices 2×2 over $\mathbb{F}_{q^{2}} \Longleftrightarrow$ points in $P G\left(3, \mathbb{F}_{q^{2}}\right)$
- semifields two dimensional over their centre

Nota Bene:

The results on semifields generalize in higher dimension, and are actually interesting mainly there. Here the geometry is nicer and leads to quasi-Hermitian things.

If you ask when a tensor is non-singular, for a particular choice of the contraction, you end up with the system:

Very nice fact:

If $\perp_{\mathcal{Q}^{+}}$and $\perp_{\mathcal{H}}$ are the polarities of \mathcal{Q}^{+}and \mathcal{H}, then $\rho=\perp_{\mathcal{Q}^{+}} \perp_{\mathcal{H}}$ is an involution \Longrightarrow there is a fixed subgeometry Σ

If you ask when a tensor is non-singular, for a particular choice of the contraction, you end up with the system:

$$
\left\{\begin{array}{l}
Q+H z+Q^{q} z^{2} \neq 0 \\
z^{q+1}=1
\end{array}\right.
$$

where $Q=\alpha \delta-\beta \gamma$ and $H=\alpha^{q+1}-\beta^{q+1}-\gamma^{q+1}+\delta^{q+1}$.
Let's call \mathcal{Q}^{+}and \mathcal{H} the varieties defined in $P G\left(3, q^{2}\right)$ by Q and H respectively.

Very nice fact:

there is a fixed subgeometry Σ

$$
\Sigma \cap \mathcal{H}=\Sigma \cap \mathcal{Q}^{+}=\mathcal{Q}_{0}^{+}
$$

If you ask when a tensor is non-singular, for a particular choice of the contraction, you end up with the system:

$$
\left\{\begin{array}{l}
Q+H z+Q^{q} z^{2} \neq 0 \\
z^{q+1}=1
\end{array}\right.
$$

where $Q=\alpha \delta-\beta \gamma$ and $H=\alpha^{q+1}-\beta^{q+1}-\gamma^{q+1}+\delta^{q+1}$.
Let's call \mathcal{Q}^{+}and \mathcal{H} the varieties defined in $P G\left(3, q^{2}\right)$ by Q and H respectively.

Very nice fact:

\mathcal{Q}^{+}and \mathcal{H} are in permutable position!

If $\perp_{\mathcal{Q}^{+}}$and $\perp_{\mathcal{H}}$ are the polarities of \mathcal{Q}^{+}and \mathcal{H}, then $\rho=\perp_{\mathcal{Q}^{+}} \perp_{\mathcal{H}}$ is an involution \Longrightarrow there is a fixed subgeometry Σ

$$
\Sigma \cap \mathcal{H}=\Sigma \cap \mathcal{Q}^{+}=\mathcal{Q}_{0}^{+}
$$

A crab-looking picture

Singularity of tensors

How do I see the contraction of a point in the picture?

- the contraction space is given by
$c(P)=\left\{\left(\alpha z+\delta^{q} z^{q} \gamma^{q} z^{q}+\beta z \gamma z+\beta^{q} z^{q} z \alpha^{q} z^{q}+\delta z \mid z \in \mathbb{F}_{q^{2}}\right\}=\left\{z P+(z P)^{\rho}: z \in \mathbb{F}_{q^{2}}\right\}\right.$
- In other words, the contraction space is the unique Σ-subline on which P lies Lemma (SLL, John Sheekey) P is non-singular if and only if $\Delta(P) \in \square_{q}^{\times}$, where $\Delta=H^{2}-4 Q^{q+1}$
- P non-singular \Longrightarrow each of it's contractions non-singular $\Longrightarrow c(P)$ does not meet \mathcal{Q}_{0}^{+}

Theorem (SL, J. Sheekey)

Non-singular points P are points not in Σ, lying on extended sublines external to \mathcal{Q}_{0}^{+} Equivalently, non-singular points are points not in Σ and not on extended \mathcal{Q}_{0}^{+}-tangent planes.

Singularity of tensors

How do I see the contraction of a point in the picture?

- the contraction space is given by

$$
c(P)=\left\{\left(\alpha z+\delta^{q} z^{q} \gamma^{q} z^{q}+\beta z \gamma z+\beta^{q} z^{q} z \alpha^{q} z^{q}+\delta z \mid z \in \mathbb{F}_{q^{2}}\right\}=\left\{z P+(z P)^{\rho}: z \in \mathbb{F}_{q^{2}}\right\}\right.
$$

- In other words, the contraction space is the unique Σ-subline on which P lies
\square
- P non-singular \Longrightarrow each of it's contractions non-singular $\Longrightarrow c(P)$ does not meet
\square
Non-singular points P are points not in Σ, lying on extended sublines external to \mathcal{Q}_{0}^{+}
Equivalently, non-singular points are points not in Σ and not on extended \mathcal{Q}_{0}^{+}-tangent
planes.

Singularity of tensors

How do I see the contraction of a point in the picture?

- the contraction space is given by

$$
c(P)=\left\{\left(\alpha z+\delta^{q} z^{q} \gamma^{q} z^{q}+\beta z \gamma z+\beta^{q} z^{q} z \alpha^{q} z^{q}+\delta z \mid z \in \mathbb{F}_{q^{2}}\right\}=\left\{z P+(z P)^{\rho}: z \in \mathbb{F}_{q^{2}}\right\}\right.
$$

- In other words, the contraction space is the unique Σ-subline on which P lies
\square
- P non-singular \Longrightarrow each of it's contractions non-singular $\Longrightarrow c(P)$ does not meet

Non-singular points P are points not in Σ, lying on extended sublines external to \mathcal{Q}_{0}^{+}
Equivalently, non-singular points are points not in Σ and not on extended \mathcal{Q}_{0}^{+}-tangent

Singularity of tensors

How do I see the contraction of a point in the picture?

- the contraction space is given by

$$
c(P)=\left\{\left(\alpha z+\delta^{q} z^{q} \gamma^{q} z^{q}+\beta z \gamma z+\beta^{q} z^{q} z \alpha^{q} z^{q}+\delta z \mid z \in \mathbb{F}_{q^{2}}\right\}=\left\{z P+(z P)^{\rho}: z \in \mathbb{F}_{q^{2}}\right\}\right.
$$

- In other words, the contraction space is the unique Σ-subline on which P lies

Lemma (SL, John Sheekey)

P is non-singular if and only if $\Delta(P) \in \square_{q}^{\times}$, where $\Delta=H^{2}-4 Q^{q+1}$.

- P non-singular \Longrightarrow each of it's contractions non-singular $\Longrightarrow c(P)$ does not meet Non-singular points P are points not in Σ, lying on extended sublines external to \mathcal{Q}_{0}^{+} Equivalently, non-singular points are points not in Σ and not on extended \mathcal{Q}_{0}^{+}-tangent

Singularity of tensors

How do I see the contraction of a point in the picture?

- the contraction space is given by

$$
c(P)=\left\{\left(\alpha z+\delta^{q} z^{q} \gamma^{q} z^{q}+\beta z \gamma z+\beta^{q} z^{q} z \alpha^{q} z^{q}+\delta z \mid z \in \mathbb{F}_{q^{2}}\right\}=\left\{z P+(z P)^{\rho}: z \in \mathbb{F}_{q^{2}}\right\}\right.
$$

- In other words, the contraction space is the unique Σ-subline on which P lies

Lemma (SL, John Sheekey)

P is non-singular if and only if $\Delta(P) \in \square_{q}^{\times}$, where $\Delta=H^{2}-4 Q^{q+1}$.

- P non-singular \Longrightarrow each of it's contractions non-singular $\Longrightarrow c(P)$ does not meet \mathcal{Q}_{0}^{+}.

Non-singular points P are points not in Σ, lying on extended sublines external to \mathcal{Q}_{0}^{+} Equivalently, non-singular points are points not in Σ and not on extended \mathcal{Q}_{0}^{+}-tangent

Singularity of tensors

How do I see the contraction of a point in the picture?

- the contraction space is given by

$$
c(P)=\left\{\left(\alpha z+\delta^{q} z^{q} \gamma^{q} z^{q}+\beta z \gamma z+\beta^{q} z^{q} z \alpha^{q} z^{q}+\delta z \mid z \in \mathbb{F}_{q^{2}}\right\}=\left\{z P+(z P)^{\rho}: z \in \mathbb{F}_{q^{2}}\right\}\right.
$$

- In other words, the contraction space is the unique Σ-subline on which P lies

Lemma (SL, John Sheekey)

P is non-singular if and only if $\Delta(P) \in \square_{q}^{\times}$, where $\Delta=H^{2}-4 Q^{q+1}$.

- P non-singular \Longrightarrow each of it's contractions non-singular $\Longrightarrow c(P)$ does not meet \mathcal{Q}_{0}^{+}.

Theorem (SL, J. Sheekey)

Non-singular points P are points not in Σ, lying on extended sublines external to \mathcal{Q}_{0}^{+}. Equivalently, non-singular points are points not in Σ and not on extended \mathcal{Q}_{0}^{+}-tangent planes.

Isotopy invariants: BEL-rank

Write

$$
x \circ y=\sum_{k=1}^{r} f_{k}(x) g_{k}(y)
$$

for some \mathbb{F}_{q}-linear maps f_{k}, g_{k}, where r is the rank of the matrix $\left(c_{i, j}\right)$.

Definition

The BEL-rank of a semifield as the minimum such rank across the equivalence(isotopy) class.

Every generalised twisted field has BEL-rank two, as does every semifields two-dimensional over a nucleus.

Theorem (SL-J.Sheekey)

In the picture, semifields are points corresponding to non-singular tensors \Longrightarrow they are on an extended line \Longrightarrow they are linear combination of two things of rank one \Longrightarrow BEL-rank at most 2!

Isotopy invariants: BEL-rank

In the general case, we have:

- A subgeometry $\Sigma=\operatorname{PG}\left(n^{2}-1, q\right)$ of $\operatorname{PG}\left(n^{2}-1, q^{n}\right)$
- The contraction of a point is again the subspace of Σ of minimum dimension on whose extension the point lies
- All points on one of these extended subspaces (in the same secant variety with respect to the subspace) correspond to equivalent tensors under the full group

Theorem (SL, J. Sheekey)

The BEL-rank of a finite semifield is at most $n-1$.

Corollary (Dickson, 1905)

Every semifield of dimension two over its centre is isotopic to a field.

The general case

$$
P G\left(n^{2}-1, q^{n}\right)
$$

(Beniamino)Segre-type problems

Segre 1955

A set of $q+1$ points in $P G(2, q), q$ odd, no three of which are collinear, is a conic.

Moral of the story

A conic, namely a algebraically defined object is characterized by it's combinatorial properties

Which combinatorial properties do we need to characterize a given algebraically defined object?

Example - De Winter - Schillewaert 2010

Let K be a point set of $P G\left(n, q^{2}\right), n>3$, having the same intersection numbers with respect to hyperplanes and codimension two subspaces as the Hermitian variety $H\left(n, q^{2}\right)$. Then K is the point set of $H\left(n, q^{2}\right)$.

What about general polar spaces?

F. De Clerck, N. Hamilton, C. O'Keefe, and T. Penttila 2000
Quadrics are not characterized by their intersections with hyperplanes: there exist quasi-quadrics
S. De Winter and J. Schillewaert 2010 Hermitian varicties are not charactorized by their intersections with hyperplanes: there exist quasi-Hermitian varieties

Schillewaert, Van De Voorde 2022
Up to small cases, the size of a polar space is characterized by the intersection with hyperplanes.

Other reasons of interest:

What about general polar spaces?

F. De Clerck, N. Hamilton, C. O'Keefe, and T. Penttila 2000

Quadrics are not characterized by their intersections with hyperplanes: there exist quasi-quadrics

Hermitian varieties are not characterized by their intersections with hyperplanes: there exist quasi-Hermitian varietie

```
Up to small cases, the size of a polar space is characterized by the intersection with
hyperplanes.
```

Other reasons of interest:

What about general polar spaces?

F. De Clerck, N. Hamilton, C. O'Keefe, and T. Penttila 2000

Quadrics are not characterized by their intersections with hyperplanes: there exist quasi-quadrics

S. De Winter and J. Schillewaert 2010

Hermitian varieties are not characterized by their intersections with hyperplanes: there exist quasi-Hermitian varieties

Up to small cases, the size of a polar space is characterized by the intersection with
hyperplanes.

What about general polar spaces?

F. De Clerck, N. Hamilton, C. O'Keefe, and T. Penttila 2000

Quadrics are not characterized by their intersections with hyperplanes: there exist quasi-quadrics

S. De Winter and J. Schillewaert 2010

Hermitian varieties are not characterized by their intersections with hyperplanes: there exist quasi-Hermitian varieties

Schillewaert, Van De Voorde 2022

Up to small cases, the size of a polar space is characterized by the intersection with hyperplanes.

What about general polar spaces?
F. De Clerck, N. Hamilton, C. O'Keefe, and T. Penttila 2000

Quadrics are not characterized by their intersections with hyperplanes: there exist quasi-quadrics

S. De Winter and J. Schillewaert 2010

Hermitian varieties are not characterized by their intersections with hyperplanes: there exist quasi-Hermitian varieties

Schillewaert, Van De Voorde 2022

Up to small cases, the size of a polar space is characterized by the intersection with hyperplanes.

Other reasons of interest:

Two character sets \Longrightarrow two-weight codes \Longrightarrow strongly regular graphs.

Therefore

new quasi-polar spaces \Longrightarrow new strongly regular graphs!

Quasi-Hermitian varieties in $P G\left(3, q^{2}\right)$

(1) De Winter, Schillewaert: A note on quasi-Hermitian varieties and singular quasiquadrics, 2010
(2) Aguglia, Cossidente, Korchmaros: On quasi-Hermitian varieties, 2012
(B) Aguglia:Quasi-Hermitian varieties in $\operatorname{PG}\left(r, q^{2}\right), 2013$
(4) Pavese: Geometric constructions of two-character sets, 2015.
(5) Cossidente, Pavese: On line covers of finite projective and polar spaces, 2019
(6) Aguglia, Giuzzi: On the equivalence of certain quasi-Hermitian varieties 2022
(7) Lavrauw-SL-Pavese: On the geometry of the Hermitian Veronese curve and its quasi-hermitian varieties 2023

Known construction of Quasi-Hermitian surfaces

(1) De Winter-Schillewaert 2010-Schillewaert Van De Voorde 2022: pivoting
(2) Aguglia, Cossidente, Korchmaros 2012: $\alpha \in \mathbb{F}_{q^{2}}^{*}, \beta \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}$, with $4 \alpha^{q+1}+\left(\beta^{q}-\beta\right)^{2} \neq 0$.

$$
\begin{gathered}
\mathcal{H}_{2}=\left\{(1, x, y, z) \mid x, y, z \in \mathbb{F}_{q^{2}}, G(x, y, z)=0\right\} \cup \\
\left\{(0, x, y, x) \mid x, y, z \in \mathbb{F}_{q^{2}}, x^{q+1}+y^{q+1}=0\right\} \\
G(x, y, z)=z^{q}-z+\alpha^{q}\left(x^{2 q}+y^{2 q}\right)-\alpha\left(x^{2}+y^{2}\right)-\left(\beta^{q}-\beta\right)\left(x^{q+1}+y^{q+1}\right)
\end{gathered}
$$

(8) Pavese 2015: Σ Baer subgeometry of $\operatorname{PG}\left(3, q^{2}\right), \mathcal{Q}$ a non-degenerate quadric of $\Sigma ; \mathcal{L}$ the set of lines of $\operatorname{PG}\left(3, q^{2}\right)$ having $q+1$ points on Σ and intersecting \mathcal{Q} in either one or $q+1$ points.

$$
\mathcal{H}_{3}=\bigcup_{\ell \in \mathcal{L}} \ell
$$

(4) Lavrauw, SL, Pavese 2023: joining surfaces in a setting similar to today's setting

The crab is back

Quasi-Hermitian surfaces from the crab

The stabiliser of the small, green subquadric Q_{0}^{+}is isomorphic to $\mathrm{PCGO}^{+}(4, q)$, and all the objects in the picture are orbits under this group.

In particular, the surfaces S_{t}^{1} and S_{t}^{2} are defined via
and they partition the points outside of $\mathcal{H} \cup \mathcal{Q}^{+} \cup \Sigma$.

The surfaces S_{t}^{1} contain only nonsingular tensors the surfaces S_{t}^{2} contain only singular tensors.

```
For any admissible choice of t}\mp@subsup{t}{1}{}\mathrm{ and t t2 in }\mp@subsup{\mathbb{F}}{\mp@subsup{q}{}{2}}{}\mathrm{ , the join of S S
quasi-Hermitian surface.
```


Quasi-Hermitian surfaces from the crab

The stabiliser of the small, green subquadric Q_{0}^{+}is isomorphic to $\operatorname{PCGO}^{+}(4, q)$, and all the objects in the picture are orbits under this group.

In particular, the surfaces S_{t}^{1} and S_{t}^{2} are defined via

$$
S_{t}:=\left\{\langle v\rangle: H-2 t Q^{\frac{q+1}{2}}=0\right\}
$$

and they partition the points outside of $\mathcal{H} \cup \mathcal{Q}^{+} \cup \Sigma$.

The surfaces S_{t}^{1} contain only nonsingular tensors the surfaces S_{t}^{2} contain only singular tensors.

Theorem (SL, J. Sheekey)
For any admissible choice of t_{1} and t_{2} in $\mathbb{F}_{q^{2}}$, the join of $S_{t_{1}}^{1}$ and $S_{t_{2}}^{2}$ is a new
quasi-Hermitian surface.

Quasi-Hermitian surfaces from the crab

The stabiliser of the small, green subquadric Q_{0}^{+}is isomorphic to $\operatorname{PCGO}^{+}(4, q)$, and all the objects in the picture are orbits under this group.

In particular, the surfaces S_{t}^{1} and S_{t}^{2} are defined via

$$
S_{t}:=\left\{\langle v\rangle: H-2 t Q^{\frac{q+1}{2}}=0\right\}
$$

and they partition the points outside of $\mathcal{H} \cup \mathcal{Q}^{+} \cup \Sigma$.
The surfaces S_{t}^{1} contain only nonsingular tensors the surfaces S_{t}^{2} contain only singular tensors.

For any admissible choice of t_{1} and t_{2} in $\mathbb{F}_{q^{2}}$, the join of $S_{t_{1}}^{1}$ and $S_{t_{2}}^{2}$ is a new
quasi-Hermitian surface.

Quasi-Hermitian surfaces from the crab

The stabiliser of the small, green subquadric Q_{0}^{+}is isomorphic to $\operatorname{PCGO}^{+}(4, q)$, and all the objects in the picture are orbits under this group.

In particular, the surfaces S_{t}^{1} and S_{t}^{2} are defined via

$$
S_{t}:=\left\{\langle v\rangle: H-2 t Q^{\frac{q+1}{2}}=0\right\}
$$

and they partition the points outside of $\mathcal{H} \cup \mathcal{Q}^{+} \cup \Sigma$.
The surfaces S_{t}^{1} contain only nonsingular tensors the surfaces S_{t}^{2} contain only singular tensors.

Theorem (SL, J. Sheekey)

For any admissible choice of t_{1} and t_{2} in $\mathbb{F}_{q^{2}}$, the join of $S_{t_{1}}^{1}$ and $S_{t_{2}}^{2}$ is a new quasi-Hermitian surface.

- The picture still requires more explorations: understanding non-singular sublines in our picture implies some understanding of the four tensors, whose contractions are NS-sublines
- Is this a happy island or also the general dimension case is so full of nice geometry?
- There are some more geometrical structures related, among which a partition of the subgeometry in quadrics and some relations with the twisted cubic..the picture is much more rich!

