DISTANCE-REGULAR GRAPHS WITH CLASSICAL PARAMETERS WHICH SUPPORT A UNIFORM STRUCTURE, $q \leq 1$ (In collaboration with B. Fernández, Š.Miklavič, and G. Monzillo)

Roghayeh Maleki

University of Primorska-FAMNIT,

RICCOTA 2023 3 - 7 July 2023, Croatia

AIM OF THE TALK

The aim of this talk is to

AIM OF THE TALK

The aim of this talk is to

Classify non-bipartite distance-regular graphs with classical parameters with $q \leq 1$ which support a uniform structure.

AIM OF THE TALK

The aim of this talk is to

Classify non-bipartite distance-regular graphs with classical parameters with $q \leq 1$ which support a uniform structure.

We analyze two cases:

- ▶ Non-bipartite distance regular graphs of negative type.
- ▶ Non-bipartite distance regular graphs with classical parameters with q = 1.

- $\Gamma = (X, \mathcal{R})$: simple, finite, and connected graph,
- ▶ $\partial(x, y)$:= distance between x and y, where $x, y \in X$,
- $\varepsilon(x) = max\{\partial(x, y) \mid y \in X\}$ (eccentricity of x),
- $\blacktriangleright D = max\{\varepsilon(x) \mid x \in X\} \text{ (diameter of } \Gamma)$
- $\Gamma_i(x) = \{y \in X \mid \partial(x, y) = i\}$ (In particular, $\Gamma(x) = \Gamma_1(x)$).
- For an integer $k \ge 0$, we say that Γ is *regular* with valency k whenever $|\Gamma(x)| = k$ for all $x \in X$.

• Adjacency matrix of Γ defined by

$$(A)_{xy} = \begin{cases} 1 & & \partial(x,y) = 1, \\ 0 & & \partial(x,y) \neq 1 \end{cases}$$

▶ V: vector space over \mathbb{C} consisting of column vectors whose coordinates are indexed by X.

 $M_{|X|}(\mathbb{C})$ acts on V by left multiplication.

V: the standard module

We endow V with the Hermitian inner product \langle , \rangle that satisfies $\langle u, v \rangle = u^{\top} \overline{v}$ for $u, v \in V$.

Definition 2.1

Fix $x \in X$ and let $\varepsilon = \varepsilon(x)$. For $0 \le i \le \varepsilon$ let $E_i^* = E_i^*(x)$ denote the diagonal matrix in $M_{|X|}(\mathbb{C})$ defined by

$$(E_i^*)_{yy} = \begin{cases} 1 & & \partial(x,y) = i, \\ 0 & & \partial(x,y) \neq i \end{cases} \qquad (y \in X)$$

 E_i^* is called the *i*-th dual idempotent of Γ with respect to x.

Definition 2.1

Fix $x \in X$ and let $\varepsilon = \varepsilon(x)$. For $0 \le i \le \varepsilon$ let $E_i^* = E_i^*(x)$ denote the diagonal matrix in $M_{|X|}(\mathbb{C})$ defined by

$$(E_i^*)_{yy} = \begin{cases} 1 & & \partial(x,y) = i, \\ 0 & & \partial(x,y) \neq i \end{cases} \qquad (y \in X)$$

 E_i^* is called the *i*-th dual idempotent of Γ with respect to x.

Definition 2.2

Terwilliger algebra T := T(x) of Γ , with respect to x, is a subalgebra of $M_{|X|}(\mathbb{C})$, generated by the adjacency matrix of Γ and the dual idempotents.

Definition 2.1

Fix $x \in X$ and let $\varepsilon = \varepsilon(x)$. For $0 \le i \le \varepsilon$ let $E_i^* = E_i^*(x)$ denote the diagonal matrix in $M_{|X|}(\mathbb{C})$ defined by

$$(E_i^*)_{yy} = \begin{cases} 1 & & \partial(x,y) = i, \\ 0 & & \partial(x,y) \neq i \end{cases} \qquad (y \in X)$$

 E_i^* is called the *i*-th dual idempotent of Γ with respect to x.

Definition 2.2

Terwilliger algebra T := T(x) of Γ , with respect to x, is a subalgebra of $M_{|X|}(\mathbb{C})$, generated by the adjacency matrix of Γ and the dual idempotents.

▶ T-module is a vector subspace W of V, which is invariant for every $t \in T$:

$$tW \subseteq W$$
 for all $t \in T$.

Definition 2.3

Let W denote an irreducible T-module. Then, W is an orthogonal direct sum of the nonvanishing spaces among $E_0^*W, E_1^*W, \ldots, E_{D(X)}^*W$. We define

Definition 2.3

Let W denote an irreducible T-module. Then, W is an orthogonal direct sum of the nonvanishing spaces among $E_0^*W, E_1^*W, \ldots, E_{D(X)}^*W$. We define

- endpoint of W $r = min\{i | 0 \le i \le \varepsilon, E_i^* W \ne 0\}$
- diameter of W $d = |\{i|0 \le i \le \varepsilon, E_i^*W \ne 0\}| 1$

Definition 2.3

Let W denote an irreducible T-module. Then, W is an orthogonal direct sum of the nonvanishing spaces among $E_0^*W, E_1^*W, \ldots, E_{D(X)}^*W$. We define

- endpoint of W $r = min\{i | 0 \le i \le \varepsilon, E_i^* W \ne 0\}$
- diameter of W $d = |\{i|0 \le i \le \varepsilon, E_i^*W \ne 0\}| 1$

In addition,

 \blacktriangleright Irreducible *T*-module *W* is called thin, whenever

 $\dim E_i^* W \le 1 \qquad \text{for each } 0 \le i \le \varepsilon.$

Matrices L, F, R

Define L = L(x), F = F(x), and R = R(x) in $M_{|X|}(\mathbb{C})$ by

$$L = \sum_{i=1}^{\varepsilon} E_{i-1}^* A E_i^*, \qquad F = \sum_{i=0}^{\varepsilon} E_i^* A E_i^*, \qquad R = \sum_{i=0}^{\varepsilon-1} E_{i+1}^* A E_i^*.$$

We refer to L, F, and R as the *lowering*, *flat*, and *raising* matrices with respect to x, respectively.

▶ Note that $L, F, R \in T$, $F = F^{\top}$, $R = L^{\top}$, and A = L + F + R.

Definition 2.4

A parameter matrix $U = (e_{ij})_{1 \le i,j \le \varepsilon}$ is defined to be a tridiagonal matrix with entries in \mathbb{C} , satisfying the following properties:

- $\blacktriangleright e_{ii} = 1 \ (1 \le i \le \varepsilon),$
- $e_{i,i-1} \neq 0$ for $2 \leq i \leq \varepsilon$ or $e_{i-1,i} \neq 0$ for $2 \leq i \leq \varepsilon$, and
- the principal submatrix $(e_{ij})_{s \leq i, j \leq t}$ is nonsingular for $1 \leq s \leq t \leq \varepsilon$.

For convenience we write $e_i^- := e_{i,i-1}$ for $2 \le i \le \varepsilon$ and $e_i^+ := e_{i,i+1}$ for $1 \le i \le \varepsilon - 1$. We also define $e_1^- := 0$ and $e_{\varepsilon}^+ := 0$.

Definition 2.4

A parameter matrix $U = (e_{ij})_{1 \le i,j \le \varepsilon}$ is defined to be a tridiagonal matrix with entries in \mathbb{C} , satisfying the following properties:

- $\blacktriangleright e_{ii} = 1 \ (1 \le i \le \varepsilon),$
- $e_{i,i-1} \neq 0$ for $2 \leq i \leq \varepsilon$ or $e_{i-1,i} \neq 0$ for $2 \leq i \leq \varepsilon$, and
- the principal submatrix $(e_{ij})_{s \leq i, j \leq t}$ is nonsingular for $1 \leq s \leq t \leq \varepsilon$.

For convenience we write $e_i^- := e_{i,i-1}$ for $2 \le i \le \varepsilon$ and $e_i^+ := e_{i,i+1}$ for $1 \le i \le \varepsilon - 1$. We also define $e_1^- := 0$ and $e_{\varepsilon}^+ := 0$.

• Let Γ be a bipartite graph. A uniform structure of Γ with respect to x is a pair (U, f) where $f = \{f_i\}_{i=1}^{\varepsilon}$ is a vector in \mathbb{C}^{ε} , such that

$$e_i^- RL^2 + LRL + e_i^+ L^2 R = f_i L$$

is satisfied on E_i^*V for $1\leq i\leq \varepsilon$

Definition 2.5

Consider $\Gamma = (X, \mathcal{R})$: a non-bipartite graph, fix $x \in X$ and let $\mathcal{R}_f = \mathcal{R} \setminus \{yz \mid \partial(x, y) = \partial(x, z)\}$. We define $\Gamma_f = \Gamma_f(x)$ to be the graph with vertex set X and edge set \mathcal{R}_f , and we observe that Γ_f is bipartite and connected.

Definition 2.5

Consider $\Gamma = (X, \mathcal{R})$: a non-bipartite graph, fix $x \in X$ and let $\mathcal{R}_f = \mathcal{R} \setminus \{yz \mid \partial(x, y) = \partial(x, z)\}$. We define $\Gamma_f = \Gamma_f(x)$ to be the graph with vertex set X and edge set \mathcal{R}_f , and we observe that Γ_f is bipartite and connected.

• The graph Γ supports a uniform structure with respect to x, if Γ_f admits a uniform structure with respect to x.

We know

- \blacktriangleright The Terwilliger algebra of the graph Γ and its modules,
- ▶ Uniform structure for bipartite graphs,
- The graph Γ supports a uniform structure with respect to x, if Γ_f admits a uniform structure with respect to x.

We know

- \blacktriangleright The Terwilliger algebra of the graph Γ and its modules,
- ▶ Uniform structure for bipartite graphs,
- The graph Γ supports a uniform structure with respect to x, if Γ_f admits a uniform structure with respect to x.
- ☞ Distance regular graphs with classical parameters.

Definition 2.6

► The graph Γ is distance-regular whenever, for all integers $0 \le h, i, j \le D$ and all $x, y \in X$ with $\partial(x, y) = h$, the number $p_{ij}^h := |\Gamma_i(x) \cap \Gamma_j(y)|$ is independent of the choice of x, y. The constants (p_{ij}^h) are known as the intersection numbers of Γ . For convenience,

$$c_{i} := p_{1 i-1}^{i} (1 \le i \le D),$$

$$a_{i} := p_{1 i}^{i} (0 \le i \le D),$$

$$b_{i} := p_{1 i+1}^{i} (0 \le i \le D-1),$$

$$k_{i} := p_{i i}^{0} (0 \le i \le D).$$

Definition 2.6

• The graph Γ is distance-regular whenever, for all integers $0 \le h, i, j \le D$ and all $x, y \in X$ with $\partial(x, y) = h$, the number $p_{ij}^h := |\Gamma_i(x) \cap \Gamma_j(y)|$ is independent of the choice of x, y. The constants (p_{ij}^h) are known as the intersection numbers of Γ . For convenience,

$$c_{i} := p_{1i-1}^{i} (1 \le i \le D),$$

$$a_{i} := p_{1i}^{i} (0 \le i \le D),$$

$$b_{i} := p_{1i+1}^{i} (0 \le i \le D - 1),$$

$$k_{i} := p_{ii}^{0} (0 \le i \le D).$$

Definition 2.7

A distance regular graph Γ is called a near polygon whenever $a_i = a_1c_i$ for $1 \le i \le D-1$ and Γ does not contain the complete multipartite graph $K_{1,1,2}$ as an induced subgraph.

Definition 2.8 (Distance-regular graphs with classical parameters)

The graph Γ is said to have classical parameters (D, q, α, β) whenever the intersection numbers of Γ satisfy

$$\begin{cases} c_i = {i \brack 1} \left(1 + \alpha {i-1 \brack 1} \right) & (1 \le i \le D), \\ b_i = \left({D \brack 1} - {i \brack 1} \right) \left(\beta - \alpha {i \brack 1} \right) & (0 \le i \le D - 1) \end{cases}$$

where

$$\begin{bmatrix} j \\ 1 \end{bmatrix} := 1 + q + q^2 + \dots + q^{j-1}.$$

In this case q is an integer and $q \notin \{0, -1\}$.

The following notation has been used throughout all our results.

Notation.

- Let $\Gamma = (X, \mathcal{R})$ denote a distance-regular non-bipartite graph with diameter $D \geq 3$, intersection numbers $b_i \ (0 \leq i \leq D - 1), c_i \ (1 \leq i \leq D)$, and eigenvalues $\theta_0 > \theta_1 > \ldots > \theta_D$.
- Fix $x \in X$, and let T = T(x) be the Terwilliger algebra of Γ and $E_i^* (0 \le i \le D)$ be the dual idempotents of Γ with respect to x.
- Let L, F, and R denote the corresponding lowering, flat, and raising matrices, respectively.
- Let $T_f = T_f(x)$ be the Terwilliger algebra of Γ_f . Note that T_f is generated by the matrices L, R, and E_i^* $(0 \le i \le D)$.

Some Important Tools: The following results are useful tools in our proofs.

Theorem 1 (P. Terwilliger- 1990)

Let $\Gamma = (X, \mathcal{R})$ be a bipartite graph and fix $x \in X$. Let T = T(x) denote the corresponding Terwilliger algebra. Assume that Γ admits a uniform structure with respect to x. Then, the following assertions hold:

- (i) Every irreducible T-module is thin.
- (ii) The isomorphism class of any irreducible T-module W is determined by its endpoint and its diameter.

Some Important Tools: The following results are useful tools in our proofs.

Theorem 1 (P. Terwilliger- 1990)

Let $\Gamma = (X, \mathcal{R})$ be a bipartite graph and fix $x \in X$. Let T = T(x) denote the corresponding Terwilliger algebra. Assume that Γ admits a uniform structure with respect to x. Then, the following assertions hold:

- (i) Every irreducible T-module is thin.
- (ii) The isomorphism class of any irreducible T-module W is determined by its endpoint and its diameter.

Lemma 1

Consider the above notation. The following statements hold.

- (i) Any T-module W is also a T_f -module.
- (ii) Any thin irreducible T-module W is also a thin irreducible T_f -module.

Definition 2.9

Let $\Gamma = (X, \mathcal{R})$ denote a distance-regular non-bipartite graph with diameter $D \geq 3$, intersection numbers $b_i (0 \leq i \leq D-1)$, $c_i (1 \leq i \leq D)$, and eigenvalues $\theta_0 > \theta_1 > \ldots > \theta_D$. The graph Γ is tight whenever the equality holds in

$$\left(\theta_1 + \frac{b_0}{a_1 + 1}\right) \left(\theta_D + \frac{b_0}{a_1 + 1}\right) \ge -\frac{b_0 a_1 b_1}{(a_1 + 1)^2}.$$

Definition 2.9

Let $\Gamma = (X, \mathcal{R})$ denote a distance-regular non-bipartite graph with diameter $D \geq 3$, intersection numbers $b_i (0 \leq i \leq D-1)$, $c_i (1 \leq i \leq D)$, and eigenvalues $\theta_0 > \theta_1 > \ldots > \theta_D$. The graph Γ is tight whenever the equality holds in

$$\left(\theta_1 + \frac{b_0}{a_1 + 1}\right) \left(\theta_D + \frac{b_0}{a_1 + 1}\right) \ge -\frac{b_0 a_1 b_1}{(a_1 + 1)^2}.$$

DRGs with classical parameters of negative type

DRGs with classical parameters of negative type that support a uniform structure

DRGs with classical parameters of Negative type that support a uniform structure $q \leq$

Let Γ be a distance-regular graph with classical parameters of negative type.

Question. Which graphs, Γ , in this category support a uniform structure?

We split the analysis of this question into three cases:

-2

DRGs with classical parameters of Negative type that support a uniform structure $q \leq -2$

Let Γ be a distance-regular graph with classical parameters of negative type.

Question. Which graphs, Γ , in this category support a uniform structure?

We split the analysis of this question into three cases:

Case 1. Γ has intersection number $a_1 \neq 0$ and is not a near polygon.

DRGs with classical parameters of Negative type that support a uniform structure $q \leq$

Let Γ be a distance-regular graph with classical parameters of negative type.

Question. Which graphs, Γ , in this category support a uniform structure?

We split the analysis of this question into three cases:

- **Case 1.** Γ has intersection number $a_1 \neq 0$ and is not a near polygon.
- Case 2. Γ has intersection number $a_1 = 0$.

-2

DRGs with classical parameters of Negative type that support a uniform structure $q \leq q \leq q$

Let Γ be a distance-regular graph with classical parameters of negative type.

Question. Which graphs, Γ , in this category support a uniform structure?

We split the analysis of this question into three cases:

- **Case 1.** Γ has intersection number $a_1 \neq 0$ and is not a near polygon.
- Case 2. Γ has intersection number $a_1 = 0$.
- **Case 3.** Γ is a near polygon.

-2

Case 1. Γ has intersection number $a_1 \neq 0$ and is not a near polygon.

Proposition 1 (Š.Miklavič - 2009)

With reference to Notation, assume that Γ is of negative type with $a_1 \neq 0$ and it is not a near polygon. Then, the following statements hold.

- Up to isomorphism there is a unique irreducible module with endpoint 1 which is non-thin.
- Let W denote a non-thin irreducible T-module with endpoint 1. Pick a non-zero $w \in E_1^*W$. Then, the following vectors form a basis for W:

$$E_i^* A_{i-1} w \quad (1 \le i \le D), \quad E_i^* A_{i+1} w \quad (2 \le i \le D - 1).$$
 (1)

Case 1.

Theorem [B. Fernández, R.M., Š.Miklavič, G. Monzillo - 2023]

With reference to Notation, assume that Γ is of negative type with $a_1 \neq 0$ and it is not a near polygon. Then, Γ does not support a uniform structure with respect to x.

Theorem [B. Fernández, R.M., Š.Miklavič, G. Monzillo - 2023]

With reference to Notation, assume that Γ is of negative type with $a_1 \neq 0$ and it is not a near polygon. Then, Γ does not support a uniform structure with respect to x.

Proof.

- Let W denote a non-thin irreducible T-module with endpoint 1 (which is unique),
- ▶ pick a non-zero $w \in E_1^*W$ (W is also a T_f -module),
- ▶ let $W' \subseteq W$ be an irreducible T_f -module which contains w,
- using the action of L and R on the basis form Proposition 1, we showed that the vectors Rw and LR^2w are linearly independent.
- ▶ W' is non-thin,
- ▶ by Theorem 1, Γ does not support a uniform structure.

Case 2. Γ has intersection number $a_1 = 0$.

Theorem [B. Fernández, R.M., Š.Miklavič, G. Monzillo - 2023] With reference to Notation, assume that Γ is of negative type with $a_1 = 0$. Then, Γ does not support a uniform structure with respect to x.

Case 3. Γ is a near polygon.

We first recall following results for distance-regular graphs of negative type with $a_1 \neq 0$ and $c_2 > 1$.

Theorem 2 (Chih-wen Weng - 1999)

With reference to Notation, assume Γ has classical parameters (D, q, α, β) where $D \ge 4$. Suppose $q \le -2$, $a_1 \ne 0$, and $c_2 > 1$. Then, one of the following hold.

- Γ is the dual polar graph ${}^{2}A_{2D-1}(-q)$.
- Γ is Hermitian forms graph $Her_{-q}(D)$.
- $\alpha = (q-1)/2$, $\beta = -(1+q^D)/2$, and -q is a power of an odd prime.

Corollary 1

With reference to Notation, assume Γ has classical parameters (D, q, α, β) . Suppose Γ is a regular near polygon with $q \leq -2$. Then, either Γ is the dual polar graph ${}^{2}A_{2D-1}(-q)$ or D = 3.

Case 3. Γ is a near polygon.

Therefore, we have the following result.

Theorem [B. Fernández, R.M., Š.Miklavič, G. Monzillo - 2023] With reference to Notation, let Γ denote the dual polar graph ${}^{2}A_{2D-1}(-q)$. Then, $-\frac{q^{4}}{q^{2}+1}RL^{2}+LRL-\frac{q^{-2}}{q^{2}+1}L^{2}R = (-q)^{2D-1}L$ (C. Worawannotai - 2013) is satisfied on $E_{i}^{*}V$ for $1 \leq i \leq D$. Therefore, Γ supports a uniform structure with respect to x, where $e_{i}^{-} = -q^{4}/(q^{2}+1)$ ($2 \leq i \leq D$), $e_{i}^{+} = -q^{-2}/(q^{2}+1)$ ($1 \leq i \leq D-1$), and $f_{i} = (-q)^{2D-1}$ ($1 \leq i \leq D$).

DRGs with classical parameters with q = 1

Distance-regular graphs with classical parameters with q = 1

DISTANCE-REGULAR GRAPHS WITH CLASSICAL PARAMETERS WITH q = 1

We have the following classification for DRGs with classical parameters with q = 1.

Theorem 3 (Theorem 6.1.1 - Brouwer, Cohen, and Neumaier)

Let Γ denote a distance-regular graph with classical parameters with q = 1. Then, Γ is one of the following graphs:

- ▶ Johnson graph J(n, D), $n \ge 2D$, (tight: n = 2D)
- ► Gosset graph, (tight)
- $\blacktriangleright Hamming graph H(D, n),$
- ► Halved cube $\frac{1}{2}H(n,2)$, (tight: n even)
- ▶ Doob graph D(n,m), $n \ge 1$, $m \ge 0$.

We analyze each of these families in order to see which one admits a uniform structure.

DISTANCE-REGULAR GRAPHS WITH CLASSICAL PARAMETERS WITH q = 1

Theorem [B. Fernández, R.M., Š.Miklavič, G. Monzillo - 2023] With reference to Notation, let Γ denote a tight graph with classical parameters with q = 1. Then, Γ does not support a uniform structure with respect to x.

Corollary 2

- If Γ is one of the following graphs,
 - 1. Johnson graph J(2D, D),
 - 2. Gosset graph,
 - 3. Halved cube $\frac{1}{2}H(n,2)$ with n even,

then, Γ does not support a uniform structure with respect to x.

Johnson graphs J(n, D) with n > 2D

Theorem [B. Fernández, R.M., Š.Miklavič, G. Monzillo - 2023] With reference to Notation, let $\Gamma = J(n, D)$ with $n \ge 2D$. Then, Γ does not support a uniform structure.

Hamming graph H(D, n) with $n \geq 3$

Theorem [B. Fernández, R.Maleki, Š.Miklavič, G. Monzillo - 2023] With reference to Notation, let Γ denote the Hamming graph H(D, n) with $n \geq 3$. Then,

$$-\frac{1}{2}RL^2 + LRL - \frac{1}{2}L^2R = (n-1)L$$

is satisfied on E_i^*V for $1 \le i \le D$ and Γ supports a uniform structure with respect to x, where $e_i^- = -\frac{1}{2} (2 \le i \le D)$, $e_i^+ = -\frac{1}{2} (1 \le i \le D-1)$, and $f_i = n-1 (1 \le i \le D)$.

Halved cubes $\frac{1}{2}H(n,2)$ with n odd.

Theorem [B. Fernández, R.M., Š.Miklavič, G. Monzillo - 2023] With reference to Notation, let Γ denote the Halved cube $\frac{1}{2}H(n,2)$ with n odd, $n \geq 7$. Recall that $D = \lfloor \frac{n}{2} \rfloor = (n-1)/2$. Then,

 $e_i^- RL^2 + LRL + e_i^+ L^2 R = f_i L$

is satisfied on $E_i^* V$ for $1 \le i \le D$, where

$$e_i^- = \frac{4i - 1 - 2D}{6 - 8i + 4D} (2 \le i \le D) \qquad e_i^+ = \frac{4i - 5 - 2D}{6 - 8i + 4D} (1 \le i \le D - 1)$$

$$f_i = -(4i - 5)(4i - 1) + (16i - 12)D - 4D^2 (1 \le i \le D).$$

Therefore, Γ supports a uniform structure with respect to x.

Doob graphs D(n,m) where $n \ge 1, m \ge 0$

Theorem [B. Fernández, R.M., Š.Miklavič, G. Monzillo - 2023]

With reference to Notation, let Γ denote the Doob graph D(n,m) with $n \geq 1$, $m \geq 0$ and $D = 2n + m \geq 3$. Then,

$$-\frac{1}{2}RL^2 + LRL - \frac{1}{2}L^2R = 3L$$

is satisfied on E_i^*V for $1 \le i \le D$ and Γ supports a strongly uniform structure with respect to x, where $e_i^- = -\frac{1}{2}(2 \le i \le D)$, $e_i^+ = -\frac{1}{2}(1 \le i \le D - 1)$, and $f_i = 3(1 \le i \le D)$.

Non-bipartite distance-regular graphs with classical parameters (D, q, α, β) with $q \leq 1$.

Non-bipartite distance-regular graphs with classical parameters (D, q, α, β) with $q \leq 1$.

▶ $q \leq -2$ (negative type)

Non-bipartite distance-regular graphs with classical parameters (D, q, α, β) with $q \leq 1$.

▶ $q \leq -2$ (negative type)

 $\begin{cases} \Gamma \text{ has intersection number } a_1 \neq 0 \text{ and is not a near polygon} \times \\ \Gamma \text{ has intersection number } a_1 = 0 \times \\ \Gamma \text{ is a near polygon} \end{cases}$

Non-bipartite distance-regular graphs with classical parameters (D, q, α, β) with $q \leq 1$.

▶ $q \leq -2$ (negative type)

 $\begin{cases} \Gamma \text{ has intersection number } a_1 \neq 0 \text{ and is not a near polygon} \times \\ \Gamma \text{ has intersection number } a_1 = 0 \times \\ \Gamma \text{ is a near polygon} & \begin{cases} \Gamma \text{ is a dual polar graph, } D \geq 4 \checkmark \\ \Gamma \text{ has diameter } D = 3 \end{cases}. \end{cases}$

Non-bipartite distance-regular graphs with classical parameters (D, q, α, β) with $q \leq 1$.

▶ $q \leq -2$ (negative type)

 $\begin{cases} \Gamma \text{ has intersection number } a_1 \neq 0 \text{ and is not a near polygon } \times \\ \Gamma \text{ has intersection number } a_1 = 0 \times \\ \Gamma \text{ is a near polygon } \begin{cases} \Gamma \text{ is a dual polar graph, } D \geq 4 \checkmark \\ \Gamma \text{ has diameter } D = 3 ? \end{cases}$

Non-bipartite distance-regular graphs with classical parameters (D, q, α, β) with $q \leq 1$.

▶ q < -2 (negative type)

 $\begin{cases} \Gamma \text{ has intersection number } a_1 \neq 0 \text{ and is not a near polygon} \times \\ \Gamma \text{ has intersection number } a_1 = 0 \times \\ \Gamma \text{ is a near polygon} \end{cases} \begin{cases} \Gamma \text{ is a dual polar graph, } D \geq 4 \checkmark \\ \Gamma \text{ has diameter } D = 3 ? \end{cases}$

▶ q = 1
 Johnson graph J(n, D), n ≥ 2D × Gosset graph × Hamming graph H(D, n) where n ≥ 3 ✓ Halved cube ¹/₂H(n, 2)

Non-bipartite distance-regular graphs with classical parameters (D, q, α, β) with $q \leq 1$.

▶ q < -2 (negative type)

 $\begin{cases} \Gamma \text{ has intersection number } a_1 \neq 0 \text{ and is not a near polygon} \times \\ \Gamma \text{ has intersection number } a_1 = 0 \times \\ \Gamma \text{ is a near polygon} \end{cases} \begin{cases} \Gamma \text{ is a dual polar graph, } D \geq 4 \checkmark \\ \Gamma \text{ has diameter } D = 3 ? \end{cases}$

 $\bullet \ q = 1$ $\begin{cases} \text{Johnson graph } J(n, D), \ n \ge 2D \times \\ \text{Gosset graph } \times \\ \text{Hamming graph } H(D, n) \text{ where } n \ge 3 \checkmark \\ \text{Halved cube } \frac{1}{2}H(n, 2) \\ n \ge 7 \text{ odd } \checkmark \\ \text{Doob graph } D(n, m) \text{ with } n \ge 1, \ m \ge 0 \checkmark \end{cases}$

Remark 1

.

Examples of regular near polygons of negative type with D = 3:

- $\blacktriangleright Triality graph {}^{3}D_{4,2}(-q)$
- \blacktriangleright Witt graph M_{24}
- ▶ extended ternary Golay code graph.

! We don't know if this is a complete list of graphs.

Theorem 4 (Go and Terwilliger -2002)

.

Let Γ denote a distance-regular graph, then the following statements are equivalent: (i) Γ is tight,

(ii) every irreducible T-module with endpoint 1 is thin with local eigenvalue $\tilde{\theta_1}$ or $\tilde{\theta_D}$,

(iii) $a_D = 0$ and every irreducible T-module with endpoint 1 is thin.