DISTANCE-REGULAR GRAPHS WITH CLASSICAL PARAMETERS WHICH SUPPORT A UNIFORM STRUCTURE, $q \leq 1$
 (In collaboration with B. Fernández, Š.Miklavič, and G. Monzillo)

Roghayeh Maleki

University of Primorska-FAMNIT,

RICCOTA 2023
3-7 July 2023, Croatia

Aim of the talk

The aim of this talk is to

Aim of the talk

The aim of this talk is to

Classify non-bipartite distance-regular graphs with classical parameters with $q \leq 1$ which support a uniform structure.

AIM OF THE TALK

The aim of this talk is to

Classify non-bipartite distance-regular graphs with classical parameters with $q \leq 1$ which support a uniform structure.

We analyze two cases:

- Non-bipartite distance regular graphs of negative type.
- Non-bipartite distance regular graphs with classical parameters with $q=1$.

Preliminaries

- $\Gamma=(X, \mathcal{R})$: simple, finite, and connected graph,
- $\partial(x, y):=$ distance between x and y, where $x, y \in X$,
- $\varepsilon(x)=\max \{\partial(x, y) \mid y \in X\}$ (eccentricity of x),
- $D=\max \{\varepsilon(x) \mid x \in X\}$ (diameter of Γ)
- $\Gamma_{i}(x)=\{y \in X \mid \partial(x, y)=i\}$ (In particular, $\Gamma(x)=\Gamma_{1}(x)$).
- For an integer $k \geq 0$, we say that Γ is regular with valency k whenever $|\Gamma(x)|=k$ for all $x \in X$.

Preliminaries

- Adjacency matrix of Γ defined by

$$
(A)_{x y}= \begin{cases}1 & \partial(x, y)=1 \\ 0 & \partial(x, y) \neq 1\end{cases}
$$

- V : vector space over \mathbb{C} consisting of column vectors whose coordinates are indexed by X.
$M_{|X|}(\mathbb{C})$ acts on V by left multiplication.
V : the standard module
We endow V with the Hermitian inner product \langle,$\rangle that satisfies \langle u, v\rangle=u^{\top} \bar{v}$ for $u, v \in V$.

Preliminaries

Definition 2.1

Fix $x \in X$ and let $\varepsilon=\varepsilon(x)$. For $0 \leq i \leq \varepsilon$ let $E_{i}^{*}=E_{i}^{*}(x)$ denote the diagonal matrix in $M_{|X|}(\mathbb{C})$ defined by

$$
\left(E_{i}^{*}\right)_{y y}=\left\{\begin{array}{ll}
1 & \partial(x, y)=i, \\
0 & \partial(x, y) \neq i
\end{array} \quad(y \in X)\right.
$$

E_{i}^{*} is called the i-th dual idempotent of Γ with respect to x.

Preliminaries

Definition 2.1

Fix $x \in X$ and let $\varepsilon=\varepsilon(x)$. For $0 \leq i \leq \varepsilon$ let $E_{i}^{*}=E_{i}^{*}(x)$ denote the diagonal matrix in $M_{|X|}(\mathbb{C})$ defined by

$$
\left(E_{i}^{*}\right)_{y y}=\left\{\begin{array}{ll}
1 & \partial(x, y)=i, \\
0 & \partial(x, y) \neq i
\end{array} \quad(y \in X)\right.
$$

E_{i}^{*} is called the i-th dual idempotent of Γ with respect to x.

Definition 2.2

Terwilliger algebra $T:=T(x)$ of Γ, with respect to x, is a subalgebra of $M_{|X|}(\mathbb{C})$, generated by the adjacency matrix of Γ and the dual idempotents.

Preliminaries

Definition 2.1

Fix $x \in X$ and let $\varepsilon=\varepsilon(x)$. For $0 \leq i \leq \varepsilon$ let $E_{i}^{*}=E_{i}^{*}(x)$ denote the diagonal matrix in $M_{|X|}(\mathbb{C})$ defined by

$$
\left(E_{i}^{*}\right)_{y y}=\left\{\begin{array}{ll}
1 & \partial(x, y)=i, \\
0 & \partial(x, y) \neq i
\end{array} \quad(y \in X)\right.
$$

E_{i}^{*} is called the i-th dual idempotent of Γ with respect to x.

Definition 2.2

Terwilliger algebra $T:=T(x)$ of Γ, with respect to x, is a subalgebra of $M_{|X|}(\mathbb{C})$, generated by the adjacency matrix of Γ and the dual idempotents.

- T-module is a vector subspace W of V, which is invariant for every $t \in T$:

$$
t W \subseteq W \text { for all } t \in T
$$

Preliminaries

Definition 2.3

Let W denote an irreducible T-module. Then, W is an orthogonal direct sum of the nonvanishing spaces among $E_{0}^{*} W, E_{1}^{*} W, \ldots, E_{D(X)}^{*} W$. We define

Preliminaries

Definition 2.3

Let W denote an irreducible T-module. Then, W is an orthogonal direct sum of the nonvanishing spaces among $E_{0}^{*} W, E_{1}^{*} W, \ldots, E_{D(X)}^{*} W$. We define

- endpoint of $W \quad r=\min \left\{i \mid 0 \leq i \leq \varepsilon, E_{i}^{*} W \neq 0\right\}$
- diameter of $W \quad d=\left|\left\{i \mid 0 \leq i \leq \varepsilon, E_{i}^{*} W \neq 0\right\}\right|-1$

Preliminaries

Definition 2.3

Let W denote an irreducible T-module. Then, W is an orthogonal direct sum of the nonvanishing spaces among $E_{0}^{*} W, E_{1}^{*} W, \ldots, E_{D(X)}^{*} W$. We define

- endpoint of $W \quad r=\min \left\{i \mid 0 \leq i \leq \varepsilon, E_{i}^{*} W \neq 0\right\}$
- diameter of $W \quad d=\left|\left\{i \mid 0 \leq i \leq \varepsilon, E_{i}^{*} W \neq 0\right\}\right|-1$

In addition,

- Irreducible T-module W is called thin, whenever

$$
\operatorname{dim} E_{i}^{*} W \leq 1 \quad \text { for each } 0 \leq i \leq \varepsilon
$$

Preliminaries

Matrices L, F, R
Define $L=L(x), F=F(x)$, and $R=R(x)$ in $M_{|X|}(\mathbb{C})$ by

$$
L=\sum_{i=1}^{\varepsilon} E_{i-1}^{*} A E_{i}^{*}, \quad F=\sum_{i=0}^{\varepsilon} E_{i}^{*} A E_{i}^{*}, \quad R=\sum_{i=0}^{\varepsilon-1} E_{i+1}^{*} A E_{i}^{*} .
$$

We refer to L, F, and R as the lowering, flat, and raising matrices with respect to x, respectively.

- Note that $L, F, R \in T, F=F^{\top}, R=L^{\top}$, and $A=L+F+R$.

Preliminaries

Definition 2.4

A parameter matrix $U=\left(e_{i j}\right)_{1 \leq i, j \leq \varepsilon}$ is defined to be a tridiagonal matrix with entries in \mathbb{C}, satisfying the following properties:

- $e_{i i}=1(1 \leq i \leq \varepsilon)$,
- $e_{i, i-1} \neq 0$ for $2 \leq i \leq \varepsilon$ or $e_{i-1, i} \neq 0$ for $2 \leq i \leq \varepsilon$, and
- the principal submatrix $\left(e_{i j}\right)_{s \leq i, j \leq t}$ is nonsingular for $1 \leq s \leq t \leq \varepsilon$.

For convenience we write $e_{i}^{-}:=e_{i, i-1}$ for $2 \leq i \leq \varepsilon$ and $e_{i}^{+}:=e_{i, i+1}$ for $1 \leq i \leq \varepsilon-1$. We also define $e_{1}^{-}:=0$ and $e_{\varepsilon}^{+}:=0$.

Preliminaries

Definition 2.4

A parameter matrix $U=\left(e_{i j}\right)_{1 \leq i, j \leq \varepsilon}$ is defined to be a tridiagonal matrix with entries in \mathbb{C}, satisfying the following properties:

- $e_{i i}=1(1 \leq i \leq \varepsilon)$,
- $e_{i, i-1} \neq 0$ for $2 \leq i \leq \varepsilon$ or $e_{i-1, i} \neq 0$ for $2 \leq i \leq \varepsilon$, and
- the principal submatrix $\left(e_{i j}\right)_{s \leq i, j \leq t}$ is nonsingular for $1 \leq s \leq t \leq \varepsilon$.

For convenience we write $e_{i}^{-}:=e_{i, i-1}$ for $2 \leq i \leq \varepsilon$ and $e_{i}^{+}:=e_{i, i+1}$ for $1 \leq i \leq \varepsilon-1$. We also define $e_{1}^{-}:=0$ and $e_{\varepsilon}^{+}:=0$.

- Let Γ be a bipartite graph. A uniform structure of Γ with respect to x is a pair (U, f) where $f=\left\{f_{i}\right\}_{i=1}^{\varepsilon}$ is a vector in \mathbb{C}^{ε}, such that

$$
e_{i}^{-} R L^{2}+L R L+e_{i}^{+} L^{2} R=f_{i} L
$$

is satisfied on $E_{i}^{*} V$ for $1 \leq i \leq \varepsilon$

Preliminaries

Definition 2.5

Consider $\Gamma=(X, \mathcal{R})$: a non-bipartite graph, fix $x \in X$ and let $\mathcal{R}_{f}=\mathcal{R} \backslash\{y z \mid \partial(x, y)=\partial(x, z)\}$.
We define $\Gamma_{f}=\Gamma_{f}(x)$ to be the graph with vertex set X and edge set \mathcal{R}_{f}, and we observe that Γ_{f} is bipartite and connected.

Preliminaries

Definition 2.5

Consider $\Gamma=(X, \mathcal{R})$: a non-bipartite graph, fix $x \in X$ and let $\mathcal{R}_{f}=\mathcal{R} \backslash\{y z \mid \partial(x, y)=\partial(x, z)\}$.
We define $\Gamma_{f}=\Gamma_{f}(x)$ to be the graph with vertex set X and edge set \mathcal{R}_{f}, and we observe that Γ_{f} is bipartite and connected.

- The graph Γ supports a uniform structure with respect to x, if Γ_{f} admits a uniform structure with respect to x.

Preliminaries

We know

- The Terwilliger algebra of the graph Γ and its modules,
- Uniform structure for bipartite graphs,
- The graph Γ supports a uniform structure with respect to x, if Γ_{f} admits a uniform structure with respect to x.

Preliminaries

We know

- The Terwilliger algebra of the graph Γ and its modules,
- Uniform structure for bipartite graphs,
- The graph Γ supports a uniform structure with respect to x, if Γ_{f} admits a uniform structure with respect to x.
(1) Distance regular graphs with classical parameters.

Preliminaries

Definition 2.6

- The graph Γ is distance-regular whenever, for all integers $0 \leq h, i, j \leq D$ and all $x, y \in X$ with $\partial(x, y)=h$, the number $p_{i j}^{h}:=\left|\Gamma_{i}(x) \cap \Gamma_{j}(y)\right|$ is independent of the choice of x, y. The constants ($p_{i j}^{h}$) are known as the intersection numbers of Γ. For convenience,
$c_{i}:=p_{1 i-1}^{i}(1 \leq i \leq D)$,
$a_{i}:=p_{1 i}^{i}(0 \leq i \leq D)$,
$b_{i}:=p_{1 i+1}^{i}(0 \leq i \leq D-1)$,
$k_{i}:=p_{i i}^{0}(0 \leq i \leq D)$.

Preliminaries

Definition 2.6

- The graph Γ is distance-regular whenever, for all integers $0 \leq h, i, j \leq D$ and all $x, y \in X$ with $\partial(x, y)=h$, the number $p_{i j}^{h}:=\left|\Gamma_{i}(x) \cap \Gamma_{j}(y)\right|$ is independent of the choice of x, y. The constants ($p_{i j}^{h}$) are known as the intersection numbers of Γ. For convenience,

$$
\begin{aligned}
& c_{i}:=p_{1 i-1}^{i}(1 \leq i \leq D), \\
& a_{i}:=p_{1 i}^{i}(0 \leq i \leq D), \\
& b_{i}:=p_{1 i+1}^{i}(0 \leq i \leq D-1), \\
& k_{i}:=p_{i i}^{0}(0 \leq i \leq D) .
\end{aligned}
$$

Definition 2.7

A distance regular graph Γ is called a near polygon whenever $a_{i}=a_{1} c_{i}$ for $1 \leq i \leq D-1$ and Γ does not contain the complete multipartite graph $K_{1,1,2}$ as an induced subgraph.

Preliminaries

Definition 2.8 (Distance-regular graphs with classical parameters)

The graph Γ is said to have classical parameters (D, q, α, β) whenever the intersection numbers of Γ satisfy

$$
\begin{cases}c_{i}=\left[\begin{array}{l}
i \\
1
\end{array}\right]\left(1+\alpha\left[\begin{array}{c}
i-1 \\
1
\end{array}\right]\right) & (1 \leq i \leq D) \\
b_{i}=\left(\left[\begin{array}{c}
D \\
1
\end{array}\right]-\left[\begin{array}{l}
i \\
1
\end{array}\right]\right)\left(\beta-\alpha\left[\begin{array}{l}
i \\
1
\end{array}\right]\right) & (0 \leq i \leq D-1)\end{cases}
$$

where

$$
\left[\begin{array}{l}
j \\
1
\end{array}\right]:=1+q+q^{2}+\cdots+q^{j-1} .
$$

In this case q is an integer and $q \notin\{0,-1\}$.

Preliminaries

The following notation has been used throughout all our results.

Notation.

- Let $\Gamma=(X, \mathcal{R})$ denote a distance-regular non-bipartite graph with diameter $D \geq 3$, intersection numbers $b_{i}(0 \leq i \leq D-1), c_{i}(1 \leq i \leq D)$, and eigenvalues $\theta_{0}>\theta_{1}>\ldots>\theta_{D}$.
- Fix $x \in X$, and let $T=T(x)$ be the Terwilliger algebra of Γ and $E_{i}^{*}(0 \leq i \leq D)$ be the dual idempotents of Γ with respect to x.
- Let L, F, and R denote the corresponding lowering, flat, and raising matrices, respectively.
- Let $T_{f}=T_{f}(x)$ be the Terwilliger algebra of Γ_{f}. Note that T_{f} is generated by the matrices L, R, and $E_{i}^{*}(0 \leq i \leq D)$.

Preliminaries

Some Important Tools: The following results are useful tools in our proofs.

Theorem 1 (P. Terwilliger- 1990)

Let $\Gamma=(X, \mathcal{R})$ be a bipartite graph and fix $x \in X$. Let $T=T(x)$ denote the corresponding Terwilliger algebra. Assume that Γ admits a uniform structure with respect to x. Then, the following assertions hold:
(i) Every irreducible T-module is thin.
(ii) The isomorphism class of any irreducible T-module W is determined by its endpoint and its diameter.

Preliminaries

Some Important Tools: The following results are useful tools in our proofs.

Theorem 1 (P. Terwilliger- 1990)

Let $\Gamma=(X, \mathcal{R})$ be a bipartite graph and fix $x \in X$. Let $T=T(x)$ denote the corresponding Terwilliger algebra. Assume that Γ admits a uniform structure with respect to x. Then, the following assertions hold:
(i) Every irreducible T-module is thin.
(ii) The isomorphism class of any irreducible T-module W is determined by its endpoint and its diameter.

Lemma 1

Consider the above notation. The following statements hold.
(i) Any T-module W is also a T_{f}-module.
(ii) Any thin irreducible T-module W is also a thin irreducible T_{f}-module.

Preliminaries

Definition 2.9

Let $\Gamma=(X, \mathcal{R})$ denote a distance-regular non-bipartite graph with diameter $D \geq 3$, intersection numbers $b_{i}(0 \leq i \leq D-1), c_{i}(1 \leq i \leq D)$, and eigenvalues $\theta_{0}>\theta_{1}>\ldots>\theta_{D}$. The graph Γ is tight whenever the equality holds in

$$
\left(\theta_{1}+\frac{b_{0}}{a_{1}+1}\right)\left(\theta_{D}+\frac{b_{0}}{a_{1}+1}\right) \geq-\frac{b_{0} a_{1} b_{1}}{\left(a_{1}+1\right)^{2}} .
$$

Preliminaries

Definition 2.9

Let $\Gamma=(X, \mathcal{R})$ denote a distance-regular non-bipartite graph with diameter $D \geq 3$, intersection numbers $b_{i}(0 \leq i \leq D-1), c_{i}(1 \leq i \leq D)$, and eigenvalues $\theta_{0}>\theta_{1}>\ldots>\theta_{D}$. The graph Γ is tight whenever the equality holds in

$$
\left(\theta_{1}+\frac{b_{0}}{a_{1}+1}\right)\left(\theta_{D}+\frac{b_{0}}{a_{1}+1}\right) \geq-\frac{b_{0} a_{1} b_{1}}{\left(a_{1}+1\right)^{2}} .
$$

DRGs with classical parameters of negative type

DRGs with classical parameters of negative type that support a uniform structure

DRGs with classical parameters of Negative type THAT SUPPORT A UNIFORM STRUCTURE
 ```q\leq```

Let Γ be a distance-regular graph with classical parameters of negative type.

Question. Which graphs, Γ, in this category support a uniform structure?

We split the analysis of this question into three cases:

DRGs with classical parameters of Negative type THAT SUPPORT A UNIFORM STRUCTURE
 ```q\leq```

Let Γ be a distance-regular graph with classical parameters of negative type.

Question. Which graphs, Γ, in this category support a uniform structure?

We split the analysis of this question into three cases:

- Case 1. Γ has intersection number $a_{1} \neq 0$ and is not a near polygon.

DRGs with classical parameters of Negative type THAT SUPPORT A UNIFORM STRUCTURE
 ```q\leq```

Let Γ be a distance-regular graph with classical parameters of negative type.

Question. Which graphs, Γ, in this category support a uniform structure?

We split the analysis of this question into three cases:

- Case 1. Γ has intersection number $a_{1} \neq 0$ and is not a near polygon.
- Case 2. Γ has intersection number $a_{1}=0$.

DRGs with classical parameters of Negative type THAT SUPPORT A UNIFORM STRUCTURE
 ``` q

```
}

Let \(\Gamma\) be a distance-regular graph with classical parameters of negative type.

Question. Which graphs, \(\Gamma\), in this category support a uniform structure?

We split the analysis of this question into three cases:
- Case 1. \(\Gamma\) has intersection number \(a_{1} \neq 0\) and is not a near polygon.
- Case 2. \(\Gamma\) has intersection number \(a_{1}=0\).
- Case 3. \(\Gamma\) is a near polygon.

\section*{Case 1. \(\Gamma\) has intersection number \(a_{1} \neq 0\) And is not A NEAR POLYGON.}

\section*{Proposition 1 (Š.Miklavič - 2009)}

With reference to Notation, assume that \(\Gamma\) is of negative type with \(a_{1} \neq 0\) and it is not a near polygon. Then, the following statements hold.
- Up to isomorphism there is a unique irreducible module with endpoint 1 which is non-thin.
- Let \(W\) denote a non-thin irreducible \(T\)-module with endpoint 1 . Pick a non-zero \(w \in E_{1}^{*} W\). Then, the following vectors form a basis for \(W\) :
\[
\begin{equation*}
E_{i}^{*} A_{i-1} w \quad(1 \leq i \leq D), \quad E_{i}^{*} A_{i+1} w \quad(2 \leq i \leq D-1) \tag{1}
\end{equation*}
\]

\section*{Case 1.}

Theorem [ B. Fernández, R.M., Š.Miklavič, G. Monzillo - 2023]

With reference to Notation, assume that \(\Gamma\) is of negative type with \(a_{1} \neq 0\) and it is not a near polygon. Then, \(\Gamma\) does not support a uniform structure with respect to \(x\).

\section*{Case 1.}

Theorem [ B. Fernández, R.M., Š.Miklavič, G. Monzillo - 2023]
With reference to Notation, assume that \(\Gamma\) is of negative type with \(a_{1} \neq 0\) and it is not a near polygon. Then, \(\Gamma\) does not support a uniform structure with respect to \(x\).

\section*{Proof.}
- Let \(W\) denote a non-thin irreducible \(T\)-module with endpoint 1 (which is unique),
- pick a non-zero \(w \in E_{1}^{*} W\) ( \(W\) is also a \(T_{f}\)-module),
- let \(W^{\prime} \subseteq W\) be an irreducible \(T_{f}\)-module which contains \(w\),
- using the action of \(L\) and \(R\) on the basis form Proposition 1, we showed that the vectors \(R w\) and \(L R^{2} w\) are linearly independent.
- \(W^{\prime}\) is non-thin,
- by Theorem 1, \(\Gamma\) does not support a uniform structure.

\section*{CASE 2. \(\Gamma\) HAS INTERSECTION NUMBER \(a_{1}=0\).}

Theorem [ B. Fernández, R.M., Š.Miklavič, G. Monzillo - 2023]
With reference to Notation, assume that \(\Gamma\) is of negative type with \(a_{1}=0\). Then, \(\Gamma\) does not support a uniform structure with respect to \(x\).

\section*{Case 3. \(\Gamma\) IS A NEAR POLYGON.}

We first recall following results for distance-regular graphs of negative type with \(a_{1} \neq 0\) and \(c_{2}>1\).

\section*{Theorem 2 (Chih-wen Weng - 1999)}

With reference to Notation, assume \(\Gamma\) has classical parameters \((D, q, \alpha, \beta)\) where \(D \geq 4\). Suppose \(q \leq-2, a_{1} \neq 0\), and \(c_{2}>1\). Then, one of the following hold.
- \(\Gamma\) is the dual polar graph \({ }^{2} A_{2 D-1}(-q)\).
- \(\Gamma\) is Hermitian forms graph \(\mathrm{Her}_{-q}(D)\).
- \(\alpha=(q-1) / 2, \beta=-\left(1+q^{D}\right) / 2\), and \(-q\) is a power of an odd prime.

Corollary 1
With reference to Notation, assume \(\Gamma\) has classical parameters ( \(D, q, \alpha, \beta\) ). Suppose \(\Gamma\) is a regular near polygon with \(q \leq-2\). Then, either \(\Gamma\) is the dual polar graph \({ }^{2} A_{2 D-1}(-q)\) or \(D=3\).

\section*{Case 3. \(\Gamma\) IS A NEAR POLYGON.}

Therefore, we have the following result.
Theorem [ B. Fernández, R.M., Š.Miklavič, G. Monzillo - 2023]
With reference to Notation, let \(\Gamma\) denote the dual polar graph \({ }^{2} A_{2 D-1}(-q)\). Then,
\[
-\frac{q^{4}}{q^{2}+1} R L^{2}+L R L-\frac{q^{-2}}{q^{2}+1} L^{2} R=(-q)^{2 D-1} L \quad(\text { C. Worawannotai - 2013) }
\]
is satisfied on \(E_{i}^{*} V\) for \(1 \leq i \leq D\). Therefore, \(\Gamma\) supports a uniform structure with respect to \(x\), where \(e_{i}^{-}=-q^{4} /\left(q^{2}+1\right)(2 \leq i \leq D), e_{i}^{+}=-q^{-2} /\left(q^{2}+1\right)(1 \leq i \leq D-1)\), and \(f_{i}=(-q)^{2 D-1}(1 \leq i \leq D)\).

DRGs with classical parameters with \(q=1\)

Distance-regular graphs with classical parameters with \(q=1\)

\section*{DISTANCE-REGULAR GRAPHS WITH CLASSICAL PARAMETERS WITH \(q=1\)}

We have the following classification for DRGs with classical parameters with \(q=1\).

\section*{Theorem 3 (Theorem 6.1.1 - Brouwer, Cohen, and Neumaier)}

Let \(\Gamma\) denote a distance-regular graph with classical parameters with \(q=1\). Then, \(\Gamma\) is one of the following graphs:
- Johnson graph \(J(n, D), n \geq 2 D\), (tight: \(n=2 D\) )
- Gosset graph, (tight)
- Hamming graph \(H(D, n)\),
- Halved cube \(\frac{1}{2} H(n, 2)\), (tight: \(n\) even)
- Doob graph \(D(n, m), n \geq 1, m \geq 0\).

We analyze each of these families in order to see which one admits a uniform structure.

\section*{DISTANCE-REGULAR GRAPHS WITH CLASSICAL PARAMETERS WITH \(q=1\)}

Theorem [ B. Fernández, R.M., Š.Miklavič, G. Monzillo - 2023]
With reference to Notation, let \(\Gamma\) denote a tight graph with classical parameters with \(q=1\). Then, \(\Gamma\) does not support a uniform structure with respect to \(x\).

\section*{Corollary 2}

If \(\Gamma\) is one of the following graphs,
1. Johnson graph \(J(2 D, D)\),
2. Gosset graph,
3. Halved cube \(\frac{1}{2} H(n, 2)\) with \(n\) even,
then, \(\Gamma\) does not support a uniform structure with respect to \(x\).

\section*{Johnson graphs \(J(n, D)\) with \(n>2 D\)}

Theorem [ B. Fernández, R.M., Š.Miklavič, G. Monzillo - 2023]
With reference to Notation, let \(\Gamma=J(n, D)\) with \(n \geq 2 D\). Then, \(\Gamma\) does not support a uniform structure.

Hamming graph \(H(D, n)\) with \(n \geq 3\)

Theorem [ B. Fernández, R.Maleki, Š.Miklavič, G. Monzillo - 2023]
With reference to Notation, let \(\Gamma\) denote the Hamming graph \(H(D, n)\) with \(n \geq 3\). Then,
\[
-\frac{1}{2} R L^{2}+L R L-\frac{1}{2} L^{2} R=(n-1) L
\]
is satisfied on \(E_{i}^{*} V\) for \(1 \leq i \leq D\) and \(\Gamma\) supports a uniform structure with respect to \(x\), where \(e_{i}^{-}=-\frac{1}{2}(2 \leq i \leq D), e_{i}^{+}=-\frac{1}{2}(1 \leq i \leq D-1)\), and \(f_{i}=n-1(1 \leq i \leq D)\).

\section*{Halved cubes \(\frac{1}{2} H(n, 2)\) with \(n\) odd.}

Theorem [ B. Fernández, R.M., Š.Miklavič, G. Monzillo - 2023]
With reference to Notation, let \(\Gamma\) denote the Halved cube \(\frac{1}{2} H(n, 2)\) with \(n\) odd, \(n \geq 7\). Recall that \(D=\left\lfloor\frac{n}{2}\right\rfloor=(n-1) / 2\). Then,
\[
e_{i}^{-} R L^{2}+L R L+e_{i}^{+} L^{2} R=f_{i} L
\]
is satisfied on \(E_{i}^{*} V\) for \(1 \leq i \leq D\), where
\[
\begin{aligned}
& e_{i}^{-}=\frac{4 i-1-2 D}{6-8 i+4 D}(2 \leq i \leq D) \quad e_{i}^{+}=\frac{4 i-5-2 D}{6-8 i+4 D}(1 \leq i \leq D-1) \\
& f_{i}=-(4 i-5)(4 i-1)+(16 i-12) D-4 D^{2}(1 \leq i \leq D)
\end{aligned}
\]

Therefore, \(\Gamma\) supports a uniform structure with respect to \(x\).

Doob graphs \(D(n, m)\) WHERE \(n \geq 1, m \geq 0\)

Theorem [ B. Fernández, R.M., Š.Miklavič, G. Monzillo - 2023]
With reference to Notation, let \(\Gamma\) denote the Doob graph \(D(n, m)\) with \(n \geq 1\), \(m \geq 0\) and \(D=2 n+m \geq 3\). Then,
\[
-\frac{1}{2} R L^{2}+L R L-\frac{1}{2} L^{2} R=3 L
\]
is satisfied on \(E_{i}^{*} V\) for \(1 \leq i \leq D\) and \(\Gamma\) supports a strongly uniform structure with respect to \(x\), where \(e_{i}^{-}=-\frac{1}{2}(2 \leq i \leq D), e_{i}^{+}=-\frac{1}{2}(1 \leq i \leq D-1)\), and \(f_{i}=3(1 \leq i \leq D)\).

\section*{Summary of the results}

Non-bipartite distance-regular graphs with classical parameters \((D, q, \alpha, \beta)\) with \(q \leq 1\).

\section*{Summary of the results}

Non-bipartite distance-regular graphs with classical parameters \((D, q, \alpha, \beta)\) with \(q \leq 1\).
- \(q \leq-2\) (negative type)

\section*{Summary of the results}

Non-bipartite distance-regular graphs with classical parameters \((D, q, \alpha, \beta)\) with \(q \leq 1\).
- \(q \leq-2\) (negative type)
\(\left\{\begin{array}{l}\Gamma \text { has intersection number } a_{1} \neq 0 \text { and is not a near polygon } \times \\ \Gamma \text { has intersection number } a_{1}=0 \times \\ \Gamma \text { is a near polygon }\end{array}\right.\)

\section*{Summary of the Results}

Non-bipartite distance-regular graphs with classical parameters \((D, q, \alpha, \beta)\) with \(q \leq 1\).
- \(q \leq-2\) (negative type)
\(\left\{\begin{array}{l}\Gamma \text { has intersection number } a_{1} \neq 0 \text { and is not a near polygon } \times \\ \Gamma \text { has intersection number } a_{1}=0 \times \\ \Gamma \text { is a near polygon }\left\{\begin{array}{l}\Gamma \text { is a dual polar graph, } D \geq 4 \\ \Gamma \text { has diameter } D=3 ?\end{array}\right.\end{array}\right.\).

\section*{Summary of the results}

Non-bipartite distance-regular graphs with classical parameters \((D, q, \alpha, \beta)\) with \(q \leq 1\).
- \(q \leq-2\) (negative type)
\(\left\{\begin{array}{l}\Gamma \text { has intersection number } a_{1} \neq 0 \text { and is not a near polygon } \times \\ \Gamma \text { has intersection number } a_{1}=0 \times \\ \Gamma \text { is a near polygon }\left\{\begin{array}{l}\Gamma \text { is a dual polar graph, } D \geq 4 \\ \Gamma \text { has diameter } D=3\end{array}\right.\end{array}\right.\).
- \(q=1\)

\section*{Summary of the Results}

Non-bipartite distance-regular graphs with classical parameters \((D, q, \alpha, \beta)\) with \(q \leq 1\).
- \(q \leq-2\) (negative type)
\(\left\{\begin{array}{l}\Gamma \text { has intersection number } a_{1} \neq 0 \text { and is not a near polygon } \times \\ \Gamma \text { has intersection number } a_{1}=0 \times \\ \Gamma \text { is a near polygon }\left\{\begin{array}{l}\Gamma \text { is a dual polar graph, } D \geq 4 \\ \Gamma \text { has diameter } D=3\end{array}\right.\end{array}\right.\).
- \(q=1\)
\[
\left\{\begin{array}{l}
\text { Johnson graph } J(n, D), n \geq 2 D \times \\
\text { Gosset graph } \times \\
\text { Hamming graph } H(D, n) \text { where } n \geq 3 \\
\text { Halved cube } \frac{1}{2} H(n, 2)
\end{array}\right.
\]

\section*{Summary of the Results}

Non-bipartite distance-regular graphs with classical parameters \((D, q, \alpha, \beta)\) with \(q \leq 1\).
- \(q \leq-2\) (negative type)
\(\left\{\begin{array}{l}\Gamma \text { has intersection number } a_{1} \neq 0 \text { and is not a near polygon } \times \\ \Gamma \text { has intersection number } a_{1}=0 \times \\ \Gamma \text { is a near polygon }\left\{\begin{array}{l}\Gamma \text { is a dual polar graph, } D \geq 4 \\ \Gamma \text { has diameter } D=3\end{array}\right.\end{array}\right.\).
- \(q=1\)
\[
\left\{\begin{array}{l}
\text { Johnson graph } J(n, D), n \geq 2 D \times \\
\text { Gosset graph } \times \\
\text { Hamming graph } H(D, n) \text { where } n \geq 3 \checkmark \\
\text { Halved cube } \frac{1}{2} H(n, 2) \quad\left\{\begin{array}{l}
n \text { even } \times \\
n \geq 7 \text { odd } \checkmark
\end{array}\right. \\
\text { Doob graph } D(n, m) \text { with } n \geq 1, m \geq 0
\end{array}\right.
\]


\section*{Remark 1}

Examples of regular near polygons of negative type with \(D=3\) :
- Triality graph \({ }^{3} D_{4,2}(-q)\)
- Witt graph \(M_{24}\)
- extended ternary Golay code graph.
! We don't know if this is a complete list of graphs.

\section*{Theorem 4 (Go and Terwilliger -2002)}

Let \(\Gamma\) denote a distance-regular graph, then the following statements are equivalent:
(i) \(\Gamma\) is tight,
(ii) every irreducible \(T\)-module with endpoint 1 is thin with local eigenvalue \(\tilde{\theta_{1}}\) or \(\tilde{\theta_{D}}\), (iii) \(a_{D}=0\) and every irreducible \(T\)-module with endpoint 1 is thin.```

