Some non-existence results on m-ovoids in finite classical polar spaces

Rijeka Conference on Combinatorial Objects and Their Applications 3-7 July 2023, Rijeka, Croatia
(joint work with Jan De Beule and Valentino Smaldore)

Jonathan Mannaert
July, 2023

Introduction

Polar spaces

Let $\operatorname{PG}(n, q)$ denote the n-dimensional projective space over the finite field $\mathrm{GF}(q)$.

Definition

A non-degenerate sesquilinear or non-singular quadratic form on the underlying ($n+1$)-dimensional vector space

Remark:

- Consists of the totally isotropic, respectively, totally singular subspaces.
- The subspaces of maximal dimension are called generators.
- If $r-1$ is the dimension of a generator, the the rank equals r.
- Induces a polarity \perp of the ambient projective space.

Introduction

Some notations

Consider a classical finite polar space $\mathcal{P}_{r, e}$ in $\operatorname{PG}(n, q)$, where

polar space	notation	n	e
elliptic quadric	$\mathrm{Q}^{-}(2 r+1, q)$	$2 r+1$	2
hyperbolic quadric	$\mathrm{Q}^{+}(2 r-1, q)$	$2 r-1$	0
parabolic quadric	$\mathrm{Q}(2 r, q)$	$2 r$	1
symplectic space	$\mathrm{W}(2 r-1, q)$	$2 r-1$	1
Hermitian polar space	$\mathrm{H}(2 r, q)$	$2 r$	$3 / 2$
Hermitian polar space	$\mathrm{H}(2 r-1, q)$	$2 r-1$	$1 / 2$

Table: $\mathcal{P}_{r, e}$ polar space of rank $r \geq 1$

Introduction

Some notations

Consider a classical finite polar space $\mathcal{P}_{r, e}$ in $\operatorname{PG}(n, q)$, where

polar space	notation	n	e
elliptic quadric	$\mathrm{Q}^{-}(2 r+1, q)$	$2 r+1$	2
hyperbolic quadric	$\mathrm{Q}^{+}(2 r-1, q)$	$2 r-1$	0
parabolic quadric	$\mathrm{Q}(2 r, q)$	$2 r$	1
symplectic space	$\mathrm{W}(2 r-1, q)$	$2 r-1$	1
Hermitian polar space	$\mathrm{H}(2 r, q)$	$2 r$	$3 / 2$
Hermitian polar space	$\mathrm{H}(2 r-1, q)$	$2 r-1$	$1 / 2$

Table: $\mathcal{P}_{r, e}$ polar space of rank $r \geq 1$

Note that $\mathcal{P}_{r, e}^{\prime}$ stands for one of the polar spaces $\mathrm{W}(2 r-1, q)$,
$Q^{-}(2 r+1, q)$ or $\mathrm{H}(2 r, q)(q$ square $)$, i.e. $e \in\left\{1, \frac{3}{2}, 2\right\}$.

Introduction

m-ovoids

Definition

A set \mathcal{O} of points of a polar space $\mathcal{P}_{r, e}$ is an m-ovoid of $\mathcal{P}_{r, e}$ if and only if every generator of $\mathcal{P}_{r, e}$ contains exactly m points of \mathcal{O}.

Introduction

m-ovoids

Definition

A set \mathcal{O} of points of a polar space $\mathcal{P}_{r, e}$ is an m-ovoid of $\mathcal{P}_{r, e}$ if and only if every generator of $\mathcal{P}_{r, e}$ contains exactly m points of \mathcal{O}.

Some results:

- $|\mathcal{O}|=m\left(q^{r+e-1}+1\right)$,
- $\ln \mathcal{P}_{r, e}^{\prime}$, for every $p \in \operatorname{PG}(n, q)$

$$
\left|p^{\perp} \cap \mathcal{O}\right|=\left\{\begin{aligned}
(m-1)\left(q^{r+e-2}+1\right)+1, & p \in \mathcal{O}, \\
m\left(q^{r+e-2}+1\right), & p \in \operatorname{PG}(n, q) \backslash \mathcal{O}
\end{aligned}\right.
$$

Introduction

m-ovoids and characteristic functions

Suppose that χ is the characteristic vector of \mathcal{O}. Then we can define the Boolean function

$$
\mu: \operatorname{PG}(n, q) \rightarrow\{0,1\}
$$

such that for every subspace π it holds that $\mu(\pi)=\sum_{p \in \pi} \chi_{p}$.

Introduction

m-ovoids and characteristic functions

Suppose that χ is the characteristic vector of \mathcal{O}. Then we can define the Boolean function

$$
\mu: \operatorname{PG}(n, q) \rightarrow\{0,1\}
$$

such that for every subspace π it holds that $\mu(\pi)=\sum_{p \in \pi} \chi_{p}$.

Consequence

In $\mathcal{P}_{r, e}^{\prime}$ it holds for every point p in $\operatorname{PG}(n, q)$ that

$$
\mu\left(p^{\perp}\right)+q^{r+e-2} \mu(p)=m\left(q^{r+e-2}+1\right) .
$$

Introduction

Generalization of the consequence

Lemma

Consider $\mathcal{P}_{r, e}^{\prime}$, then for every j-dimensional space π in $\operatorname{PG}(n, q)$,

$$
\mu\left(\pi^{\perp}\right)+q^{r+e-j-2} \mu(\pi)=m\left(q^{r+e-j-2}+1\right) .
$$

Known results

Non-existence results

Theorem (Bamberg, Kelly, Law and Penttila, [1]) Consider an m-ovoid \mathcal{O} in the polar space $\mathcal{P}_{r, e}^{\prime}$. Then $m \geq b$, with b given in the table below.

$\mathcal{P}_{r, e}^{\prime}$	b
$\mathrm{Q}^{-}(2 r+1, q)$	$\frac{-3+\sqrt{9+4 q^{r+1}}}{2(q-1)}$
$\mathrm{W}(2 r-1, q)$	$\frac{-3+\sqrt{9+4 q^{r}}}{2(q-1)}$
$\mathrm{H}\left(2 r, q^{2}\right)$	$\frac{-3+\sqrt{9+4 q^{2 r+1}}}{2\left(q^{2}-1\right)}$

Known results

Non-existence results

Theorem (Bamberg, Kelly, Law and Penttila, [1])
Let \mathcal{O} be a non-trivial m-ovoid of $H\left(4, q^{2}\right)$. If $q>2$, then

$$
m \geq \frac{1}{2} \frac{-3 q-3+\sqrt{4 q^{5}-4 q^{4}+5 q^{2}-2 q+1}}{q^{2}-q-2} .
$$

While for $q=2$, we have $m \geq 2$.

Analyzing m-ovoids

Main equation for points

Using a double counting argument based on
嗇 A. L. Gavrilyuk, K. Metsch, and F. Pavese.
A modular equality for m-ovoids of elliptic quadrics.
Bull. London Math. Soc., (10.1112/blms.12830), 2023.

Theorem

Suppose that μ is a m-ovoid in $\mathcal{P}_{r, e}^{\prime}$ and let p_{0} be an arbitrary point in $\mathcal{P}_{r, e}^{\prime}$ such that $\mu\left(p_{0}\right)<m$. Then

$$
\begin{aligned}
& m\left(q^{r+e-3}+1\right)\left(m\left(q^{r+e-1}+1\right)-\mu\left(p_{0}\right)\right)+q^{r+e-2} \sum_{p \in p_{0}^{\perp} \backslash\left\{p_{0}\right\}} \mu(p)^{2} \\
= & m\left(q^{r+e-2}+1\right)^{2}\left(m-\mu\left(p_{0}\right)\right)+q^{r+e-3} \sum_{p \in \mathcal{P}_{r, e}^{\prime} \backslash\left\{p_{0}\right\}} \mu(p) \mu\left(\left\langle p_{0}, p\right\rangle\right)
\end{aligned}
$$

First improvements

Main equation for points

Theorem

Suppose that μ is a m-ovoid in $\mathcal{P}_{r, e}^{\prime}$ and let p_{0} be an arbitrary point in $\mathcal{P}_{r, e}^{\prime}$ such that $\mu\left(p_{0}\right)<m$. Then

$$
\begin{aligned}
& m\left(q^{r+e-3}+1\right)\left(m\left(q^{r+e-1}+1\right)-\mu\left(p_{0}\right)\right)+q^{r+e-2} \sum_{p \in p} \backslash\left\{p_{0}\right\} \\
= & m\left(q^{r+e-2}+1\right)^{2}\left(m-\mu\left(p_{0}\right)\right)+q^{r+e-3} \sum_{p \in \mathcal{P}_{r, e}^{\prime} \backslash\left\{p_{0}\right\}} \mu(p) \mu\left(\left\langle p_{0}, p\right\rangle\right)
\end{aligned}
$$

First improvements

Lemma (De Beule, JM and Smaldore)

Let \mathcal{O} be a non-trivial m-ovoid in $\mathcal{P}_{r, e}^{\prime}$, with weight function μ.

- If $p_{0} \in \mathcal{P}_{r, e}^{\prime}$, then

$$
\sum_{p \in p_{0}^{\perp} \backslash\left\{p_{0}\right\}} \mu(p)^{2}=\left(m-\mu\left(p_{0}\right)\right)\left(q^{r+e-2}+1\right),
$$

Proof.

$$
\begin{aligned}
\mu\left(p_{0}^{\perp} \backslash\left\{p_{0}\right\}\right)=\mu\left(p_{0}^{\perp}\right)-\mu\left(p_{0}\right) & =m\left(q^{r+e-2}+1\right)-q^{r+e-2} \mu\left(p_{0}\right)-\mu\left(p_{0}\right) \\
& =\left(m-\mu\left(p_{0}\right)\right)\left(q^{r+e-2}+1\right) .
\end{aligned}
$$

First improvements

Main equation for points

Theorem (De Beule, JM and Smaldore)
Suppose that μ is a m-ovoid in $\mathcal{P}_{r, e}^{\prime}$ and let p_{0} be an arbitrary point in $\mathcal{P}_{r, e}^{\prime}$ such that $\mu\left(p_{0}\right)<m$. Then

$$
\begin{aligned}
& m\left(q^{r+e-3}+1\right)\left(m\left(q^{r+e-1}+1\right)-\mu\left(p_{0}\right)\right)+q^{r+e-2}\left(m-\mu\left(p_{0}\right)\right)\left(q^{r+e-2}+1\right) \\
& \quad=m\left(q^{r+e-2}+1\right)^{2}\left(m-\mu\left(p_{0}\right)\right)+q^{r+e-3} \sum_{p \in \mathcal{P}_{r, e}^{\prime} \backslash\left\{p_{0}\right\}} \mu(p) \mu\left(\left\langle p_{0}, p\right\rangle\right)
\end{aligned}
$$

First improvements

Lemma (De Beule, JM and Smaldore)

Let \mathcal{O} be a non-trivial m-ovoid in $\mathcal{P}_{r, e}^{\prime}$, with weight function μ.

- If $p_{0} \in \mathcal{O}$ then

$$
\sum_{p \in \mathcal{P}_{r, e}^{\prime} \backslash\left\{p_{0}\right\}} \mu(p) \mu\left(\left\langle p_{0}, p\right\rangle\right) \geq 2\left(m\left(q^{r+e-1}+1\right)-1\right) .
$$

Proof.
Let $p \in \mathcal{O} \backslash\left\{p_{0}\right\}$. Then $\mu\left(\left\langle p, p_{0}\right\rangle\right) \geq \mu(p)+\mu\left(p_{0}\right)=2$

First improvements

using the previous equation, we obtain the following inequality

$$
(q-1)^{2} m^{2}+3(q-1) m-q^{r+e-1}-q-2 \geq 0
$$

First improvements

using the previous equation, we obtain the following inequality

$$
(q-1)^{2} m^{2}+3(q-1) m-q^{r+e-1}-q-2 \geq 0
$$

Lets solve this!

First improvements

using the previous equation, we obtain the following inequality

$$
(q-1)^{2} m^{2}+3(q-1) m-q^{r+e-1}-q-2 \geq 0
$$

Lets solve this!

What about $\mu\left(p_{0}\right)<m$?

First improvements

using the previous equation, we obtain the following inequality

$$
(q-1)^{2} m^{2}+3(q-1) m-q^{r+e-1}-q-2 \geq 0
$$

Lets solve this!

What about $\mu\left(p_{0}\right)<m$?
Only a problem when $m=1$, but this can be excluded by previous results.

First improvements

First conclusion

Theorem (de Beule, JM and Smaldore)
Consider an m-ovoid \mathcal{O} in the polar space $\mathcal{P}_{r, e}^{\prime}$. Then $m \geq b$, with b given in the table below.

$\mathcal{P}_{r, e}^{\prime}$	b
$\mathrm{Q}^{-}(2 r+1, q)$	$\frac{-3+\sqrt{9+4\left(q^{r+1}+q-2\right)}}{2(q-1)}$
$\mathrm{W}(2 r-1, q), r>2$	$\frac{-3+\sqrt{9+4\left(q^{r}+q-2\right)}}{2(q-1)}$
$\mathrm{H}\left(2 r, q^{2}\right)$	$\frac{-3+\sqrt{9+4\left(q^{2 r+1}+q^{2}-2\right)}}{2\left(q^{2}-1\right)}$

Improvement for $\mathrm{H}\left(4, q^{2}\right)$

Lemma (De Beule, JM and Smaldore)

Let \mathcal{O} be a non-trivial m-ovoid in $\mathrm{H}\left(4, q^{2}\right)$ with weight function μ. Fix a point $p_{0} \in H\left(4, q^{2}\right) \cap \mathcal{O}$, then

$$
\sum_{p \in H\left(4, q^{2}\right) \backslash\left\{p_{0}\right\}} \mu(p) \mu\left(\left\langle p_{0}, p\right\rangle\right) \geq m(m-1)\left(q^{3}+1\right)+2\left(m q^{3}\left(q^{2}-1\right)+q^{3}\right)
$$

Improvement for $\mathrm{H}\left(4, q^{2}\right)$

Lemma (De Beule, JM and Smaldore)

Let \mathcal{O} be a non-trivial m-ovoid in $\mathrm{H}\left(4, q^{2}\right)$ with weight function μ. Fix a point $p_{0} \in H\left(4, q^{2}\right) \cap \mathcal{O}$, then

$$
\sum_{p \in H\left(4, q^{2}\right) \backslash\left\{p_{0}\right\}} \mu(p) \mu\left(\left\langle p_{0}, p\right\rangle\right) \geq m(m-1)\left(q^{3}+1\right)+2\left(m q^{3}\left(q^{2}-1\right)+q^{3}\right)
$$

Theorem (Bamberg, Kelly, Law and Penttila, [1])
Let \mathcal{O} be an m-ovoid of $\mathrm{H}\left(4, q^{2}\right)$, for $q>2$, then

$$
m \geq \frac{-3 q-3+\sqrt{4 q^{5}-4 q^{4}+5 q^{2}-2 q+1}}{2\left(q^{2}-q-2\right)} .
$$

Main results

Main equation

Theorem (De Beule, JM and Smaldore)

Suppose that μ is an m-ovoid in $\mathcal{P}_{r, e}^{\prime}$ and let π be an arbitrary j-dimensional subspace, $0 \leq j \leq r-1$, with $\mu\left(\pi^{\perp} \backslash \pi\right) \neq 0$, then

$$
\begin{aligned}
& m\left(q^{r+e-j-3}+1\right)\left(m\left(q^{r+e-1}+1\right)-\mu(\pi)\right)+q^{r+e-2} \sum_{p \in \pi^{\perp} \backslash \pi} \mu(p)^{2}= \\
& m\left(q^{r+e-2}+1\right)(m-\mu(\pi))\left(q^{r+e-j-2}+1\right)+q^{r+e-j-3} \sum_{p \in \mathcal{P}_{r, e \backslash \pi}^{\prime} \backslash \pi} \mu(p) \mu(\langle p, \pi\rangle) \\
& +\sum_{s \notin \pi} \perp \mu\left(s^{\perp} \cap \pi\right)
\end{aligned}
$$

Main results

Main equation. Choose $j=r-2$

Theorem (De Beule, JM and Smaldore)
Suppose that μ is an m-ovoid in $\mathcal{P}_{r, e}^{\prime}$ and let π be an arbitrary ($r-2$)-dimensional subspace, with $\mu\left(\pi^{\perp} \backslash \pi\right) \neq 0$, then

$$
\begin{aligned}
& m\left(q^{\mathrm{e}-1}+1\right)\left(m\left(q^{r+e-1}+1\right)-\mu(\pi)\right)+q^{r+e-2} \sum_{p \in \pi \perp \backslash \pi} \mu(p)^{2}= \\
& m\left(q^{r+e-2}+1\right)(m-\mu(\pi))\left(q^{\mathrm{e}}+1\right)+q^{\mathrm{e}-1} \sum_{p \in \mathcal{P}_{r, e \backslash}^{\prime} \backslash \pi} \mu(p) \mu(\langle p, \pi\rangle) \\
& \\
& \quad+\sum_{s \notin \pi} \perp \mu\left(s^{\perp} \cap \pi\right)
\end{aligned}
$$

Main results

Lemma

If π is an $(r-2)$-space contained in $\mathcal{P}_{r, e}^{\prime}$, then

$$
\begin{aligned}
& \sum_{p \in \mathcal{P}_{r, e}^{\prime} \backslash \pi} \mu(p) \mu(\langle p, \pi\rangle) \geq m\left(q^{\mathrm{e}}+1\right)(m-\mu(\pi))+(1+\mu(\pi))\left(m q^{\mathrm{e}}\left(q^{r-1}-1\right)\right. \\
&\left.+\mu(\pi)\left(q^{\mathrm{e}}+1\right)\right) .
\end{aligned}
$$

Proof.

To prove this one needs to split the sum. Consider $\tau:=\langle\pi, p\rangle$.

- If $p \in \pi^{\perp}$, then τ is a generator containing m points.

Main results

Lemma

If π is an $(r-2)$-space contained in $\mathcal{P}_{r, e}^{\prime}$, then

$$
\begin{aligned}
\sum_{p \in \mathcal{P}_{r, e}^{\prime} \backslash \pi} \mu(p) \mu(\langle p, \pi\rangle) \geq m\left(q^{e}+1\right)(m-\mu(\pi)) & +(1+\mu(\pi))\left(m q^{e}\left(q^{r-1}-1\right)\right. \\
& \left.+\mu(\pi)\left(q^{e}+1\right)\right)
\end{aligned}
$$

Proof.

To prove this one needs to split the sum. Consider $\tau:=\langle\pi, p\rangle$.

- If $p \in \pi^{\perp}$, then τ is a generator containing m points.
$\Rightarrow\left(q^{e}+1\right)(m-\mu(\pi))$ options.
- Otherwise $\mu(\langle\pi, p\rangle) \geq \mu(\pi)+\mu(p)$.

Main results

Lemma

If π is an $(r-2)$-space contained in $\mathcal{P}_{r, e}^{\prime}$, then

$$
\begin{aligned}
\sum_{p \in \mathcal{P}_{r, e}^{\prime} \backslash \pi} \mu(p) \mu(\langle p, \pi\rangle) \geq m\left(q^{\mathrm{e}}+1\right)(m-\mu(\pi)) & +(1+\mu(\pi))\left(m q^{\mathrm{e}}\left(q^{r-1}-1\right)\right. \\
& \left.+\mu(\pi)\left(q^{\mathrm{e}}+1\right)\right)
\end{aligned}
$$

Proof.

To prove this one needs to split the sum. Consider $\tau:=\langle\pi, p\rangle$.

- If $p \in \pi^{\perp}$, then τ is a generator containing m points. $\Rightarrow\left(q^{e}+1\right)(m-\mu(\pi))$ options.
- Otherwise $\mu(\langle\pi, p\rangle) \geq \mu(\pi)+\mu(p)$.
\Rightarrow all other options.

Main results

Main equation. Choose $j=r-2$

Theorem (De Beule, JM and Smaldore)
Suppose that μ is an m-ovoid in $\mathcal{P}_{r, e}^{\prime}$ and let π be an arbitrary ($r-2$)-dimensional subspace, with $\mu\left(\pi^{\perp} \backslash \pi\right) \neq 0$, then

$$
\begin{aligned}
& m\left(q^{\mathrm{e}-1}+1\right)\left(m\left(q^{r+e-1}+1\right)-\mu(\pi)\right)+q^{r+\mathrm{e}-2} \sum_{p \in \pi \perp \backslash \pi} \mu(p)^{2}= \\
& \begin{aligned}
& m\left(q^{r+e-2}+1\right)(m-\mu(\pi))\left(q^{\mathrm{e}}+1\right)+q^{\mathrm{e}-1} \sum_{p \in \mathcal{P}_{r, \mathrm{e} \backslash \pi}^{\prime} \backslash} \mu(p) \mu(\langle p, \pi\rangle) \\
&+\sum_{s \notin \pi} \perp \mu\left(s^{\perp} \cap \pi\right)
\end{aligned}
\end{aligned}
$$

Main results

Lemma (De Beule, JM and Smaldore)
If π is an ($r-2$)-space contained in $\mathcal{P}_{r, e^{\prime}}^{\prime}$ then

$$
\sum_{s \notin \pi^{\perp}} \mu\left(s^{\perp} \cap \pi\right)=\mu(\pi) q^{r+2 e-1} \frac{q^{r-2}-1}{q-1}
$$

Main results

Main equation. Choose $j=r-2$

Theorem (De Beule, JM and Smaldore)
Suppose that μ is an m-ovoid in $\mathcal{P}_{r, e}^{\prime}$ and let π be an arbitrary (r - 2)-dimensional subspace, with $\mu\left(\pi^{\perp} \backslash \pi\right) \neq 0$, then

$$
\begin{aligned}
& m\left(q^{\mathrm{e}-1}+1\right)\left(m\left(q^{r+e-1}+1\right)-\mu(\pi)\right)+q^{r+\mathrm{e}-2} \sum_{p \in \pi \perp} \backslash \pi \\
& m\left(q^{r+e-2}+1\right)(m-\mu(\pi))\left(q^{\mathrm{e}}+1\right)+q^{\mathrm{e}-1} \sum_{p \in \mathcal{P}_{r, \mathrm{e}}^{\prime} \backslash \pi \mu(p) \mu(\langle p, \pi\rangle)} \\
& \\
& \quad+\sum_{s \notin \pi^{\perp} \perp} \mu\left(s^{\perp} \cap \pi\right)
\end{aligned}
$$

Main results

Main equation. Choose $j=r-2$

Theorem (De Beule, JM and Smaldore)
Suppose that μ is an m-ovoid in $\mathcal{P}_{r, e}^{\prime}$ and let π be an arbitrary (r - 2)-dimensional subspace, with
$\mu\left(\pi^{\perp} \backslash \pi\right) \neq 0$, then

$$
\begin{aligned}
& m\left(q^{e-1}+1\right)\left(m\left(q^{r+e-1}+1\right)-\mu(\pi)\right)+q^{r+e-2} \sum_{p \in \pi \perp \backslash \pi} \mu(p)^{2}= \\
& m\left(q^{r+e-2}+1\right)(m-\mu(\pi))\left(q^{e}+1\right)+q^{e-1} \sum_{p \in \mathcal{P}_{r, e}^{\prime} \backslash \pi \mu(p) \mu(\langle p, \pi\rangle)} \\
& \quad+\sum_{s \notin \pi} \perp \mu\left(s^{\perp} \cap \pi\right)
\end{aligned}
$$

Similar as before, we obtain that

$$
\sum_{p \in \pi^{\perp} \backslash \pi} \mu(p)^{2}=(m-\mu(\pi))\left(q^{r+e-j-2}+1\right) .
$$

Main results

Combining all results

Theorem (De Beule, JM and Smaldore)

Assume that \mathcal{O} is an m-ovoid in $\mathcal{P}_{r, e}^{\prime}$ and that π is an arbitrary ($r-2$)-space contained in $\mathcal{P}_{r, e}^{\prime}$ such that
$\mu\left(\pi^{\perp} \backslash\{\pi\}\right) \neq 0$, then

$$
\begin{aligned}
& m^{2}\left(q^{r+e-1}-q^{r+e-2}-q^{2 e-1}-q^{e}\right) \\
& \quad+m\left(\mu(\pi)\left(q^{r+e-2}+2 q^{2 e-1}+q^{e}\right)+q^{r+e-2}+q^{2 e-1}\right) \\
& \\
& \quad-\mu(\pi)\left(q^{r+2 e-2}+q^{r+e-2}+(1+\mu(\pi))\left(q^{2 e-1}+q^{e-1}\right)+q^{r+2 e-1} \frac{q^{r-2}-1}{q-1}\right) \geq
\end{aligned}
$$

Main results

Special case

Fill in the maximal $\mu(\pi)$ for good results.

Main results

Special case

Fill in the maximal $\mu(\pi)$ for good results.

Lemma

Suppose that \mathcal{O} is an m-ovoid in $\mathcal{P}_{r, e}^{\prime}$, then there exist an $(r-2)$-space with at least $\min \{m, r-1\}$ points of \mathcal{O}.

Main results

Special case

Fill in the maximal $\mu(\pi)$ for good results.

Lemma

Suppose that \mathcal{O} is an m-ovoid in $\mathcal{P}_{r, e}^{\prime}$, then there exist an $(r-2)$-space with at least $\min \{m, r-1\}$ points of \mathcal{O}.
\Rightarrow Use $\mu(\pi)=\min \{m, r-1\}$

Main results

Special case

Fill in the maximal $\mu(\pi)$ for good results.

Lemma

Suppose that \mathcal{O} is an m-ovoid in $\mathcal{P}_{r, e}^{\prime}$, then there exist an $(r-2)$-space with at least $\min \{m, r-1\}$ points of \mathcal{O}.
\Rightarrow Use $\mu(\pi)=\min \{m, r-1\}$

- If $\mu(\pi)=m$, thus $m \leq r-1$.
- If (a) $r \geq 4$, or, (b) $e \in\left\{1, \frac{3}{2}\right\}$ and $(r, q, e) \neq(3,3,1)$ \Rightarrow Contradiction with older results

Main results

Special case

Fill in the maximal $\mu(\pi)$ for good results.

Lemma

Suppose that \mathcal{O} is an m-ovoid in $\mathcal{P}_{r, e^{\prime}}^{\prime}$, then there exist an $(r-2)$-space with at least $\min \{m, r-1\}$ points of \mathcal{O}.
\Rightarrow Use $\mu(\pi)=\min \{m, r-1\}$

- If $\mu(\pi)=m$, thus $m \leq r-1$.
- If (a) $r \geq 4$, or, (b) $e \in\left\{1, \frac{3}{2}\right\}$ and $(r, q, e) \neq(3,3,1)$ \Rightarrow Contradiction with older results
- So in these cases we can assume that $\mu(\pi)=r-1$.

Main results

conclusion

Theorem (De Beule, JM and Smaldore)
Let $q>2$ and $r \geq 3$. Suppose that \mathcal{O} is an m-ovoid in $\mathcal{P}_{r, e}^{\prime}$, with (a) $r \geq 4$, or, (b) $e \in\left\{1, \frac{3}{2}\right\}$ and $(r, q, e) \neq(3,3,1)$. Then it holds that

$$
m \geq \frac{-r\left(1+\frac{2}{q^{r-e-1}}\right)+\sqrt{r^{2}\left(1+\frac{2}{q^{r-1}}\right)^{2}+4(q-2)(r-1)\left(q^{\mathrm{e}+1} \frac{q^{r-2}-1}{q-1}+q^{e}+1\right)}}{2(q-1)}
$$

This bound asymptotically converges to

$$
m \geq \frac{-r+\sqrt{r^{2}+4(r-1)(q-2) q^{r+e-2}}}{2(q-1)}
$$

Main results

Some examples of the improvement

r	New bound	Old bound
4	$m \geq 5$	$m \geq 4$
5	$m \geq 10$	$m \geq 8$
6	$m \geq 20$	$m \geq 13$
7	$m \geq 39$	$m \geq 23$
100	$m \geq 2,53 \cdot 10^{24}$	$m \geq 3,59 \cdot 10^{23}$

Table: Bounds for m-ovoids of $W(2 r-1,3)$

Main results

Some examples of the improvement

r	New bound	Old bound
4	$m \geq 8$	$m \geq 8$
5	$m \geq 18$	$m \geq 13$
6	$m \geq 36$	$m \geq 23$
7	$m \geq 69$	$m \geq 40$
100	$m \geq 4,37 \cdot 10^{24}$	$m \geq 6,22 \cdot 10^{23}$

Table: Bounds for m-ovoids of $Q^{-}(2 r+1,3)$

Main results

Some examples of the improvement

r	New bound	Old bound
3	$m \geq 8$	$m \geq 6$
4	$m \geq 29$	$m \geq 18$
5	$m \geq 99$	$m \geq 53$
6	$m \geq 330$	$m \geq 158$
7	$m \geq 1085$	$m \geq 474$
100	$m \geq 1,04 \cdot 10^{48}$	$m \geq 1,12 \cdot 10^{47}$

Table: Bounds for m-ovoids of $H\left(2 r, 3^{2}\right)$

References

䍰 John Bamberg，Shane Kelly，Maska Law，and Tim Penttila． Tight sets and m－ovoids of finite polar spaces． J．Combin．Theory Ser．A，114（7）：1293－1314， 2007.

囯 Jan De Beule，Jonathan Mannaert and Valentino Smaldore． Some non－existence results on m－ovoids in classical polar spaces．
submitted，10．48550／arXiv．2305．06285
睩 A．L．Gavrilyuk，K．Metsch，and F．Pavese．
A modular equality for m－ovoids of elliptic quadrics．
Bull．London Math．Soc．，（10．1112／blms．12830）， 2023.

Thank you for your attention!

Are there any questions?

Jonathan.Mannaert@vub.be

