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Definition
(Alternating sign matrix) An alternating sign matrix (ASM) is a
matrix of −1s, 0s and 1s for which the sum of entries in each
row and in each column is equal to 1 and the non-zero entries
of each row and of each column alternate in sign.



0 0 1 0 0 0 0
0 1 − 1 0 0 0
1 − 1 − 1 0 0
0 0 0 0 0 0 1
0 1 − 1 − 1 0
0 0 1 − 1 0 0
0 0 0 1 0 0 0
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A method of evaluating determinant called condensation
reveals ASMs. 

a b c d
e f g h
i j k l
m n o p


In particular,a b c

d e f
g h i

→ (
ae − bc bf − ce
dh − ge ei − fh

)
→

(1)aei+(−1)afh+(−1)bdi+(0)bde−1fh+(1)bfg+(1)cdh+(−1)ceg
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We interprete terms as −1, 0 and 1 to get ASMs, eg.

(1)afh→

1 0 0
0 0 1
0 1 0

 .

1 0 0
0 1 0
0 0 1

0 1 0
0 0 1
1 0 0

0 0 1
1 0 0
0 1 0


0 1 0

1 −1 1
0 1 0


0 0 1

0 1 0
1 0 0

0 1 0
1 0 0
0 0 1

1 0 0
0 0 1
0 1 0
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The ASM Conjecture

A3 = 7

1, 2, 7, 42, 429, 7463, 218348, 10850216, . . .

An graws fast
having small factors, eg. 10850216 = 23 · 13 · 172 · 192

Mills, Robbins, Ramsey: The ASM Conjecture,

An =
n−1∏
j=0

(3j + 1)!
(n + j)!

.
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Refined ASM Conjecture

Statistics on 1s in the first row

1
1 1
2 3 2
7 14 14 7

42 105 135 105 42
...

An,i =

(
n + i − 2

n − 1

)
(2n − i − 1)!

(n − i)!

n−2∏
j=0

(3j + 1)!
(n + j)!

.
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ASM Conjecture Solved

D. Zeilberger, 1996. proof based on the partition theory
and symmetric functions

G. Kuperberg, 1996. proof based on the Young-Baxter
equation
6-vertex lattice model in statistical mehanics

D. Zeilberger, proof. based on q-calculus and WZ method

Refined ASM conjecture solved by D. Zeilberger 1996.
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ASM and other structures

square ice model
Aztec diamonds
plane partitions

Descending plane partitions (DPP), eg.

7 7 6 5 3 1
6 5 4 2

3 3
2

DPP of order 3: (2), (3), (3 1), (3, 2), (3, 3), (3, 3;2), (φ)

G. Andrews: 1,2,7,42,429,7436, . . .
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Totally symmetric self-complementary plane partitions

an open problem:
to find a natural bijection between ASMs of order n and
TSSCPP of order n
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Permutation pattern and ASM

We extend the notion of permutation pattern to ASMs.

Alternating sign matrix M contain permutation π if there is a
submatrix D of M s.t. dij = 1 if π(i) = j ; otherwise avoid, eg.

0 1 0 0
1 − 1 0
0 1 − 1
0 0 1 0

 contains

1 0 0
0 0 1
0 1 0




0 1 0 0
1 − 1 0
0 1 − 1
0 0 1 0

 avoids

0 0 1
0 1 0
1 0 0

 .
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Family of ASM avoiding (213) permutation

We study a family of ASMs that

1 avoids the (213) permutation
2 the righmost 1 in row i + 1 ≥ 2 occurs to the right of the

leftmost 1 in row i .

We prove that these matrices, denoted Cn have recursive
nature!
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Recurence for our (213) family of ASMs

For 1x1 size the only matrix is the identity matrix, otherwise we
recognize two types of matrices

Type I Type II
1

Mn




Mk

1 −

Mn−k+1
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(
1
) (

1
1

) 1
1

1

 ,

 1
1 − 1

1




1
1

1
1

 ,


1
1

1 − 1
1

 ,


1
1 − 1

1
1

 ,


1
1

1 − 1
1

 ,


1
1 − 1

1 − 1
1

 .
Ivica Martinjak Refined Enumeration of the Catalan Family of Alternating Sign Matrices



Introduction Our ASM families Refined enum F -matrices

Our recurrence keep both properties of the introduced ASM

Type I obviously avoid (213)
The same for Type II: there is no possibility that 1s in the
first column form 2-1-3 relative positions

Type I obviously respect the second constraint
For Type II there are two situation to check: the 1s in the
first column is not the righmost entry equal to 1 in its row,
1s at any postion in the (k + 1)th row will be to the right of
the leftmost 1s in the k th row
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... and gives all such ASMs!


1

Mn




M0
1 1

1 − 1

1 M0
2
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The Catalan convolution

The number of matrices of order n + 1 of type I is equal to
mn matrices of order n

By the product rule, for the number of rest of matrices we
have

∑n−1
k=1 mkmn−k+1

mn+1 = mn +
n−1∑
k=1

mkmn−k+1

=
n∑

k=1

mkmn−k+1
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Further families

ASMs avoiding permutation π = (231) and meets the
condition
ii ’) the leftmost 1 in the i + 1 row is the left of the rightmost
unit in the i-th row,
ASMs avoiding permutation π = (312) and satisfies
condition ii ’),
ASMs avoiding permutation π = (132) and satisfies
condition ii).
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Symmetries amoung families
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Proposition

The vertically axially symmetric matrix M ′ of the matrix M ∈ C1
n

belongs to the family C2
n , horizontally axially symmetric matrix

M ′′ belongs to the family C3
n and centrally symmetric matrix M ′′′

belongs to the family C4
n .

Proof:
From the definition of alternating sign matrices and symmetries
above the defined ones, it follows that the matrices M ′, M ′′ and
M ′′′ are alternating sign matrices. If the matrix M ′ does not
avoid the permutation π = (231) then there are
mi ′j = mj ′l = ml ′i = 1, such that i < j < l , i ′ < j ′ < l ′ so we have
the entriess of the matrix M such that
mi ′,n−j+1 = mj ′,n−l+1 = ml ′,n−i+1 = 1, and
n − l + 1 < n − j + 1 < n − i + 1, i ′ < j ′ < l ′, so the matrix M
has a permutation π = (213).
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This contradicts the definition of the matrix M. Thus, M ′ avoids
the permutation π = (231). In a similar way it can be proved
that M ′′ and M ′′′ avoid permutations π = (312) and π = (132)
respectively. From the definition of matrix symmetry it follows
that matrices M ′ and M ′′ satisfy property ii ’) and also M ′′′

satisfies property ii). �

Corollary

Matrices of family C2
n are centrally symmetric to matrices of

family C3
n and horizontally symmetric to matrices of family C4

n ,
while matrices of families C3

n and C4
n are vertically symmetric to

each other.
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Refined enumeration I

B4,1 = 2, B4,2 = 1, B4,3 = 2

B =



1
1 1

2 1 2
5 2 2 5

14 5 4 5 14
42 14 10 10 14 42

132 42 28 25 28 42 132
...
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Refined enumeration I

Theorem

For the number Bn,k of C-matrices of order n having 1s in the
first row and k-th column we have

Bn,k =
1

k(n − k)

(
2k − 2
k − 1

)(
2n − 2k − 2

n − k − 1

)
, (1)

for k < n.
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Refined enumeration I

Proof:
When 1 < k < n, we argue by induction on the order n of matrix M. Let us assume that for every m < n the
number of matrices of order m having 1s in the first row and k -th column is equal to

Ck−1Cm−k−1.

Ck−(n−r)−1Cr−(k−n+r)−1 = Ck−(n−r)−1Cn−k−1.

Bn,k =

n−1∑
r=n−k+1

Ck−(n−r)−1Cn−k−1Cn−r−1

= Cn−k−1

n−1∑
r=n−k+1

Ck−(n−r)−1Cn−r−1

= Cn−k−1

k−2∑
r=0

Cr Ck−2−r

= Cn−k−1Ck−1,
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Refined enumeration II

Theorem

The number of C-matrices of order n that have k entries −1 is
equal to the Narayana number N(n − 1, k + 1),

B(−)
n,k =

1
n − 1

(
n − 1

k

)(
n − 1
k − 1

)
,

where n ≥ 2 and k = 0,1, . . . ,n − 2.
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Refined enumeration II

N(n, k) = N(n − 1, k) +
n−1∑
i=1

k−1∑
j=1

N(i, j)N(n − i − 1, k − j) (2)

for n > 0, 1 ≤ k ≤ n, with initial values N(n, k) = 0 for k > n, n 6= 0 and N(0, 1) = N(n, 1) = N(n, n) = 1 (M.
Zabrocki, 2004, see OEIS).
The number of−1s in a C-matrix of order n is at most n − 1, i.e. 0 ≤ k < n − 1. For a matrix of order n obtained
by the recurrence of type I, the number of−1s is equal to the number of−1s of the matrix of order n − 1 from
which it is obtained. For a matrix obtained by the recurrence of type II, the number of−1s is increased by 1 of the

total number of−1s of both matrices from which it was obtained. It follows that the number B(−)
n,k of C-matrices of

order n with k −1s is obtained by summing

the number of all matrices of order n − 1 with k entries equal to−1, and

the sum of the products of the number of all matrices of order i with j entries equal to−1 with the number of
all matrices of order n − i with k − 1− j entries equal to−1, i = 2, . . . , n − 1, j = 0, . . . , k − 1, that is

n−1∑
i=2

k−1∑
j=0

B(−)
i,j B(−)

n−i,k−1−j .
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Refined enumeration II

B(−)
n,k = B(−)

n−1,k +
n−1∑
i=2

k−1∑
j=0

B(−)
i,j B(−)

n−i,k−1−j .

Since it follows from (2) that

N(n − 1, k + 1) = N(n − 2, k + 1)

+
n−1∑
i=2

k−1∑
j=0

N(i − 1, j + 1)N(n − i − 1, k − j),

we have
B(−)

n.k = N(n − 1, k + 1),

where n ≥ 2, 0 ≤ k ≤ n − 2. This completes the proof.
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The family of F-matrices

Definition

We let Fn denote a family of alternating sign matrices of an odd
order n ≥ 1 that

avoid the permutation π = (213),
the rightmost 1 in a row i + 1 ≥ 2 of a matrix occurs to the
right of the leftmost 1s in row i , and
if the j-th column of a matrix possesses the southeast 1s
than 1 ≡ j (mod 2),

where i = 1, . . . ,n − 1, j = 1, . . . ,n. Matrices from the set Fn
we shall call F-matrices.
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Four types of F-matrices
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Enumeration of F-matrices

Theorem

For a non-negative integer r an alternating sign matrix M of
order n + 2, n = 2r + 1, is an F-matrix if and only if it is formed
recursively: for order 1 the only matrix is identity matrix,
otherwise M is one of the types I, II, III or IV.

There are four different cases to consider,

i1 = 1, i2 = 2,
i1 > 1, i2 = i1 + 1,
i1 = 1, i2 > 2,
i1 > 1, i2 > i1 + 1,

Ivica Martinjak Refined Enumeration of the Catalan Family of Alternating Sign Matrices



Introduction Our ASM families Refined enum F -matrices

Constructing F-matrix of type II

i1
i2

j j ′

1
1

−
1

1

1

1

0

0
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Constructing F-matrix of type IV

i1

i2

j j ′

1

1

−
1

1

1

1

0

0

a)

i1

i2

k k ′

1

1

−

Mk1

0

1

− 1
1

0

b)
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Thank you for your attention!
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