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vertex colorings

• color the vertices of a graph
G = (V ,E ) so that adjacent
vertices have different colors

• the minimum number of
colors needed is called the
chromatic number of G , and
denoted by χ(G )

• many variations of this basic
notion of coloring



harmonious colorings

• a coloring is harmonious if each
pair of colors appears on at most
one pair of adjacent vertices

• the minimum number of colors
needed is called the harmonious
chromatic number of G , and
denoted by h(G )

• clearly χ(G ) ≤ h(G ) ≤ |V | = n

• and |E | = m ≤
(h(G)

2

)
• diam(G ) ≤ 2 ⇒ h(G ) = n



Levi graphs

• GD of a 2-(v , k , 1) design D (or
any incidence structure)

• is a bipartite graph with
• one vertex per point
• one vertex per block
• an edge for any incident point

block pair
• n = v + b, m = bk

the Heawood graph is the Levi
graph of the Fano plane and is the
(3, 6)-cage



Levi graphs

• the Levi graph or incidence graph
GD of a 2-(v , k , 1) design (or any
incidence structure)

• is a bipartite graph with
• one vertex per point
• one vertex per block
• an edge for any incident point

block pair
• n = v + b, m = bk

• the Heawood graph is the Levi
graph of the Fano plane

• it is the (3, 6)-cage

• the Levi graph of PG (2, q) is the
(q + 1, 6)-cage



harmonious colorings of Levi graphs of designs

• a recent preprint1 considers the problem of calculating the
HCN of Levi graphs

• if D is a 2-(v , k , 1) design, h(GD) ≥ v

• for which designs is this lower bound attained?

• for brevity, we call a design a Banff design if h(GD) = v

1Araujo-Pardo, Monellano-Ballestreros, Olsen, Rubio-Montiel, On the
harmonious chromatic number of graphs, arXiv:2206.04822



HCN of PG (2, q)

• in the same preprint it is shown that when D is a projective
plane PG (2, q) v ≤ h(G ) ≤ v + 1 (v = q2 + q + 1)

• using difference methods we showed that h(G ) = v

• the points “are” elements of Zv - point i has color i .

• let D = {d0, d1, . . . , dq} be a difference set for PG (2, q)

• choose a color c ∈ Zv for D s.t. the list
{±(c − di ) i = 0, . . . , q} consists of all distinct elements

• D has color c and D + i has color c + i

• a counting argument shows that the choice of a suitable c is
always possible

• all the PG (2, q) are Banff designs

• by suitably translating, we can choose the starting Difference
Set D so that D is colored with c = 0



PG (2, 2)

• eg PG (2, 2) is the
Z7-development of
the Difference Set
D = {1, 2, 4}

• the set of points is
the set of colors is Z7

• D has color 0



PG (2, 2)

• eg PG (2, 2) is the
Z7-development of
the Difference Set
D = {1, 2, 4}

• the set of points is
the set of colors is Z7

• D has color 0

• D + i has color i



Symmetric difference families

• a cyclic (v , k , 1)-Difference Family is a set of k-subsets
{B1,B2 . . . ,Bs} of Zv s.t. ∆B1 ∪∆B2 ∪ · · · ∪∆Bs = Zv \ {0}

• developing the blocks of the DF gives a cyclic (v , k , 1)-design
• assume that a DF has the additional property that for any x

in any block of the DF,
• x appears only once (ie the DF is disjoint)
• − x (mod v) does not belong to any block of the DF

• call such a DF symmetric

• Example 1: {{7, 8, 11}, {4, 10, 12}} is a symmetric DF in Z13

• Example 2: let p = 4k − 1 be a prime, then the Paley
(4k − 1, 2k − 1, k − 1)-DS consisting of the non-zero squares
of Zp is symmetric by construction (here we have λ ≥ 1)



A general asymptotic result

• if a 2-(v , k , 1)-design D is the development of a symmetric
DF, then h(GD) = v so D is a Banff design

using a result by Buratti and Pasotti2, we were able to prove

Theorem
Let q be a prime power, q ≡ 1 (mod k(k − 1)). Then there exists
a symmetric (q, k , 1)-DF, and thus a 2-(q, k, 1) Banff design, for
all q > q0.

2Buratti, Pasotti, Combinatorial designs and the theorem of Weil on
multiplicative character sums, Finite Fields Appl. 15 (2009), 332–344



strong Novák’s conjecture

• Novák’s conjecture (1974) states that any cyclic STS(v),
v ≡ 1 (mod 6) can be obtained via a disjoint difference family

• significant recent progress3 on the truth of the conjecture, and
its generalization to cyclic 2-(v , k , 1)-designs

• there exists a strong version of Novák’s conjecture

• stating that any cyclic STS(v), v ≡ 1 (mod 6) can be
obtained via a symmetric difference family

• not much is known on the truth of this conjecture

• if true, then any cyclic STS(v) is a Banff design

3Feng, Horsley, Wang, Novák’s conjecure on cyclic Steiner triple systems
and its genralizations, JCT A 184 (2021), # 105515



HCN of STSs and nestings

• we proved the existence of Banff STS(v), v ≡ 1 (mod 6) and
showed that v colors are not enough when v ≡ 3 (mod 6)

• then realised this already known, when reformulated in terms
of nestings

• a STS(v) can be nested if it is possible to add a point to each
triple so that the result is a (v , 4, 2)-design

• nested STS(v) exist iff v ≡ 1 (mod 6) (Colbourn and
Colbourn 1983, Stinson 1985)

• a nested STS(v) has HCN equal to v


