Harmonious coloring of the incidence graph of a design

Francesca Merola
Università Roma Tre

RICCOTA, Rijeka - July 2023

Joint work with Marco Buratti
Giuseppe Mazzuoccolo Anamari Nakić
Christian Rubio-Montiel Tommaso Traetta

vertex colorings

- color the vertices of a graph $G=(V, E)$ so that adjacent vertices have different colors
- the minimum number of colors needed is called the chromatic number of G, and denoted by $\chi(G)$
- many variations of this basic notion of coloring

harmonious colorings

- a coloring is harmonious if each pair of colors appears on at most one pair of adjacent vertices
- the minimum number of colors needed is called the harmonious chromatic number of G, and denoted by $h(G)$
- clearly $\chi(G) \leq h(G) \leq|V|=n$
- and $|E|=m \leq\binom{ h(G)}{2}$
- $\operatorname{diam}(G) \leq 2 \Rightarrow h(G)=n$

Levi graphs

- G_{D} of a $2-(v, k, 1)$ design \mathcal{D} (or any incidence structure)
- is a bipartite graph with
- one vertex per point
- one vertex per block
- an edge for any incident point block pair
- $n=v+b, m=b k$

Levi graphs

- the Levi graph or incidence graph $G_{\mathcal{D}}$ of a $2-(v, k, 1)$ design (or any incidence structure)

- is a bipartite graph with
- one vertex per point
- one vertex per block
- an edge for any incident point block pair
- $n=v+b, m=b k$
- the Heawood graph is the Levi graph of the Fano plane
- it is the $(3,6)$-cage
- the Levi graph of $P G(2, q)$ is the $(q+1,6)$-cage

harmonious colorings of Levi graphs of designs

- a recent preprint ${ }^{1}$ considers the problem of calculating the HCN of Levi graphs
- if \mathcal{D} is a $2-(v, k, 1)$ design, $h\left(G_{\mathcal{D}}\right) \geq v$
- for which designs is this lower bound attained?
- for brevity, we call a design a Banff design if $h\left(G_{\mathcal{D}}\right)=v$

[^0] harmonious chromatic number of graphs, arXiv:2206.04822

HCN of $P G(2, q)$

- in the same preprint it is shown that when \mathcal{D} is a projective plane $P G(2, q) v \leq h(G) \leq v+1\left(v=q^{2}+q+1\right)$
- using difference methods we showed that $h(G)=v$
- the points "are" elements of \mathbb{Z}_{v} - point i has color i.
- let $D=\left\{d_{0}, d_{1}, \ldots, d_{q}\right\}$ be a difference set for $\operatorname{PG}(2, q)$
- choose a color $c \in \mathbb{Z}_{V}$ for D s.t. the list $\left\{ \pm\left(c-d_{i}\right) i=0, \ldots, q\right\}$ consists of all distinct elements
- D has color c and $D+i$ has color $c+i$
- a counting argument shows that the choice of a suitable c is always possible
- all the $P G(2, q)$ are Banff designs
- by suitably translating, we can choose the starting Difference Set D so that D is colored with $c=0$

- eg $P G(2,2)$ is the \mathbb{Z}_{7}-development of the Difference Set $D=\{1,2,4\}$
- the set of points is the set of colors is \mathbb{Z}_{7}
- D has color 0

- eg $P G(2,2)$ is the \mathbb{Z}_{7}-development of the Difference Set $D=\{1,2,4\}$
- the set of points is the set of colors is \mathbb{Z}_{7}
- D has color 0
- $D+i$ has color i

Symmetric difference families

- a cyclic ($v, k, 1$)-Difference Family is a set of k-subsets $\left\{B_{1}, B_{2} \ldots, B_{s}\right\}$ of \mathbb{Z}_{v} s.t. $\Delta B_{1} \cup \Delta B_{2} \cup \cdots \cup \Delta B_{s}=\mathbb{Z}_{v} \backslash\{0\}$
- developing the blocks of the DF gives a cyclic $(v, k, 1)$-design
- assume that a DF has the additional property that for any x in any block of the DF,
- x appears only once (ie the DF is disjoint)
- $-x(\bmod v)$ does not belong to any block of the DF
- call such a DF symmetric
- Example 1: $\{\{7,8,11\},\{4,10,12\}\}$ is a symmetric $D F$ in \mathbb{Z}_{13}
- Example 2: let $p=4 k-1$ be a prime, then the Paley ($4 k-1,2 k-1, k-1$)-DS consisting of the non-zero squares of \mathbb{Z}_{p} is symmetric by construction (here we have $\lambda \geq 1$)

A general asymptotic result

- if a 2- $(v, k, 1)$-design \mathcal{D} is the development of a symmetric DF, then $h\left(G_{\mathcal{D}}\right)=v$ so \mathcal{D} is a Banff design using a result by Buratti and Pasotti ${ }^{2}$, we were able to prove Theorem
Let q be a prime power, $q \equiv 1(\bmod k(k-1))$. Then there exists a symmetric $(q, k, 1)-D F$, and thus a $2-(q, k, 1)$ Banff design, for all $q>q_{0}$.

[^1]
strong Novák's conjecture

- Novák's conjecture (1974) states that any cyclic STS(v), $v \equiv 1(\bmod 6)$ can be obtained via a disjoint difference family
- significant recent progress ${ }^{3}$ on the truth of the conjecture, and its generalization to cyclic $2-(v, k, 1)$-designs
- there exists a strong version of Novák's conjecture
- stating that any cyclic STS $(v), \quad v \equiv 1(\bmod 6)$ can be obtained via a symmetric difference family
- not much is known on the truth of this conjecture
- if true, then any cyclic STS(v) is a Banff design
${ }^{3}$ Feng, Horsley, Wang, Novák's conjecure on cyclic Steiner triple systems and its genralizations, JCT A 184 (2021), \# 105515
- we proved the existence of $\operatorname{Banff} \operatorname{STS}(v), v \equiv 1(\bmod 6)$ and showed that v colors are not enough when $v \equiv 3(\bmod 6)$
- then realised this already known, when reformulated in terms of nesting
- a $\operatorname{STS}(v)$ can be nested if it is possible to add a point to each triple so that the result is a $(v, 4,2)$-design
- nested STS (v) exist jiff $v \equiv 1(\bmod 6)$ (Colbourn and Colbourn 1983, Stinson 1985)
- a nested STS (v) has HCN equal to v

[^0]: ${ }^{1}$ Araujo-Pardo, Monellano-Ballestreros, Olsen, Rubio-Montiel, On the

[^1]: ${ }^{2}$ Buratti, Pasotti, Combinatorial designs and the theorem of Weil on multiplicative character sums, Finite Fields Appl. 15 (2009), 332-344

