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Preliminaries

De�nition

A 2-(v , k , λ) design D = (P,B) consists of a set P of v points,
and a set B of k-element subsets of P, called blocks, such that
every pair of distinct points is contained in exactly λ blocks.

A �ag is any incident point-block pair of D.

The 2-design D is said to be

- non-trivial if 2 < k < v − 1.

- symmetric if |B| = v or, equivalently, r = k , where r = (v−1)λ
k−1
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Preliminaries

De�nition

A resolution of a 2-design D = (P,B) is any partition of B into
sets, called parallel classes, each of which is a partition of P.

Any 2-design admitting a resolution is called resolvable.

Examples

(i) AGn(q) with the hyperplanes as blocks.

(ii) Any a�ne plane.

(iii) The hermitian unital or the Ree unital.

(iv) 2-(12, 6, 5) Witt design W12.

De�nition

A resolvable 2-design D in which blocks in di�erent classes have
the same number of points in common is called a�ne resolvable.
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Preliminaries

An automorphism of D is a permutation of the point-set P
preserving the block-set B. The set of all automorphisms of D is a
group called the full automorphism group of D and is denoted
by Aut(D).
Let G ≤ Aut(D), then

G acts point-transitively on D if for any x , x ′ ∈ P there is
α ∈ G such that xα = x ′.

G acts block-transitively on D if for any B,B ′ ∈ P there is
β ∈ G such that Bβ = B ′.

G acts �ag-transitively on D if for any �ags (x ,B) and
(x ′,B ′) of D there is γ ∈ G such that (x ,B)γ = (x ′,B ′).

G acts point-imprimitively on D if G acts point-transitively
on D and preserves a partition of the point-set of D in classes
containing containing more than one point.
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The Cameron-Praeger construction

1 A resolvable 2-(v0, k0, λ0) design D0 = (∆0,L0) with r0
parallel classes P0 = {P1, ...,Pr0} parallel classes and each
class consists of s0 blocks.

2 A symmetric 2-(v1, r0, λ1) design D1 = (∆1,L1) together with
(ψβ)β∈L1

, where ψβ : P0 → β is a bijection for each β ∈ L1

such that (P, i) ∈ P0 ×∆1 there is a unique β ∈ L1 such that
ψβ(P) = i .

3 A transversal design D2 = (∆2,L2) whose point set is
partitioned in r0 groups each of size s0, and ∆2 is identi�ed
with ∪r0

i=1Pi ; each block has size k2 ≤ r0 and meets each
group in at most one point; and each two points in di�erent
groups lie in exactly λ2 blocks.

It follows from the de�nition of ∆2 that, for each γ ∈ L2, β ∈ L1

and j ∈ β either γ ∩ ψ−1
β (j) = ∅ or γ ∩ ψ−1

β (j) is a single block of

the parallel class ψ−1
β (j).
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The Cameron-Praeger construction

Theorem [Cameron-Praeger (2016)]

Let D = (∆0 ×∆1,B) be the incidence structure, where
B = ∪β∈L1

Bβ , Bβ = {Bβ(γ) : γ ∈ L2} and

Bβ(γ) =
⋃
j∈β

((
γ ∩ ψ−1

β (j)
)
× {j}

)
.

D is a 2-design if and only if λ1 = λ0
(r0−1)s0
k2−1 , and in this case

is a 2-(v0v1, k0k2, λ1λ2) design.

D is symmetric if and only if r0(r0 − 1)s0λ2 = k0k2(k2 − 1).
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Symmetric 2-designs of CP-type

D0 is an a�ne resolvable design with r0 resolution classes.

D1 is the trivial 2-(r0 + 1, r0, r0 − 1) symmetric design and the
bijections ψβ arise from a Latin square of order r0 + 1.

D2 is the dual of D0.

Theorem [Cameron-Praeger (2016)]

If there exists an a�ne resolvable 2-
(
s20µ, s0µ,

s0µ−1
s0−1

)
design with

r0 =
s2
0
µ−1

s0−1 parallel classes, in which blocks belonging to distinct
classes intersects in exactly µ points, then there is a
2-
(
s20µ(r0 + 1), s0µr0, µ(r0 − 1)

)
design.

De�nition

Any (symmetric) 2-design isomorphic to one arising from the
Cameron-Praeger construction will be called of CP-type.
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An example with s0 = 3 and µ = 1

The input is:

1 D0 = (∆0,L0) ∼= AG2(3). Here ∆0 = {1, ..., 9} and the
resolution of L0 is {P1,P2,P3,P4} with

P1 = {{1, 2, 4}, {3, 5, 7}, {6, 8, 9}}
P2 = {{1, 3, 6}, {2, 5, 9}, {4, 7, 8}}
P3 = {{1, 5, 8}, {2, 6, 7}, {3, 4, 9}}
P4 = {{1, 7, 9}, {2, 3, 8}, {4, 5, 6}}

2 D1 = (∆1,L1) is the trivial 2-(5, 4, 3) symmetric design. Here,
∆1 = {1, 2, 3, 4, 5} and L1 = {β1, β2, β3, β4, β5}, where

β1 = {1, 2, 3, 4} β2 = {1, 2, 3, 5}
β3 = {1, 2, 4, 5} β4 = {1, 3, 4, 5}
β5 = {2, 3, 4, 5}

3 D2 is the dual of D0 and an exemplary block is

γ0 = {{1, 2, 4}, {1, 3, 6}, {1, 5, 8}, {1, 7, 9}}
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An example with s0 = 3 and µ = 1
4 A Latin square of order 5:

P1 P2 P3 P4 ∞
β1 1 2 3 4 5
β2 2 3 4 5 1
β3 3 4 5 1 2
β4 4 5 1 2 3
β5 5 1 2 3 4

The output is a 2-(45, 12, 3) design with {1, .., 9} × {1, .., 5} as a
point set and with an exemplary block determined below:

β2 = {1, 2, 3, 5};
ψβ2(P1) = 2 ψβ2(P2) = 3 ψβ2(P3) = 4 ψβ2(P4) = 5

γ0 = {{1, 2, 4}, {1, 3, 6}, {1, 5, 8}, {1, 7, 9}}
γ0 ∩ ψ−1

β2(1)=∅ γ0 ∩ ψ−1
β2(2)={1, 2, 4}

γ0 ∩ ψ−1
β2(3)={1, 3, 6} γ0 ∩ ψ−1

β2(5)={1, 7, 9}
Bβ2(γ0) = ({1, 2, 4}×{2}) ∪ ({1, 3, 6}×{3}) ∪ ({1, 7, 9}×{5}).

9/19



FT + PI symmetric 2-designs of CP-type

The authors also gave necessary and su�cient conditions for a
subgroup of S∆0

≀ S∆1
to lie in Aut(D) and then to be

�ag-transitive.

Examples

1 D is one the four 2-(96, 20, 4) designs constructed by
Law-Praeger-Reichard (2007).

2 D is the 2-(22n, 2n−1(2n − 1), 2n−1(2n−1 − 1)) design S−(n)
with n ≥ 2 described in Cameron-Seidel (1973), and
G ∼= 22n : GL2(n).

3 D is a 2-(1408, 336, 80) design constructed by
Cameron-Praeger (2016) and G ∼= 26 : ((3 ·M22) : 2).
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Invariants

Let G be a �ag-transitive automorphism of a non-trivial 2-(v , k , λ)
design D and let Σ be a non-trivial G -invariant partition of the
point set of D in d classes each of size c . The following are
invariant:

|∆ ∩ B| ∈ {0, ℓ} for each ∆ ∈ Σ and each block B of D
(Praeger-Zhou 2006);

The number θ of blocks intersecting a �xed element ∆ of Σ in
the same set of points (Praeger-Devillers 2021,
Mandi¢-�ubasi¢ 2022, M. 2022)

(1) D∆ = (∆,B∆), where B∆ = {B ∈ B : B ∩∆ ̸= ∅}, is a
2-(c , ℓ, λ/θ) design;

(2) G∆
∆ acts �ag-transitively on D∆.

Problem
Determine (D,G ) when D is a symmetric 2-design of

CP-type with D∆ a�ne resolvable.
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More information on the previous examples

Examples

1 D is one the four 2-(96, 20, 4) designs constructed by
Law-Praeger-Reichard (2007). Here, D0

∼= D∆
∼= AG2(4).

2 D is the 2-(22n, 2n−1(2n − 1), 2n−1(2n−1 − 1)) design S−(n)
with n ≥ 2 described in Cameron-Seidel (1973), and
G ∼= 22n : GL2(n). Here, D0

∼= D∆
∼= AGn(2).

3 D is a 2-(1408, 336, 80) design constructed by
Cameron-Praeger (2016) and G ∼= 26 : ((3 ·M22) : 2). Here,
D0

∼= D∆
∼= AG3(4).

12/19



More information on the previous examples

Examples

1 D is one the four 2-(96, 20, 4) designs constructed by
Law-Praeger-Reichard (2007). Here, D0

∼= D∆
∼= AG2(4).

2 D is the 2-(22n, 2n−1(2n − 1), 2n−1(2n−1 − 1)) design S−(n)
with n ≥ 2 described in Cameron-Seidel (1973), and
G ∼= 22n : GL2(n). Here, D0

∼= D∆
∼= AGn(2).

3 D is a 2-(1408, 336, 80) design constructed by
Cameron-Praeger (2016) and G ∼= 26 : ((3 ·M22) : 2). Here,
D0

∼= D∆
∼= AG3(4).

12/19



The family F

De�nition

Let D be a non-trivial symmetric 2-design admitting a
�ag-transitive point-imprimitive automorphism group G .
Then (D,G ) ∈ F if the following hold:

1 D∆ is an a�ne resolvable 2-
(
s20µ, s0µ,

s0µ−1
s0−1

)
design with

r0 =
s2
0
µ−1

s0−1 parallel classes, in which blocks belonging to
distinct classes intersects in exactly µ points;

2 D is a 2-
(
s20µ(r0 + 1), s0µr0, µ(r0 − 1)

)
design.

If D is a 2-design of CP-type admitting a �ag-transitive
point-imprimitive automorphism group G with D∆ a�ne resolvable,
then (D,G ) ∈ F .
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The case where D∆ is a�ne resolvable

The parameters of D∆ are known as a consequence of a result
of Bose (1942) on a�ne resolvable designs;

The replication number of D∆ is coprime to λ/θ.

Lemma [Alavi, Daneshkhah, M., Zhou et al. (2022)]

The group G∆
∆ is �ag-transitive and point primitive on D∆, and one

of the following holds:
(I) G∆

∆ is almost simple and one of the following holds:
(a) D∆ is a 2-(8, 4, 3) design with G∆

∆ = PSL2(7);
(b) D∆ is a 2-(12, 6, 5) design with G∆

∆ = M11;

(II) G∆
∆ is of a�ne type and D∆ is a 2-(pi , pj , λ0) design with

either λ0 = 1 or λ0 =
pj−1

pgcd(j,i/z)−1
for some z | i such that

gcd(j , z , i/z) = 1, or λ0 =
pj−1
a for some a | pgcd(j ,i) − 1.

The points and blocks of D∆ are the points and (certain)
j-subspaces of AGi (p).
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The case where D∆ is a�ne resolvable
The parameters of D∆ are known as a consequence of a result
of Bose (1942) on a�ne resolvable designs;

The replication number of D∆ is coprime to λ/θ.
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The case where G∆
∆ is of a�ne type

Theorem [M., Praeger (2023+)]

Let D be a non-trivial symmetric 2-design admitting a
�ag-transitive point-imprimitive automorphism group G . If
(D,G ) ∈ F and G∆

∆ is of a�ne type,

then GΣ is 2-transitive on Σ,
and one of the following holds:
(I) GΣ is almost simple, and one of the following holds:

(a) D is the 2-(45, 12, 3) design constructed by Praeger-Zhou
(2006) and G ∼= S5,S5.Z3.

(b) D is one of the four 2-(96, 20, 4) designs constructed by
Law-Praeger-Reichard (2007).

(c) D is a 2-(1408, 336, 80) design constructed by
Cameron-Praeger (2016) and G ∼= 26 : ((3 ·M22) : 2).

(II) GΣ is of a�ne type, and one of the following holds:
(a) G is solvable.
(b) D is a 2-(22n, 2n−1(2n − 1), 2n−1(2n−1 − 1)) design n ≥ 2, and

G ∼= 22n : GL2(n).
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The case where G∆
∆ is almost simple

Theorem [M., Praeger (2023+)]

Let D be a non-trivial symmetric 2-design admitting a
�ag-transitive automorphism group G . If (D,G ) ∈ F and G∆

∆ is
almost simple,

then D is a 2-(144, 66, 30) design and G ∼= M12.
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The FT+PI example involving M12
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Construction and properties of the example

G ∼= M12.

P = R× C.
B(Γ) = {(i , j) ∈ P : {i , j} is an edge of Γ}.
B = {B(Γg ) : g ∈ G}.
D = (P,B) is the symmetric 2-(144, 66, 30) design admitting
G as �ag-transititive point-imprimitive automorphism group.

Aut(D) ∼= M12 : Z2 acts �ag-transitively and point-primitively
on D.

The incidence matrix of D is a regular Hadamard matrix of
order 144.

Γ is a 6-valent 2-arc-transitive graph contained in K11,11.

Γ is the incidence graph of the complementary design of the
2-(11, 5, 2) Paley-Hadamard design.
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