

On Flag-Transitive Symmetric 2-Designs Arising from Cameron-Praeger Construction

Rijeka (Croatia), July 3-7, 2023
(Joint Work with Cheryl E. PRAEGER)

Preliminaries

Preliminaries

Definition

Preliminaries

Definition

A 2- (v, k, λ) design $\mathcal{D}=(\mathcal{P}, \mathcal{B})$ consists of a set \mathcal{P} of v points, and a set \mathcal{B} of k-element subsets of \mathcal{P}, called blocks, such that every pair of distinct points is contained in exactly λ blocks.

Preliminaries

Definition

A 2- (v, k, λ) design $\mathcal{D}=(\mathcal{P}, \mathcal{B})$ consists of a set \mathcal{P} of v points, and a set \mathcal{B} of k-element subsets of \mathcal{P}, called blocks, such that every pair of distinct points is contained in exactly λ blocks.

A flag is any incident point-block pair of \mathcal{D}.

Preliminaries

Definition

A 2- (v, k, λ) design $\mathcal{D}=(\mathcal{P}, \mathcal{B})$ consists of a set \mathcal{P} of v points, and a set \mathcal{B} of k-element subsets of \mathcal{P}, called blocks, such that every pair of distinct points is contained in exactly λ blocks.

A flag is any incident point-block pair of \mathcal{D}.

The 2-design \mathcal{D} is said to be

Preliminaries

Definition

A 2- (v, k, λ) design $\mathcal{D}=(\mathcal{P}, \mathcal{B})$ consists of a set \mathcal{P} of v points, and a set \mathcal{B} of k-element subsets of \mathcal{P}, called blocks, such that every pair of distinct points is contained in exactly λ blocks.

A flag is any incident point-block pair of \mathcal{D}.

The 2-design \mathcal{D} is said to be

- non-trivial if $2<k<v-1$.

Preliminaries

Definition

A 2- (v, k, λ) design $\mathcal{D}=(\mathcal{P}, \mathcal{B})$ consists of a set \mathcal{P} of v points, and a set \mathcal{B} of k-element subsets of \mathcal{P}, called blocks, such that every pair of distinct points is contained in exactly λ blocks.

A flag is any incident point-block pair of \mathcal{D}.

The 2-design \mathcal{D} is said to be

- non-trivial if $2<k<v-1$.
- symmetric if $|\mathcal{B}|=v$ or, equivalently, $r=k$, where $r=\frac{(v-1) \lambda}{k-1}$

Preliminaries

Preliminaries

Definition

A resolution of a 2-design $\mathcal{D}=(\mathcal{P}, \mathcal{B})$ is any partition of \mathcal{B} into sets, called parallel classes, each of which is a partition of \mathcal{P}.

Preliminaries

Definition

A resolution of a 2-design $\mathcal{D}=(\mathcal{P}, \mathcal{B})$ is any partition of \mathcal{B} into sets, called parallel classes, each of which is a partition of \mathcal{P}. Any 2-design admitting a resolution is called resolvable.

Preliminaries

Definition

A resolution of a 2-design $\mathcal{D}=(\mathcal{P}, \mathcal{B})$ is any partition of \mathcal{B} into sets, called parallel classes, each of which is a partition of \mathcal{P}. Any 2-design admitting a resolution is called resolvable.

Examples

Preliminaries

Definition

A resolution of a 2-design $\mathcal{D}=(\mathcal{P}, \mathcal{B})$ is any partition of \mathcal{B} into sets, called parallel classes, each of which is a partition of \mathcal{P}. Any 2-design admitting a resolution is called resolvable.

Examples

(i) $A G_{n}(q)$ with the hyperplanes as blocks.

Preliminaries

Definition

A resolution of a 2-design $\mathcal{D}=(\mathcal{P}, \mathcal{B})$ is any partition of \mathcal{B} into sets, called parallel classes, each of which is a partition of \mathcal{P}. Any 2-design admitting a resolution is called resolvable.

Examples

(i) $A G_{n}(q)$ with the hyperplanes as blocks.
(ii) Any affine plane.

Preliminaries

Definition

A resolution of a 2-design $\mathcal{D}=(\mathcal{P}, \mathcal{B})$ is any partition of \mathcal{B} into sets, called parallel classes, each of which is a partition of \mathcal{P}. Any 2-design admitting a resolution is called resolvable.

Examples

(i) $A G_{n}(q)$ with the hyperplanes as blocks.
(ii) Any affine plane.
(iii) The hermitian unital or the Ree unital.

Preliminaries

Definition

A resolution of a 2-design $\mathcal{D}=(\mathcal{P}, \mathcal{B})$ is any partition of \mathcal{B} into sets, called parallel classes, each of which is a partition of \mathcal{P}. Any 2-design admitting a resolution is called resolvable.

Examples

(i) $A G_{n}(q)$ with the hyperplanes as blocks.
(ii) Any affine plane.
(iii) The hermitian unital or the Ree unital.
(iv) 2-(12, 6,5) Witt design W_{12}.

Preliminaries

Definition

A resolution of a 2-design $\mathcal{D}=(\mathcal{P}, \mathcal{B})$ is any partition of \mathcal{B} into sets, called parallel classes, each of which is a partition of \mathcal{P}. Any 2-design admitting a resolution is called resolvable.

Examples

(i) $A G_{n}(q)$ with the hyperplanes as blocks.
(ii) Any affine plane.
(iii) The hermitian unital or the Ree unital.
(iv) 2-(12, 6,5) Witt design W_{12}.

Definition

A resolvable 2-design \mathcal{D} in which blocks in different classes have the same number of points in common is called affine resolvable.

Preliminaries

Preliminaries

An automorphism of \mathcal{D} is a permutation of the point-set \mathcal{P} preserving the block-set \mathcal{B}.

Preliminaries

An automorphism of \mathcal{D} is a permutation of the point-set \mathcal{P} preserving the block-set \mathcal{B}. The set of all automorphisms of \mathcal{D} is a group called the full automorphism group of \mathcal{D} and is denoted by $\operatorname{Aut}(\mathcal{D})$.

Preliminaries

An automorphism of \mathcal{D} is a permutation of the point-set \mathcal{P} preserving the block-set \mathcal{B}. The set of all automorphisms of \mathcal{D} is a group called the full automorphism group of \mathcal{D} and is denoted by $\operatorname{Aut}(\mathcal{D})$.
Let $G \leq \operatorname{Aut}(\mathcal{D})$, then

Preliminaries

An automorphism of \mathcal{D} is a permutation of the point-set \mathcal{P} preserving the block-set \mathcal{B}. The set of all automorphisms of \mathcal{D} is a group called the full automorphism group of \mathcal{D} and is denoted by $\operatorname{Aut}(\mathcal{D})$.
Let $G \leq \operatorname{Aut}(\mathcal{D})$, then
■ G acts point-transitively on \mathcal{D} if for any $x, x^{\prime} \in \mathcal{P}$ there is $\alpha \in G$ such that $x^{\alpha}=x^{\prime}$.

Preliminaries

An automorphism of \mathcal{D} is a permutation of the point-set \mathcal{P} preserving the block-set \mathcal{B}. The set of all automorphisms of \mathcal{D} is a group called the full automorphism group of \mathcal{D} and is denoted by $\operatorname{Aut}(\mathcal{D})$.
Let $G \leq \operatorname{Aut}(\mathcal{D})$, then
■ G acts point-transitively on \mathcal{D} if for any $x, x^{\prime} \in \mathcal{P}$ there is $\alpha \in G$ such that $x^{\alpha}=x^{\prime}$.

■ G acts block-transitively on \mathcal{D} if for any $B, B^{\prime} \in \mathcal{P}$ there is $\beta \in G$ such that $B^{\beta}=B^{\prime}$.

Preliminaries

An automorphism of \mathcal{D} is a permutation of the point-set \mathcal{P} preserving the block-set \mathcal{B}. The set of all automorphisms of \mathcal{D} is a group called the full automorphism group of \mathcal{D} and is denoted by $\operatorname{Aut}(\mathcal{D})$.
Let $G \leq \operatorname{Aut}(\mathcal{D})$, then
■ G acts point-transitively on \mathcal{D} if for any $x, x^{\prime} \in \mathcal{P}$ there is $\alpha \in G$ such that $x^{\alpha}=x^{\prime}$.

■ G acts block-transitively on \mathcal{D} if for any $B, B^{\prime} \in \mathcal{P}$ there is $\beta \in G$ such that $B^{\beta}=B^{\prime}$.

- G acts flag-transitively on \mathcal{D} if for any flags (x, B) and $\left(x^{\prime}, B^{\prime}\right)$ of \mathcal{D} there is $\gamma \in G$ such that $(x, B)^{\gamma}=\left(x^{\prime}, B^{\prime}\right)$.

Preliminaries

An automorphism of \mathcal{D} is a permutation of the point-set \mathcal{P} preserving the block-set \mathcal{B}. The set of all automorphisms of \mathcal{D} is a group called the full automorphism group of \mathcal{D} and is denoted by $\operatorname{Aut}(\mathcal{D})$.
Let $G \leq \operatorname{Aut}(\mathcal{D})$, then
■ G acts point-transitively on \mathcal{D} if for any $x, x^{\prime} \in \mathcal{P}$ there is $\alpha \in G$ such that $x^{\alpha}=x^{\prime}$.

- G acts block-transitively on \mathcal{D} if for any $B, B^{\prime} \in \mathcal{P}$ there is $\beta \in G$ such that $B^{\beta}=B^{\prime}$.
- G acts flag-transitively on \mathcal{D} if for any flags (x, B) and $\left(x^{\prime}, B^{\prime}\right)$ of \mathcal{D} there is $\gamma \in G$ such that $(x, B)^{\gamma}=\left(x^{\prime}, B^{\prime}\right)$.
- G acts point-imprimitively on \mathcal{D} if G acts point-transitively on \mathcal{D} and preserves a partition of the point-set of \mathcal{D} in classes containing containing more than one point.

The Cameron-Praeger construction

The Cameron-Praeger construction

1 A resolvable 2- $\left(v_{0}, k_{0}, \lambda_{0}\right)$ design $\mathcal{D}_{0}=\left(\Delta_{0}, \mathcal{L}_{0}\right)$ with r_{0} parallel classes $\mathcal{P}_{0}=\left\{P_{1}, \ldots, P_{r_{0}}\right\}$ parallel classes and each class consists of s_{0} blocks.

The Cameron-Praeger construction

1 A resolvable 2- $\left(v_{0}, k_{0}, \lambda_{0}\right)$ design $\mathcal{D}_{0}=\left(\Delta_{0}, \mathcal{L}_{0}\right)$ with r_{0} parallel classes $\mathcal{P}_{0}=\left\{P_{1}, \ldots, P_{r_{0}}\right\}$ parallel classes and each class consists of s_{0} blocks.
2 A symmetric 2- $\left(v_{1}, r_{0}, \lambda_{1}\right)$ design $\mathcal{D}_{1}=\left(\Delta_{1}, \mathcal{L}_{1}\right)$ together with $\left(\psi_{\beta}\right)_{\beta \in \mathcal{L}_{1}}$, where $\psi_{\beta}: \mathcal{P}_{0} \rightarrow \beta$ is a bijection for each $\beta \in \mathcal{L}_{1}$ such that $(P, i) \in \mathcal{P}_{0} \times \Delta_{1}$ there is a unique $\beta \in \mathcal{L}_{1}$ such that $\psi_{\beta}(P)=i$.

The Cameron-Praeger construction

1 A resolvable $2-\left(v_{0}, k_{0}, \lambda_{0}\right)$ design $\mathcal{D}_{0}=\left(\Delta_{0}, \mathcal{L}_{0}\right)$ with r_{0} parallel classes $\mathcal{P}_{0}=\left\{P_{1}, \ldots, P_{r_{0}}\right\}$ parallel classes and each class consists of s_{0} blocks.
2 A symmetric 2- $\left(v_{1}, r_{0}, \lambda_{1}\right)$ design $\mathcal{D}_{1}=\left(\Delta_{1}, \mathcal{L}_{1}\right)$ together with $\left(\psi_{\beta}\right)_{\beta \in \mathcal{L}_{1}}$, where $\psi_{\beta}: \mathcal{P}_{0} \rightarrow \beta$ is a bijection for each $\beta \in \mathcal{L}_{1}$ such that $(P, i) \in \mathcal{P}_{0} \times \Delta_{1}$ there is a unique $\beta \in \mathcal{L}_{1}$ such that $\psi_{\beta}(P)=i$.
3 A transversal design $\mathcal{D}_{2}=\left(\Delta_{2}, \mathcal{L}_{2}\right)$ whose point set is partitioned in r_{0} groups each of size s_{0}, and Δ_{2} is identified with $\cup_{i=1}^{r_{0}} P_{i}$; each block has size $k_{2} \leq r_{0}$ and meets each group in at most one point; and each two points in different groups lie in exactly λ_{2} blocks.

The Cameron-Praeger construction

1 A resolvable $2-\left(v_{0}, k_{0}, \lambda_{0}\right)$ design $\mathcal{D}_{0}=\left(\Delta_{0}, \mathcal{L}_{0}\right)$ with r_{0} parallel classes $\mathcal{P}_{0}=\left\{P_{1}, \ldots, P_{r_{0}}\right\}$ parallel classes and each class consists of s_{0} blocks.
2 A symmetric 2- $\left(v_{1}, r_{0}, \lambda_{1}\right)$ design $\mathcal{D}_{1}=\left(\Delta_{1}, \mathcal{L}_{1}\right)$ together with $\left(\psi_{\beta}\right)_{\beta \in \mathcal{L}_{1}}$, where $\psi_{\beta}: \mathcal{P}_{0} \rightarrow \beta$ is a bijection for each $\beta \in \mathcal{L}_{1}$ such that $(P, i) \in \mathcal{P}_{0} \times \Delta_{1}$ there is a unique $\beta \in \mathcal{L}_{1}$ such that $\psi_{\beta}(P)=i$.
3 A transversal design $\mathcal{D}_{2}=\left(\Delta_{2}, \mathcal{L}_{2}\right)$ whose point set is partitioned in r_{0} groups each of size s_{0}, and Δ_{2} is identified with $\cup_{i=1}^{r_{0}} P_{i}$; each block has size $k_{2} \leq r_{0}$ and meets each group in at most one point; and each two points in different groups lie in exactly λ_{2} blocks.

It follows from the definition of Δ_{2} that, for each $\gamma \in \mathcal{L}_{2}, \beta \in \mathcal{L}_{1}$ and $j \in \beta$ either $\gamma \cap \psi_{\beta}^{-1}(j)=\varnothing$ or $\gamma \cap \psi_{\beta}^{-1}(j)$ is a single block of the parallel class $\psi_{\beta}^{-1}(j)$.

The Cameron-Praeger construction

Theorem [Cameron-Praeger (2016)]

The Cameron-Praeger construction

Theorem [Cameron-Praeger (2016)]

Let $\mathcal{D}=\left(\Delta_{0} \times \Delta_{1}, \mathcal{B}\right)$ be the incidence structure, where $\mathcal{B}=\cup_{\beta \in \mathcal{L}_{1}} \mathcal{B}_{\beta}, \mathcal{B}_{\beta}=\left\{B_{\beta}(\gamma): \gamma \in \mathcal{L}_{2}\right\}$ and

$$
B_{\beta}(\gamma)=\bigcup_{j \in \beta}\left(\left(\gamma \cap \psi_{\beta}^{-1}(j)\right) \times\{j\}\right)
$$

The Cameron-Praeger construction

Theorem [Cameron-Praeger (2016)]

Let $\mathcal{D}=\left(\Delta_{0} \times \Delta_{1}, \mathcal{B}\right)$ be the incidence structure, where $\mathcal{B}=\cup_{\beta \in \mathcal{L}_{1}} \mathcal{B}_{\beta}, \mathcal{B}_{\beta}=\left\{B_{\beta}(\gamma): \gamma \in \mathcal{L}_{2}\right\}$ and

$$
B_{\beta}(\gamma)=\bigcup_{j \in \beta}\left(\left(\gamma \cap \psi_{\beta}^{-1}(j)\right) \times\{j\}\right)
$$

$\square \mathcal{D}$ is a 2-design if and only if $\lambda_{1}=\lambda_{0} \frac{\left(r_{0}-1\right) s_{0}}{k_{2}-1}$, and in this case is a $2-\left(v_{0} v_{1}, k_{0} k_{2}, \lambda_{1} \lambda_{2}\right)$ design.

The Cameron-Praeger construction

Theorem [Cameron-Praeger (2016)]

Let $\mathcal{D}=\left(\Delta_{0} \times \Delta_{1}, \mathcal{B}\right)$ be the incidence structure, where $\mathcal{B}=\cup_{\beta \in \mathcal{L}_{1}} \mathcal{B}_{\beta}, \mathcal{B}_{\beta}=\left\{B_{\beta}(\gamma): \gamma \in \mathcal{L}_{2}\right\}$ and

$$
B_{\beta}(\gamma)=\bigcup_{j \in \beta}\left(\left(\gamma \cap \psi_{\beta}^{-1}(j)\right) \times\{j\}\right)
$$

$\square \mathcal{D}$ is a 2-design if and only if $\lambda_{1}=\lambda_{0} \frac{\left(r_{0}-1\right) s_{0}}{k_{2}-1}$, and in this case is a $2-\left(v_{0} v_{1}, k_{0} k_{2}, \lambda_{1} \lambda_{2}\right)$ design.
$■ \mathcal{D}$ is symmetric if and only if $r_{0}\left(r_{0}-1\right) s_{0} \lambda_{2}=k_{0} k_{2}\left(k_{2}-1\right)$.

Symmetric 2-designs of CP-type

Symmetric 2-designs of CP-type

- \mathcal{D}_{0} is an affine resolvable design with r_{0} resolution classes.

Symmetric 2-designs of CP-type

- \mathcal{D}_{0} is an affine resolvable design with r_{0} resolution classes.
- \mathcal{D}_{1} is the trivial $2-\left(r_{0}+1, r_{0}, r_{0}-1\right)$ symmetric design and the bijections ψ_{β} arise from a Latin square of order $r_{0}+1$.

Symmetric 2-designs of CP-type

- \mathcal{D}_{0} is an affine resolvable design with r_{0} resolution classes.
- \mathcal{D}_{1} is the trivial $2-\left(r_{0}+1, r_{0}, r_{0}-1\right)$ symmetric design and the bijections ψ_{β} arise from a Latin square of order $r_{0}+1$.
- \mathcal{D}_{2} is the dual of \mathcal{D}_{0}.

Symmetric 2-designs of CP-type

- \mathcal{D}_{0} is an affine resolvable design with r_{0} resolution classes.
- \mathcal{D}_{1} is the trivial $2-\left(r_{0}+1, r_{0}, r_{0}-1\right)$ symmetric design and the bijections ψ_{β} arise from a Latin square of order $r_{0}+1$.
- \mathcal{D}_{2} is the dual of \mathcal{D}_{0}.

Theorem [Cameron-Praeger (2016)]

If there exists an affine resolvable $2-\left(s_{0}^{2} \mu, s_{0} \mu, \frac{s_{0} \mu-1}{s_{0}-1}\right)$ design with $r_{0}=\frac{s_{0}^{2} \mu-1}{s_{0}-1}$ parallel classes, in which blocks belonging to distinct classes intersects in exactly μ points, then there is a $2-\left(s_{0}^{2} \mu\left(r_{0}+1\right), s_{0} \mu r_{0}, \mu\left(r_{0}-1\right)\right)$ design.

Symmetric 2-designs of CP-type

- \mathcal{D}_{0} is an affine resolvable design with r_{0} resolution classes.
- \mathcal{D}_{1} is the trivial $2-\left(r_{0}+1, r_{0}, r_{0}-1\right)$ symmetric design and the bijections ψ_{β} arise from a Latin square of order $r_{0}+1$.
- \mathcal{D}_{2} is the dual of \mathcal{D}_{0}.

Theorem [Cameron-Praeger (2016)]

If there exists an affine resolvable $2-\left(s_{0}^{2} \mu, s_{0} \mu, \frac{s_{0} \mu-1}{s_{0}-1}\right)$ design with $r_{0}=\frac{s_{0}^{2} \mu-1}{s_{0}-1}$ parallel classes, in which blocks belonging to distinct classes intersects in exactly μ points, then there is a $2-\left(s_{0}^{2} \mu\left(r_{0}+1\right), s_{0} \mu r_{0}, \mu\left(r_{0}-1\right)\right)$ design.

Definition

Any (symmetric) 2-design isomorphic to one arising from the Cameron-Praeger construction will be called of CP-type.

An example with $s_{0}=3$ and $\mu=1$

An example with $s_{0}=3$ and $\mu=1$

The input is:
$1 \mathcal{D}_{0}=\left(\Delta_{0}, \mathcal{L}_{0}\right) \cong A G_{2}(3)$. Here $\Delta_{0}=\{1, \ldots, 9\}$ and the resolution of \mathcal{L}_{0} is $\left\{P_{1}, P_{2}, P_{3}, P_{4}\right\}$ with

$$
\begin{aligned}
& P_{1}=\{\{1,2,4\},\{3,5,7\},\{6,8,9\}\} \\
& P_{2}=\{\{1,3,6\},\{2,5,9\},\{4,7,8\}\} \\
& P_{3}=\{\{1,5,8\},\{2,6,7\},\{3,4,9\}\} \\
& P_{4}=\{\{1,7,9\},\{2,3,8\},\{4,5,6\}\}
\end{aligned}
$$

An example with $s_{0}=3$ and $\mu=1$

The input is:
$1 \mathcal{D}_{0}=\left(\Delta_{0}, \mathcal{L}_{0}\right) \cong A G_{2}(3)$. Here $\Delta_{0}=\{1, \ldots, 9\}$ and the resolution of \mathcal{L}_{0} is $\left\{P_{1}, P_{2}, P_{3}, P_{4}\right\}$ with

$$
\begin{aligned}
& P_{1}=\{\{1,2,4\},\{3,5,7\},\{6,8,9\}\} \\
& P_{2}=\{\{1,3,6\},\{2,5,9\},\{4,7,8\}\} \\
& P_{3}=\{\{1,5,8\},\{2,6,7\},\{3,4,9\}\} \\
& P_{4}=\{\{1,7,9\},\{2,3,8\},\{4,5,6\}\}
\end{aligned}
$$

$2 \mathcal{D}_{1}=\left(\Delta_{1}, \mathcal{L}_{1}\right)$ is the trivial 2- $(5,4,3)$ symmetric design. Here, $\Delta_{1}=\{1,2,3,4,5\}$ and $\mathcal{L}_{1}=\left\{\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}, \beta_{5}\right\}$, where $\beta_{1}=\{1,2,3,4\} \quad \beta_{2}=\{1,2,3,5\}$ $\beta_{3}=\{1,2,4,5\} \quad \beta_{4}=\{1,3,4,5\}$
$\beta_{5}=\{2,3,4,5\}$

An example with $s_{0}=3$ and $\mu=1$

The input is:
$1 \mathcal{D}_{0}=\left(\Delta_{0}, \mathcal{L}_{0}\right) \cong A G_{2}(3)$. Here $\Delta_{0}=\{1, \ldots, 9\}$ and the resolution of \mathcal{L}_{0} is $\left\{P_{1}, P_{2}, P_{3}, P_{4}\right\}$ with

$$
\begin{aligned}
& P_{1}=\{\{1,2,4\},\{3,5,7\},\{6,8,9\}\} \\
& P_{2}=\{\{1,3,6\},\{2,5,9\},\{4,7,8\}\} \\
& P_{3}=\{\{1,5,8\},\{2,6,7\},\{3,4,9\}\} \\
& P_{4}=\{\{1,7,9\},\{2,3,8\},\{4,5,6\}\}
\end{aligned}
$$

$2 \mathcal{D}_{1}=\left(\Delta_{1}, \mathcal{L}_{1}\right)$ is the trivial 2- $(5,4,3)$ symmetric design. Here,

$$
\begin{gathered}
\Delta_{1}=\{1,2,3,4,5\} \text { and } \mathcal{L}_{1}=\left\{\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}, \beta_{5}\right\}, \text { where } \\
\beta_{1}=\{1,2,3,4\} \quad \beta_{2}=\{1,2,3,5\} \\
\beta_{3}=\{1,2,4,5\} \quad \beta_{4}=\{1,3,4,5\} \\
\beta_{5}=\{2,3,4,5\}
\end{gathered}
$$

$3 \mathcal{D}_{2}$ is the dual of \mathcal{D}_{0} and an exemplary block is

$$
\gamma_{0}=\{\{1,2,4\},\{1,3,6\},\{1,5,8\},\{1,7,9\}\}
$$

An example with $s_{0}=3$ and $\mu=1$

4 A Latin square of order 5:

	P_{1}	P_{2}	P_{3}	P_{4}	∞
β_{1}	1	2	3	4	5
β_{2}	2	3	4	5	1
β_{3}	3	4	5	1	2
β_{4}	4	5	1	2	3
β_{5}	5	1	2	3	4

The output is a $2-(45,12,3)$ design with $\{1, . ., 9\} \times\{1, . .5\}$ as a point set and with an exemplary block determined below:

- $\beta_{2}=\{1,2,3,5\}$;
- $\quad \psi_{\beta_{2}}\left(P_{1}\right)=2 \quad \psi_{\beta_{2}}\left(P_{2}\right)=3 \quad \psi_{\beta_{2}}\left(P_{3}\right)=4 \quad \psi_{\beta_{2}}\left(P_{4}\right)=5$
- $\gamma_{0}=\{\{1,2,4\},\{1,3,6\},\{1,5,8\},\{1,7,9\}\}$

$\gamma_{0} \cap \psi^{-1}{ }_{\beta_{2}}(1)=\varnothing$	$\gamma_{0} \cap \psi^{-1}{ }_{\beta_{2}}(2)=\{1,2,4\}$
$\gamma_{0} \cap \psi^{-1}{ }_{\beta_{2}}(3)=\{1,3,6\}$	$\gamma_{0} \cap \psi^{-1}{ }_{\beta_{2}}(5)=\{1,7,9\}$

■ $B_{\beta_{2}}\left(\gamma_{0}\right)=(\{1,2,4\} \times\{2\}) \cup(\{1,3,6\} \times\{3\}) \cup(\{1,7,9\} \times\{5\})$.

FT + PI symmetric 2-designs of CP-type

FT + PI symmetric 2-designs of CP-type

The authors also gave necessary and sufficient conditions for a subgroup of $S_{\Delta_{0}}$ $S_{\Delta_{1}}$ to lie in $\operatorname{Aut}(\mathcal{D})$ and then to be flag-transitive.

FT + PI symmetric 2-designs of CP-type

The authors also gave necessary and sufficient conditions for a subgroup of $S_{\Delta_{0}}$ $S_{\Delta_{1}}$ to lie in $\operatorname{Aut}(\mathcal{D})$ and then to be flag-transitive.

Examples

$1 \mathcal{D}$ is one the four $2-(96,20,4)$ designs constructed by Law-Praeger-Reichard (2007).

FT + PI symmetric 2-designs of CP-type

The authors also gave necessary and sufficient conditions for a subgroup of $S_{\Delta_{0}}$ $S_{\Delta_{1}}$ to lie in $\operatorname{Aut}(\mathcal{D})$ and then to be flag-transitive.

Examples

$1 \mathcal{D}$ is one the four $2-(96,20,4)$ designs constructed by Law-Praeger-Reichard (2007).
$2 \mathcal{D}$ is the $2-\left(2^{2 n}, 2^{n-1}\left(2^{n}-1\right), 2^{n-1}\left(2^{n-1}-1\right)\right)$ design $S^{-}(n)$ with $n \geq 2$ described in Cameron-Seidel (1973), and $G \cong 2^{2 n}: G L_{2}(n)$.

FT + PI symmetric 2-designs of CP-type

The authors also gave necessary and sufficient conditions for a subgroup of $S_{\Delta_{0}}$ $S_{\Delta_{1}}$ to lie in $\operatorname{Aut}(\mathcal{D})$ and then to be flag-transitive.

Examples

$1 \mathcal{D}$ is one the four $2-(96,20,4)$ designs constructed by Law-Praeger-Reichard (2007).
$2 \mathcal{D}$ is the $2-\left(2^{2 n}, 2^{n-1}\left(2^{n}-1\right), 2^{n-1}\left(2^{n-1}-1\right)\right)$ design $S^{-}(n)$ with $n \geq 2$ described in Cameron-Seidel (1973), and $G \cong 2^{2 n}: G L_{2}(n)$.
$3 \mathcal{D}$ is a $2-(1408,336,80)$ design constructed by Cameron-Praeger (2016) and $G \cong 2^{6}:\left(\left(3 \cdot M_{22}\right): 2\right)$.

Invariants

Invariants

Let G be a flag-transitive automorphism of a non-trivial 2-($v, k, \lambda)$ design \mathcal{D} and let Σ be a non-trivial G-invariant partition of the point set of \mathcal{D} in d classes each of size c.

Invariants

Let G be a flag-transitive automorphism of a non-trivial 2-($v, k, \lambda)$ design \mathcal{D} and let Σ be a non-trivial G-invariant partition of the point set of \mathcal{D} in d classes each of size c. The following are invariant:

Invariants

Let G be a flag-transitive automorphism of a non-trivial 2-($v, k, \lambda)$ design \mathcal{D} and let Σ be a non-trivial G-invariant partition of the point set of \mathcal{D} in d classes each of size c. The following are invariant:

■ $|\Delta \cap B| \in\{0, \ell\}$ for each $\Delta \in \Sigma$ and each block B of \mathcal{D} (Praeger-Zhou 2006);

Invariants

Let G be a flag-transitive automorphism of a non-trivial 2-($v, k, \lambda)$ design \mathcal{D} and let Σ be a non-trivial G-invariant partition of the point set of \mathcal{D} in d classes each of size c. The following are invariant:

■ $|\Delta \cap B| \in\{0, \ell\}$ for each $\Delta \in \Sigma$ and each block B of \mathcal{D} (Praeger-Zhou 2006);

- The number θ of blocks intersecting a fixed element Δ of Σ in the same set of points (Praeger-Devillers 2021, Mandić-Šubasić 2022, M. 2022)

Invariants

Let G be a flag-transitive automorphism of a non-trivial 2-($v, k, \lambda)$ design \mathcal{D} and let Σ be a non-trivial G-invariant partition of the point set of \mathcal{D} in d classes each of size c. The following are invariant:

■ $|\Delta \cap B| \in\{0, \ell\}$ for each $\Delta \in \Sigma$ and each block B of \mathcal{D} (Praeger-Zhou 2006);

- The number θ of blocks intersecting a fixed element Δ of Σ in the same set of points (Praeger-Devillers 2021, Mandić-Šubasić 2022, M. 2022)
(1) $\mathcal{D}_{\Delta}=\left(\Delta, \mathcal{B}_{\Delta}\right)$, where $\mathcal{B}_{\Delta}=\{B \in \mathcal{B}: B \cap \Delta \neq \varnothing\}$, is a 2-($c, \ell, \lambda / \theta)$ design;

Invariants

Let G be a flag-transitive automorphism of a non-trivial 2- (v, k, λ) design \mathcal{D} and let Σ be a non-trivial G-invariant partition of the point set of \mathcal{D} in d classes each of size c. The following are invariant:

■ $|\Delta \cap B| \in\{0, \ell\}$ for each $\Delta \in \Sigma$ and each block B of \mathcal{D} (Praeger-Zhou 2006);

- The number θ of blocks intersecting a fixed element Δ of Σ in the same set of points (Praeger-Devillers 2021, Mandić-Šubasić 2022, M. 2022)
(1) $\mathcal{D}_{\Delta}=\left(\Delta, \mathcal{B}_{\Delta}\right)$, where $\mathcal{B}_{\Delta}=\{B \in \mathcal{B}: B \cap \Delta \neq \varnothing\}$, is a 2-($c, \ell, \lambda / \theta)$ design;
(2) G_{Δ}^{Δ} acts flag-transitively on \mathcal{D}_{Δ}.

Invariants

Let G be a flag-transitive automorphism of a non-trivial 2-($v, k, \lambda)$ design \mathcal{D} and let Σ be a non-trivial G-invariant partition of the point set of \mathcal{D} in d classes each of size c. The following are invariant:

- $|\Delta \cap B| \in\{0, \ell\}$ for each $\Delta \in \Sigma$ and each block B of \mathcal{D} (Praeger-Zhou 2006);
- The number θ of blocks intersecting a fixed element Δ of Σ in the same set of points (Praeger-Devillers 2021, Mandić-Šubasić 2022, M. 2022)
(1) $\mathcal{D}_{\Delta}=\left(\Delta, \mathcal{B}_{\Delta}\right)$, where $\mathcal{B}_{\Delta}=\{B \in \mathcal{B}: B \cap \Delta \neq \varnothing\}$, is a 2-($c, \ell, \lambda / \theta)$ design;
(2) G_{Δ}^{Δ} acts flag-transitively on \mathcal{D}_{Δ}.

Problem
Determine (\mathcal{D}, G) when \mathcal{D} is a symmetric 2-design of CP-type with \mathcal{D}_{Δ} affine resolvable.

More information on the previous examplef A. MONTINARO

More information on the previous example DH:L SALENIO

Examples

$1 \mathcal{D}$ is one the four $2-(96,20,4)$ designs constructed by Law-Praeger-Reichard (2007). Here, $\mathcal{D}_{0} \cong \mathcal{D}_{\Delta} \cong A G_{2}$ (4).
$2 \mathcal{D}$ is the $2-\left(2^{2 n}, 2^{n-1}\left(2^{n}-1\right), 2^{n-1}\left(2^{n-1}-1\right)\right)$ design $S^{-}(n)$ with $n \geq 2$ described in Cameron-Seidel (1973), and $G \cong 2^{2 n}: G L_{2}(n)$. Here, $\mathcal{D}_{0} \cong \mathcal{D}_{\Delta} \cong A G_{n}(2)$.
$3 \mathcal{D}$ is a $2-(1408,336,80)$ design constructed by
Cameron-Praeger (2016) and $G \cong 2^{6}:\left(\left(3 \cdot M_{22}\right): 2\right)$. Here, $\mathcal{D}_{0} \cong \mathcal{D}_{\Delta} \cong A G_{3}(4)$.

The family \mathcal{F}

The family \mathcal{F}

Definition

Let \mathcal{D} be a non-trivial symmetric 2-design admitting a flag-transitive point-imprimitive automorphism group G.
Then $(\mathcal{D}, G) \in \mathcal{F}$ if the following hold:
$1 \mathcal{D}_{\Delta}$ is an affine resolvable $2-\left(s_{0}^{2} \mu, s_{0} \mu, \frac{s_{0} \mu-1}{s_{0}-1}\right)$ design with $r_{0}=\frac{s_{0}^{2} \mu-1}{s_{0}-1}$ parallel classes, in which blocks belonging to distinct classes intersects in exactly μ points;
$2 \mathcal{D}$ is a $2-\left(s_{0}^{2} \mu\left(r_{0}+1\right)\right.$, $\left.s_{0} \mu r_{0}, \mu\left(r_{0}-1\right)\right)$ design.

The family \mathcal{F}

Definition

Let \mathcal{D} be a non-trivial symmetric 2-design admitting a flag-transitive point-imprimitive automorphism group G.
Then $(\mathcal{D}, G) \in \mathcal{F}$ if the following hold:
$1 \mathcal{D}_{\Delta}$ is an affine resolvable $2-\left(s_{0}^{2} \mu, s_{0} \mu, \frac{s_{0} \mu-1}{s_{0}-1}\right)$ design with
$r_{0}=\frac{s_{0}^{2} \mu-1}{s_{0}-1}$ parallel classes, in which blocks belonging to distinct classes intersects in exactly μ points;
$2 \mathcal{D}$ is a $2-\left(s_{0}^{2} \mu\left(r_{0}+1\right)\right.$, $\left.s_{0} \mu r_{0}, \mu\left(r_{0}-1\right)\right)$ design.
If \mathcal{D} is a 2-design of CP-type admitting a flag-transitive point-imprimitive automorphism group G with \mathcal{D}_{Δ} affine resolvable, then $(\mathcal{D}, G) \in \mathcal{F}$.

The case where \mathcal{D}_{Δ} is affine resolvable

The case where \mathcal{D}_{Δ} is affine resolvable

- The parameters of \mathcal{D}_{Δ} are known as a consequence of a result of Bose (1942) on affine resolvable designs;

The case where \mathcal{D}_{Δ} is affine resolvable

- The parameters of \mathcal{D}_{Δ} are known as a consequence of a result of Bose (1942) on affine resolvable designs;
- The replication number of \mathcal{D}_{Δ} is coprime to λ / θ.

The case where \mathcal{D}_{Δ} is affine resolvable

- The parameters of \mathcal{D}_{Δ} are known as a consequence of a result of Bose (1942) on affine resolvable designs;
- The replication number of \mathcal{D}_{Δ} is coprime to λ / θ.

Lemma [Alavi, Daneshkhah, M., Zhou et al. (2022)]

The group G_{Δ}^{Δ} is flag-transitive and point primitive on \mathcal{D}_{Δ}, and one of the following holds:
(I) G_{Δ}^{Δ} is almost simple and one of the following holds:
(a) \mathcal{D}_{Δ} is a 2- $(8,4,3)$ design with $G_{\Delta}^{\Delta}=P S L_{2}(7)$;
(b) \mathcal{D}_{Δ} is a 2- $(12,6,5)$ design with $G_{\Delta}^{\Delta}=M_{11}$;
(II) G_{Δ}^{Δ} is of affine type and \mathcal{D}_{Δ} is a $2-\left(p^{i}, p^{j}, \lambda_{0}\right)$ design with either $\lambda_{0}=1$ or $\lambda_{0}=\frac{p^{j}-1}{p^{\operatorname{gcd} j, i / z)}-1}$ for some $z \mid i$ such that $\operatorname{gcd}(j, z, i / z)=1$, or $\lambda_{0}=\frac{p^{j}-1}{a}$ for some a $\mid p^{\operatorname{gcd}(j, i)}-1$. The points and blocks of \mathcal{D}_{Δ} are the points and (certain) j-subspaces of $A G_{i}(p)$.

The case where G_{Δ}^{Δ} is of affine type

The case where G_{Δ}^{Δ} is of affine type

Theorem [M., Praeger (2023+)]

Let \mathcal{D} be a non-trivial symmetric 2-design admitting a flag-transitive point-imprimitive automorphism group G. If $(\mathcal{D}, G) \in \mathcal{F}$ and G_{Δ}^{Δ} is of affine type,

The case where G_{Δ}^{Δ} is of affine type

Theorem [M., Praeger (2023+)]

Let \mathcal{D} be a non-trivial symmetric 2-design admitting a flag-transitive point-imprimitive automorphism group G. If $(\mathcal{D}, G) \in \mathcal{F}$ and G_{Δ}^{Δ} is of affine type, then G^{Σ} is 2-transitive on Σ, and one of the following holds:

The case where G_{Δ}^{Δ} is of affine type

Theorem [M., Praeger (2023+)]

Let \mathcal{D} be a non-trivial symmetric 2-design admitting a flag-transitive point-imprimitive automorphism group G. If $(\mathcal{D}, G) \in \mathcal{F}$ and G_{Δ}^{Δ} is of affine type, then G^{Σ} is 2-transitive on Σ, and one of the following holds:
(I) G^{Σ} is almost simple, and one of the following holds:
(a) \mathcal{D} is the $2-(45,12,3)$ design constructed by Praeger-Zhou (2006) and $G \cong S_{5}, S_{5} \cdot Z_{3}$.
(b) \mathcal{D} is one of the four $2-(96,20,4)$ designs constructed by Law-Praeger-Reichard (2007).
(c) \mathcal{D} is a 2- $(1408,336,80)$ design constructed by Cameron-Praeger (2016) and $G \cong 2^{6}:\left(\left(3 \cdot M_{22}\right): 2\right)$.

The case where G_{Δ}^{Δ} is of affine type

Theorem [M., Praeger (2023+)]

Let \mathcal{D} be a non-trivial symmetric 2-design admitting a flag-transitive point-imprimitive automorphism group G. If $(\mathcal{D}, G) \in \mathcal{F}$ and G_{Δ}^{Δ} is of affine type, then G^{Σ} is 2-transitive on Σ, and one of the following holds:
(I) G^{Σ} is almost simple, and one of the following holds:
(a) \mathcal{D} is the $2-(45,12,3)$ design constructed by Praeger-Zhou (2006) and $G \cong S_{5}, S_{5} \cdot Z_{3}$.
(b) \mathcal{D} is one of the four $2-(96,20,4)$ designs constructed by Law-Praeger-Reichard (2007).
(c) \mathcal{D} is a 2- $(1408,336,80)$ design constructed by Cameron-Praeger (2016) and $G \cong 2^{6}:\left(\left(3 \cdot M_{22}\right): 2\right)$.
(II) G^{Σ} is of affine type, and one of the following holds:
(a) G is solvable.
(b) \mathcal{D} is a $2-\left(2^{2 n}, 2^{n-1}\left(2^{n}-1\right), 2^{n-1}\left(2^{n-1}-1\right)\right)$ design $n \geq 2$, and $G \cong 2^{2 n}: G L_{2}(n)$.

The case where G_{Δ}^{Δ} is almost simple

The case where G_{Δ}^{Δ} is almost simple

Theorem [M., Praeger (2023+)]

Let \mathcal{D} be a non-trivial symmetric 2-design admitting a flag-transitive automorphism group G. If $(\mathcal{D}, G) \in \mathcal{F}$ and G_{Δ}^{Δ} is almost simple,

The case where G_{Δ}^{Δ} is almost simple

Theorem [M., Praeger (2023+)]

Let \mathcal{D} be a non-trivial symmetric 2-design admitting a flag-transitive automorphism group G. If $(\mathcal{D}, G) \in \mathcal{F}$ and G_{Δ}^{Δ} is almost simple, then \mathcal{D} is a $2-(144,66,30)$ design and $G \cong M_{12}$.

The FT+PI example involving M_{12}

The FT+PI example involving M_{12}

The FT+PI example involving M_{12}

The FT+PI example involving M_{12}

The FT+PI example involving M_{12}

A. MONTINARO

The FT+PI example involving M_{12}

A. MONTINARO

The FT+PI example involving M_{12}

The FT+PI example involving M_{12}

 A.: MONTINARO

Construction and properties of the example myuni

- $G \cong M_{12}$.

Construction and properties of the examples mysto

- $G \cong M_{12}$.
- $\mathcal{P}=\mathcal{R} \times \mathcal{C}$.

Construction and properties of the example minieni

- $G \cong M_{12}$.
- $\mathcal{P}=\mathcal{R} \times \mathcal{C}$.
- $B(\Gamma)=\{(i, j) \in \mathcal{P}:\{i, j\}$ is an edge of $\Gamma\}$.

Construction and properties of the example myuni

- $G \cong M_{12}$.
- $\mathcal{P}=\mathcal{R} \times \mathcal{C}$.
- $B(\Gamma)=\{(i, j) \in \mathcal{P}:\{i, j\}$ is an edge of $\Gamma\}$.
- $\mathcal{B}=\left\{B\left(\Gamma^{g}\right): g \in G\right\}$.

Construction and properties of the example witisid

- $G \cong M_{12}$.
- $\mathcal{P}=\mathcal{R} \times \mathcal{C}$.

■ $B(\Gamma)=\{(i, j) \in \mathcal{P}:\{i, j\}$ is an edge of $\Gamma\}$.

- $\mathcal{B}=\left\{B\left(\Gamma^{g}\right): g \in G\right\}$.
- $\mathcal{D}=(\mathcal{P}, \mathcal{B})$ is the symmetric $2-(144,66,30)$ design admitting G as flag-transititive point-imprimitive automorphism group.

- $G \cong M_{12}$.
- $\mathcal{P}=\mathcal{R} \times \mathcal{C}$.

■ $B(\Gamma)=\{(i, j) \in \mathcal{P}:\{i, j\}$ is an edge of $\Gamma\}$.

- $\mathcal{B}=\left\{B\left(\Gamma^{g}\right): g \in G\right\}$.
- $\mathcal{D}=(\mathcal{P}, \mathcal{B})$ is the symmetric $2-(144,66,30)$ design admitting G as flag-transititive point-imprimitive automorphism group.
- $\operatorname{Aut}(\mathcal{D}) \cong M_{12}: Z_{2}$ acts flag-transitively and point-primitively on \mathcal{D}.

Construction and properties of the example myiniti

- $G \cong M_{12}$.
- $\mathcal{P}=\mathcal{R} \times \mathcal{C}$.

■ $B(\Gamma)=\{(i, j) \in \mathcal{P}:\{i, j\}$ is an edge of $\Gamma\}$.

- $\mathcal{B}=\left\{B\left(\Gamma^{g}\right): g \in G\right\}$.
- $\mathcal{D}=(\mathcal{P}, \mathcal{B})$ is the symmetric $2-(144,66,30)$ design admitting G as flag-transititive point-imprimitive automorphism group.
- $\operatorname{Aut}(\mathcal{D}) \cong M_{12}: Z_{2}$ acts flag-transitively and point-primitively on \mathcal{D}.
- The incidence matrix of \mathcal{D} is a regular Hadamard matrix of order 144.

Construction and properties of the example uninid

- $G \cong M_{12}$.
- $\mathcal{P}=\mathcal{R} \times \mathcal{C}$.

■ $B(\Gamma)=\{(i, j) \in \mathcal{P}:\{i, j\}$ is an edge of $\Gamma\}$.

- $\mathcal{B}=\left\{B\left(\Gamma^{g}\right): g \in G\right\}$.
- $\mathcal{D}=(\mathcal{P}, \mathcal{B})$ is the symmetric $2-(144,66,30)$ design admitting G as flag-transititive point-imprimitive automorphism group.
- $\operatorname{Aut}(\mathcal{D}) \cong M_{12}: Z_{2}$ acts flag-transitively and point-primitively on \mathcal{D}.
- The incidence matrix of \mathcal{D} is a regular Hadamard matrix of order 144.
■ 「 is a 6-valent 2-arc-transitive graph contained in $\mathrm{K}_{11,11}$.

Construction and properties of the example Myyyy

- $G \cong M_{12}$.
- $\mathcal{P}=\mathcal{R} \times \mathcal{C}$.

■ $B(\Gamma)=\{(i, j) \in \mathcal{P}:\{i, j\}$ is an edge of $\Gamma\}$.

- $\mathcal{B}=\left\{B\left(\Gamma^{g}\right): g \in G\right\}$.
- $\mathcal{D}=(\mathcal{P}, \mathcal{B})$ is the symmetric $2-(144,66,30)$ design admitting G as flag-transititive point-imprimitive automorphism group.
- $\operatorname{Aut}(\mathcal{D}) \cong M_{12}: Z_{2}$ acts flag-transitively and point-primitively on \mathcal{D}.
- The incidence matrix of \mathcal{D} is a regular Hadamard matrix of order 144.
■ 「 is a 6-valent 2-arc-transitive graph contained in $\mathrm{K}_{11,11}$.
- 「 is the incidence graph of the complementary design of the $2-(11,5,2)$ Paley-Hadamard design.

Hvala Na Pažnji!

