

On Flag-Transitive Symmetric 2-Designs Arising from Cameron–Praeger Construction

Alessandro MONTINARO

Rijeka (Croatia), July 3-7, 2023

(Joint Work with Cheryl E. PRAEGER)

A 2- (v, k, λ) design $\mathcal{D} = (\mathcal{P}, \mathcal{B})$ consists of a set \mathcal{P} of v points, and a set \mathcal{B} of k-element subsets of \mathcal{P} , called **blocks**, such that every pair of distinct points is contained in exactly λ blocks.

A 2- (v, k, λ) design $\mathcal{D} = (\mathcal{P}, \mathcal{B})$ consists of a set \mathcal{P} of v points, and a set \mathcal{B} of k-element subsets of \mathcal{P} , called **blocks**, such that every pair of distinct points is contained in exactly λ blocks.

A flag is any incident point-block pair of \mathcal{D} .

A 2- (v, k, λ) design $\mathcal{D} = (\mathcal{P}, \mathcal{B})$ consists of a set \mathcal{P} of v points, and a set \mathcal{B} of k-element subsets of \mathcal{P} , called **blocks**, such that every pair of distinct points is contained in exactly λ blocks.

A flag is any incident point-block pair of \mathcal{D} .

The 2-design ${\mathcal D}$ is said to be

A 2- (v, k, λ) design $\mathcal{D} = (\mathcal{P}, \mathcal{B})$ consists of a set \mathcal{P} of v points, and a set \mathcal{B} of k-element subsets of \mathcal{P} , called **blocks**, such that every pair of distinct points is contained in exactly λ blocks.

A flag is any incident point-block pair of \mathcal{D} .

The 2-design ${\mathcal D}$ is said to be

- non-trivial if 2 < k < v - 1.

A 2- (v, k, λ) design $\mathcal{D} = (\mathcal{P}, \mathcal{B})$ consists of a set \mathcal{P} of v points, and a set \mathcal{B} of k-element subsets of \mathcal{P} , called **blocks**, such that every pair of distinct points is contained in exactly λ blocks.

A flag is any incident point-block pair of \mathcal{D} .

The 2-design ${\mathcal D}$ is said to be

- **non-trivial** if 2 < k < v 1.
- symmetric if $|\mathcal{B}| = v$ or, equivalently, r = k, where $r = \frac{(v-1)\lambda}{k-1}$

Definition

A resolution of a 2-design $\mathcal{D} = (\mathcal{P}, \mathcal{B})$ is any partition of \mathcal{B} into sets, called **parallel classes**, each of which is a partition of \mathcal{P} .

Definition

A resolution of a 2-design $\mathcal{D} = (\mathcal{P}, \mathcal{B})$ is any partition of \mathcal{B} into sets, called **parallel classes**, each of which is a partition of \mathcal{P} . Any 2-design admitting a resolution is called **resolvable**.

Definition

A resolution of a 2-design $\mathcal{D} = (\mathcal{P}, \mathcal{B})$ is any partition of \mathcal{B} into sets, called **parallel classes**, each of which is a partition of \mathcal{P} . Any 2-design admitting a resolution is called **resolvable**.

Examples

Definition

A resolution of a 2-design $\mathcal{D} = (\mathcal{P}, \mathcal{B})$ is any partition of \mathcal{B} into sets, called **parallel classes**, each of which is a partition of \mathcal{P} . Any 2-design admitting a resolution is called **resolvable**.

Examples

(i) $AG_n(q)$ with the hyperplanes as blocks.

Definition

A resolution of a 2-design $\mathcal{D} = (\mathcal{P}, \mathcal{B})$ is any partition of \mathcal{B} into sets, called **parallel classes**, each of which is a partition of \mathcal{P} . Any 2-design admitting a resolution is called **resolvable**.

Examples

(i) AG_n(q) with the hyperplanes as blocks.(ii) Any affine plane.

Definition

A resolution of a 2-design $\mathcal{D} = (\mathcal{P}, \mathcal{B})$ is any partition of \mathcal{B} into sets, called **parallel classes**, each of which is a partition of \mathcal{P} . Any 2-design admitting a resolution is called **resolvable**.

Examples

- (i) $AG_n(q)$ with the hyperplanes as blocks.
- (ii) Any affine plane.
- (iii) The hermitian unital or the Ree unital.

Definition

A resolution of a 2-design $\mathcal{D} = (\mathcal{P}, \mathcal{B})$ is any partition of \mathcal{B} into sets, called **parallel classes**, each of which is a partition of \mathcal{P} . Any 2-design admitting a resolution is called **resolvable**.

Examples

- (i) $AG_n(q)$ with the hyperplanes as blocks.
- (ii) Any affine plane.
- (iii) The hermitian unital or the Ree unital.
- (iv) 2-(12, 6, 5) Witt design W_{12} .

Definition

A resolution of a 2-design $\mathcal{D} = (\mathcal{P}, \mathcal{B})$ is any partition of \mathcal{B} into sets, called **parallel classes**, each of which is a partition of \mathcal{P} . Any 2-design admitting a resolution is called **resolvable**.

Examples

- (i) $AG_n(q)$ with the hyperplanes as blocks.
- (ii) Any affine plane.
- (iii) The hermitian unital or the Ree unital.
- (iv) 2-(12, 6, 5) Witt design W_{12} .

Definition

A resolvable 2-design \mathcal{D} in which blocks in different classes have the same number of points in common is called **affine resolvable**.

An **automorphism** of \mathcal{D} is a permutation of the point-set \mathcal{P} preserving the block-set \mathcal{B} .

- Let $G \leq Aut(\mathcal{D})$, then
 - G acts point-transitively on \mathcal{D} if for any $x, x' \in \mathcal{P}$ there is $\alpha \in G$ such that $x^{\alpha} = x'$.

- Let $G \leq Aut(\mathcal{D})$, then
 - G acts point-transitively on \mathcal{D} if for any $x, x' \in \mathcal{P}$ there is $\alpha \in G$ such that $x^{\alpha} = x'$.
 - G acts block-transitively on \mathcal{D} if for any $B, B' \in \mathcal{P}$ there is $\beta \in G$ such that $B^{\beta} = B'$.

- Let $G \leq Aut(\mathcal{D})$, then
 - G acts point-transitively on \mathcal{D} if for any $x, x' \in \mathcal{P}$ there is $\alpha \in G$ such that $x^{\alpha} = x'$.
 - G acts block-transitively on \mathcal{D} if for any $B, B' \in \mathcal{P}$ there is $\beta \in G$ such that $B^{\beta} = B'$.
 - G acts flag-transitively on \mathcal{D} if for any flags (x, B) and (x', B') of \mathcal{D} there is $\gamma \in G$ such that $(x, B)^{\gamma} = (x', B')$.

- Let $G \leq Aut(\mathcal{D})$, then
 - G acts point-transitively on \mathcal{D} if for any $x, x' \in \mathcal{P}$ there is $\alpha \in G$ such that $x^{\alpha} = x'$.
 - G acts block-transitively on \mathcal{D} if for any $B, B' \in \mathcal{P}$ there is $\beta \in G$ such that $B^{\beta} = B'$.
 - G acts flag-transitively on \mathcal{D} if for any flags (x, B) and (x', B') of \mathcal{D} there is $\gamma \in G$ such that $(x, B)^{\gamma} = (x', B')$.
 - *G* acts point-imprimitively on *D* if *G* acts point-transitively on *D* and preserves a partition of the point-set of *D* in classes containing containing more than one point.

1 A resolvable 2- (v_0, k_0, λ_0) design $\mathcal{D}_0 = (\Delta_0, \mathcal{L}_0)$ with r_0 parallel classes $\mathcal{P}_0 = \{P_1, ..., P_{r_0}\}$ parallel classes and each class consists of s_0 blocks.

- **1** A resolvable 2- (v_0, k_0, λ_0) design $\mathcal{D}_0 = (\Delta_0, \mathcal{L}_0)$ with r_0 parallel classes $\mathcal{P}_0 = \{P_1, ..., P_{r_0}\}$ parallel classes and each class consists of s_0 blocks.
- 2 A symmetric 2- (v_1, r_0, λ_1) design $\mathcal{D}_1 = (\Delta_1, \mathcal{L}_1)$ together with $(\psi_\beta)_{\beta \in \mathcal{L}_1}$, where $\psi_\beta : \mathcal{P}_0 \to \beta$ is a bijection for each $\beta \in \mathcal{L}_1$ such that $(P, i) \in \mathcal{P}_0 \times \Delta_1$ there is a unique $\beta \in \mathcal{L}_1$ such that $\psi_\beta(P) = i$.

- A resolvable 2- (v_0, k_0, λ_0) design $\mathcal{D}_0 = (\Delta_0, \mathcal{L}_0)$ with r_0 parallel classes $\mathcal{P}_0 = \{P_1, ..., P_{r_0}\}$ parallel classes and each class consists of s_0 blocks.
- 2 A symmetric 2- (v_1, r_0, λ_1) design $\mathcal{D}_1 = (\Delta_1, \mathcal{L}_1)$ together with $(\psi_\beta)_{\beta \in \mathcal{L}_1}$, where $\psi_\beta : \mathcal{P}_0 \to \beta$ is a bijection for each $\beta \in \mathcal{L}_1$ such that $(P, i) \in \mathcal{P}_0 \times \Delta_1$ there is a unique $\beta \in \mathcal{L}_1$ such that $\psi_\beta(P) = i$.
- 3 A transversal design $\mathcal{D}_2 = (\Delta_2, \mathcal{L}_2)$ whose point set is partitioned in r_0 groups each of size s_0 , and Δ_2 is identified with $\bigcup_{i=1}^{r_0} P_i$; each block has size $k_2 \leq r_0$ and meets each group in at most one point; and each two points in different groups lie in exactly λ_2 blocks.

- A resolvable 2- (v_0, k_0, λ_0) design $\mathcal{D}_0 = (\Delta_0, \mathcal{L}_0)$ with r_0 parallel classes $\mathcal{P}_0 = \{P_1, ..., P_{r_0}\}$ parallel classes and each class consists of s_0 blocks.
- 2 A symmetric 2- (v_1, r_0, λ_1) design $\mathcal{D}_1 = (\Delta_1, \mathcal{L}_1)$ together with $(\psi_\beta)_{\beta \in \mathcal{L}_1}$, where $\psi_\beta : \mathcal{P}_0 \to \beta$ is a bijection for each $\beta \in \mathcal{L}_1$ such that $(P, i) \in \mathcal{P}_0 \times \Delta_1$ there is a unique $\beta \in \mathcal{L}_1$ such that $\psi_\beta(P) = i$.
- 3 A transversal design $\mathcal{D}_2 = (\Delta_2, \mathcal{L}_2)$ whose point set is partitioned in r_0 groups each of size s_0 , and Δ_2 is identified with $\bigcup_{i=1}^{r_0} P_i$; each block has size $k_2 \leq r_0$ and meets each group in at most one point; and each two points in different groups lie in exactly λ_2 blocks.

It follows from the definition of Δ_2 that, for each $\gamma \in \mathcal{L}_2$, $\beta \in \mathcal{L}_1$ and $j \in \beta$ either $\gamma \cap \psi_{\beta}^{-1}(j) = \emptyset$ or $\gamma \cap \psi_{\beta}^{-1}(j)$ is a single block of the parallel class $\psi_{\beta}^{-1}(j)$.

Let $\mathcal{D} = (\Delta_0 \times \Delta_1, \mathcal{B})$ be the incidence structure, where $\mathcal{B} = \cup_{\beta \in \mathcal{L}_1} \mathcal{B}_{\beta}, \ \mathcal{B}_{\beta} = \{B_{\beta}(\gamma) : \gamma \in \mathcal{L}_2\}$ and

$$B_{\beta}(\gamma) = \bigcup_{j \in \beta} \left(\left(\gamma \cap \psi_{\beta}^{-1}(j) \right) \times \{j\} \right)$$

Let $\mathcal{D} = (\Delta_0 \times \Delta_1, \mathcal{B})$ be the incidence structure, where $\mathcal{B} = \cup_{\beta \in \mathcal{L}_1} \mathcal{B}_{\beta}, \ \mathcal{B}_{\beta} = \{B_{\beta}(\gamma) : \gamma \in \mathcal{L}_2\}$ and

$$\mathcal{B}_eta(\gamma) = igcup_{j\ineta}\left(\left(\gamma\cap\psi_eta^{-1}(j)
ight) imes\{j\}
ight)$$

• \mathcal{D} is a 2-design if and only if $\lambda_1 = \lambda_0 \frac{(r_0 - 1)s_0}{k_2 - 1}$, and in this case is a 2- $(v_0 v_1, k_0 k_2, \lambda_1 \lambda_2)$ design.

Let $\mathcal{D} = (\Delta_0 \times \Delta_1, \mathcal{B})$ be the incidence structure, where $\mathcal{B} = \cup_{\beta \in \mathcal{L}_1} \mathcal{B}_{\beta}, \ \mathcal{B}_{\beta} = \{B_{\beta}(\gamma) : \gamma \in \mathcal{L}_2\}$ and

$$\mathcal{B}_eta(\gamma) = igcup_{j\ineta}\left(\left(\gamma\cap\psi_eta^{-1}(j)
ight) imes\{j\}
ight)$$

• \mathcal{D} is a 2-design if and only if $\lambda_1 = \lambda_0 \frac{(r_0 - 1)s_0}{k_2 - 1}$, and in this case is a 2- $(v_0 v_1, k_0 k_2, \lambda_1 \lambda_2)$ design.

$$\mathcal{D}$$
 is symmetric if and only if $r_0(r_0-1)s_0\lambda_2=k_0k_2(k_2-1)$.

Symmetric 2-designs of CP-type

Symmetric 2-designs of CP-type

• \mathcal{D}_0 is an affine resolvable design with r_0 resolution classes.

- \bullet \mathcal{D}_0 is an affine resolvable design with r_0 resolution classes.
- \mathcal{D}_1 is the trivial 2- $(r_0 + 1, r_0, r_0 1)$ symmetric design and the bijections ψ_β arise from a Latin square of order $r_0 + 1$.

- \bullet \mathcal{D}_0 is an affine resolvable design with r_0 resolution classes.
- \mathcal{D}_1 is the trivial 2- $(r_0 + 1, r_0, r_0 1)$ symmetric design and the bijections ψ_β arise from a Latin square of order $r_0 + 1$.
- \mathcal{D}_2 is the dual of \mathcal{D}_0 .

- \mathcal{D}_0 is an affine resolvable design with r_0 resolution classes.
- \mathcal{D}_1 is the trivial 2- $(r_0 + 1, r_0, r_0 1)$ symmetric design and the bijections ψ_β arise from a Latin square of order $r_0 + 1$.
- \mathcal{D}_2 is the dual of \mathcal{D}_0 .

Theorem [Cameron-Praeger (2016)]

If there exists an affine resolvable 2- $\left(s_0^2\mu, s_0\mu, \frac{s_0\mu-1}{s_0-1}\right)$ design with $r_0 = \frac{s_0^2\mu-1}{s_0-1}$ parallel classes, in which blocks belonging to distinct classes intersects in exactly μ points, then there is a 2- $\left(s_0^2\mu(r_0+1), s_0\mu r_0, \mu(r_0-1)\right)$ design.

- \mathcal{D}_0 is an affine resolvable design with r_0 resolution classes.
- \mathcal{D}_1 is the trivial 2- $(r_0 + 1, r_0, r_0 1)$ symmetric design and the bijections ψ_β arise from a Latin square of order $r_0 + 1$.
- \mathcal{D}_2 is the dual of \mathcal{D}_0 .

Theorem [Cameron-Praeger (2016)]

If there exists an affine resolvable 2- $\left(s_0^2\mu, s_0\mu, \frac{s_0\mu-1}{s_0-1}\right)$ design with $r_0 = \frac{s_0^2\mu-1}{s_0-1}$ parallel classes, in which blocks belonging to distinct classes intersects in exactly μ points, then there is a 2- $\left(s_0^2\mu(r_0+1), s_0\mu r_0, \mu(r_0-1)\right)$ design.

Definition

Any (symmetric) 2-design isomorphic to one arising from the Cameron-Praeger construction will be called of **CP-type**.

An example with $s_0=3$ and $\mu=1$

An example with $s_0 = 3$ and $\mu = 1$

The input is:

1
$$\mathcal{D}_0 = (\Delta_0, \mathcal{L}_0) \cong AG_2(3)$$
. Here $\Delta_0 = \{1, ..., 9\}$ and the resolution of \mathcal{L}_0 is $\{P_1, P_2, P_3, P_4\}$ with

$$P_{1} = \{\{1, 2, 4\}, \{3, 5, 7\}, \{6, 8, 9\}\}$$

$$P_{2} = \{\{1, 3, 6\}, \{2, 5, 9\}, \{4, 7, 8\}\}$$

$$P_{3} = \{\{1, 5, 8\}, \{2, 6, 7\}, \{3, 4, 9\}\}$$

$$P_{4} = \{\{1, 7, 9\}, \{2, 3, 8\}, \{4, 5, 6\}\}$$

An example with $s_0=3$ and $\mu=1$

The input is:

1
$$\mathcal{D}_0 = (\Delta_0, \mathcal{L}_0) \cong AG_2(3)$$
. Here $\Delta_0 = \{1, ..., 9\}$ and the resolution of \mathcal{L}_0 is $\{P_1, P_2, P_3, P_4\}$ with

$$P_{1} = \{\{1, 2, 4\}, \{3, 5, 7\}, \{6, 8, 9\}\}$$

$$P_{2} = \{\{1, 3, 6\}, \{2, 5, 9\}, \{4, 7, 8\}\}$$

$$P_{3} = \{\{1, 5, 8\}, \{2, 6, 7\}, \{3, 4, 9\}\}$$

$$P_{4} = \{\{1, 7, 9\}, \{2, 3, 8\}, \{4, 5, 6\}\}$$

2 $\mathcal{D}_1 = (\Delta_1, \mathcal{L}_1)$ is the trivial 2-(5, 4, 3) symmetric design. Here, $\Delta_1 = \{1, 2, 3, 4, 5\}$ and $\mathcal{L}_1 = \{\beta_1, \beta_2, \beta_3, \beta_4, \beta_5\}$, where $\beta_1 = \{1, 2, 3, 4\}$ $\beta_2 = \{1, 2, 3, 5\}$ $\beta_3 = \{1, 2, 4, 5\}$ $\beta_4 = \{1, 3, 4, 5\}$ $\beta_5 = \{2, 3, 4, 5\}$

An example with $s_0=3$ and $\mu=1$

The input is:

1
$$\mathcal{D}_0 = (\Delta_0, \mathcal{L}_0) \cong AG_2(3)$$
. Here $\Delta_0 = \{1, ..., 9\}$ and the resolution of \mathcal{L}_0 is $\{P_1, P_2, P_3, P_4\}$ with

$$P_{1} = \{\{1, 2, 4\}, \{3, 5, 7\}, \{6, 8, 9\}\}$$

$$P_{2} = \{\{1, 3, 6\}, \{2, 5, 9\}, \{4, 7, 8\}\}$$

$$P_{3} = \{\{1, 5, 8\}, \{2, 6, 7\}, \{3, 4, 9\}\}$$

$$P_{4} = \{\{1, 7, 9\}, \{2, 3, 8\}, \{4, 5, 6\}\}$$

2 $\mathcal{D}_1 = (\Delta_1, \mathcal{L}_1)$ is the trivial 2-(5, 4, 3) symmetric design. Here, $\Delta_1 = \{1, 2, 3, 4, 5\}$ and $\mathcal{L}_1 = \{\beta_1, \beta_2, \beta_3, \beta_4, \beta_5\}$, where $\beta_1 = \{1, 2, 3, 4\}$ $\beta_2 = \{1, 2, 3, 5\}$ $\beta_3 = \{1, 2, 4, 5\}$ $\beta_4 = \{1, 3, 4, 5\}$ $\beta_5 = \{2, 3, 4, 5\}$

 ${\tt 3}$ ${\cal D}_2$ is the dual of ${\cal D}_0$ and an exemplary block is

 $\gamma_0 = \{\{1, 2, 4\}, \{1, 3, 6\}, \{1, 5, 8\}, \{1, 7, 9\}\}$

An example with $\textit{s}_0=3$ and $\mu=1$

4 A Latin square of order 5:

The output is a 2-(45, 12, 3) design with $\{1, ..., 9\} \times \{1, ..., 5\}$ as a point set and with an exemplary block determined below:

FT + PI symmetric 2-designs of CP-type

The authors also gave necessary and sufficient conditions for a subgroup of $S_{\Delta_0} \wr S_{\Delta_1}$ to lie in $Aut(\mathcal{D})$ and then to be flag-transitive.

The authors also gave necessary and sufficient conditions for a subgroup of $S_{\Delta_0} \wr S_{\Delta_1}$ to lie in $Aut(\mathcal{D})$ and then to be flag-transitive.

Examples

 D is one the four 2-(96, 20, 4) designs constructed by Law-Praeger-Reichard (2007).

The authors also gave necessary and sufficient conditions for a subgroup of $S_{\Delta_0} \wr S_{\Delta_1}$ to lie in $Aut(\mathcal{D})$ and then to be flag-transitive.

Examples

- D is one the four 2-(96, 20, 4) designs constructed by Law-Praeger-Reichard (2007).
- 2 \mathcal{D} is the 2- $(2^{2n}, 2^{n-1}(2^n 1), 2^{n-1}(2^{n-1} 1))$ design $S^{-}(n)$ with $n \ge 2$ described in Cameron-Seidel (1973), and $G \cong 2^{2n}$: $GL_2(n)$.

A. MONTINARO

The authors also gave necessary and sufficient conditions for a subgroup of $S_{\Delta_0} \wr S_{\Delta_1}$ to lie in $Aut(\mathcal{D})$ and then to be flag-transitive.

Examples

- D is one the four 2-(96, 20, 4) designs constructed by Law-Praeger-Reichard (2007).
- 2 \mathcal{D} is the 2- $(2^{2n}, 2^{n-1}(2^n 1), 2^{n-1}(2^{n-1} 1))$ design $S^-(n)$ with $n \ge 2$ described in Cameron-Seidel (1973), and $G \cong 2^{2n}$: $GL_2(n)$.
- 3 \mathcal{D} is a 2-(1408, 336, 80) design constructed by Cameron-Praeger (2016) and $G \cong 2^6$: ((3 · M_{22}) : 2).

Let G be a flag-transitive automorphism of a non-trivial 2- (v, k, λ) design \mathcal{D} and let Σ be a non-trivial G-invariant partition of the point set of \mathcal{D} in d classes each of size c.

Let G be a flag-transitive automorphism of a non-trivial 2- (v, k, λ) design \mathcal{D} and let Σ be a non-trivial G-invariant partition of the point set of \mathcal{D} in d classes each of size c. The following are invariant:

Let G be a flag-transitive automorphism of a non-trivial 2- (v, k, λ) design \mathcal{D} and let Σ be a non-trivial G-invariant partition of the point set of \mathcal{D} in d classes each of size c. The following are invariant:

 |Δ∩B| ∈ {0, ℓ} for each Δ∈Σ and each block B of D (Praeger-Zhou 2006);

Let G be a flag-transitive automorphism of a non-trivial 2- (v, k, λ) design \mathcal{D} and let Σ be a non-trivial G-invariant partition of the point set of \mathcal{D} in d classes each of size c. The following are invariant:

- $|\Delta \cap B| \in \{0, \ell\}$ for each $\Delta \in \Sigma$ and each block B of \mathcal{D} (Praeger-Zhou 2006);
- The number θ of blocks intersecting a fixed element Δ of Σ in the same set of points (Praeger-Devillers 2021, Mandić-Šubasić 2022, M. 2022)

Let G be a flag-transitive automorphism of a non-trivial 2- (v, k, λ) design \mathcal{D} and let Σ be a non-trivial G-invariant partition of the point set of \mathcal{D} in d classes each of size c. The following are invariant:

- $|\Delta \cap B| \in \{0, \ell\}$ for each $\Delta \in \Sigma$ and each block B of \mathcal{D} (Praeger-Zhou 2006);
- The number θ of blocks intersecting a fixed element Δ of Σ in the same set of points (Praeger-Devillers 2021, Mandić-Šubasić 2022, M. 2022)

(1) $\mathcal{D}_{\Delta} = (\Delta, \mathcal{B}_{\Delta})$, where $\mathcal{B}_{\Delta} = \{B \in \mathcal{B} : B \cap \Delta \neq \emptyset\}$, is a 2- $(c, \ell, \lambda/\theta)$ design;

Let G be a flag-transitive automorphism of a non-trivial 2- (v, k, λ) design \mathcal{D} and let Σ be a non-trivial G-invariant partition of the point set of \mathcal{D} in d classes each of size c. The following are invariant:

- |Δ∩B| ∈ {0, ℓ} for each Δ ∈ Σ and each block B of D (Praeger-Zhou 2006);
- The number θ of blocks intersecting a fixed element Δ of Σ in the same set of points (Praeger-Devillers 2021, Mandić-Šubasić 2022, M. 2022)
- (1) $\mathcal{D}_{\Delta} = (\Delta, \mathcal{B}_{\Delta})$, where $\mathcal{B}_{\Delta} = \{B \in \mathcal{B} : B \cap \Delta \neq \emptyset\}$, is a 2- $(c, \ell, \lambda/\theta)$ design;

(2)
$$G^{\Delta}_{\Delta}$$
 acts flag-transitively on \mathcal{D}_{Δ} .

Let G be a flag-transitive automorphism of a non-trivial 2- (v, k, λ) design \mathcal{D} and let Σ be a non-trivial G-invariant partition of the point set of \mathcal{D} in d classes each of size c. The following are invariant:

- $|\Delta \cap B| \in \{0, \ell\}$ for each $\Delta \in \Sigma$ and each block B of D (Praeger-Zhou 2006);
- The number θ of blocks intersecting a fixed element Δ of Σ in the same set of points (Praeger-Devillers 2021, Mandić-Šubasić 2022, M. 2022)

(1)
$$\mathcal{D}_{\Delta} = (\Delta, \mathcal{B}_{\Delta})$$
, where $\mathcal{B}_{\Delta} = \{B \in \mathcal{B} : B \cap \Delta \neq \emptyset\}$, is a 2- $(c, \ell, \lambda/\theta)$ design;

(2)
$$G^{\Delta}_{\Delta}$$
 acts flag-transitively on \mathcal{D}_{Δ} .

Problem

Determine (\mathcal{D}, G) when \mathcal{D} is a symmetric 2-design of CP-type with \mathcal{D}_{Δ} affine resolvable.

More information on the previous examples in AMERICA MONTINARC

Examples

- I \mathcal{D} is one the four 2-(96, 20, 4) designs constructed by Law-Praeger-Reichard (2007). Here, $\mathcal{D}_0 \cong \mathcal{D}_\Delta \cong AG_2(4)$.
- 2 \mathcal{D} is the 2- $(2^{2n}, 2^{n-1}(2^n-1), 2^{n-1}(2^{n-1}-1))$ design $S^-(n)$ with $n \ge 2$ described in Cameron-Seidel (1973), and $G \cong 2^{2n}$: $GL_2(n)$. Here, $\mathcal{D}_0 \cong \mathcal{D}_\Delta \cong AG_n(2)$.
- **3** \mathcal{D} is a 2-(1408, 336, 80) design constructed by Cameron-Praeger (2016) and $G \cong 2^6$: ((3 $\cdot M_{22}$) : 2). Here, $\mathcal{D}_0 \cong \mathcal{D}_\Delta \cong AG_3(4)$.

The family ${\cal F}$

Definition

Let \mathcal{D} be a non-trivial symmetric 2-design admitting a flag-transitive point-imprimitive automorphism group G. Then $(\mathcal{D}, G) \in \mathcal{F}$ if the following hold:

D_Δ is an affine resolvable 2-(s₀²μ, s₀μ, s₀μ-1/s₀-1) design with r₀ = s₀^{2μ-1}/s₀ parallel classes, in which blocks belonging to distinct classes intersects in exactly μ points;
 D is a 2-(s₀²μ(r₀ + 1), s₀μr₀, μ(r₀ - 1)) design.

Definition

Let \mathcal{D} be a non-trivial symmetric 2-design admitting a flag-transitive point-imprimitive automorphism group G. Then $(\mathcal{D}, G) \in \mathcal{F}$ if the following hold:

D_Δ is an affine resolvable 2-(s₀²μ, s₀μ, s₀μ-1/s₀-1) design with r₀ = s₀^{2μ-1}/s₀ parallel classes, in which blocks belonging to distinct classes intersects in exactly μ points;
 D is a 2-(s₀²μ(r₀ + 1), s₀μr₀, μ(r₀ - 1)) design.

If \mathcal{D} is a 2-design of CP-type admitting a flag-transitive point-imprimitive automorphism group G with \mathcal{D}_{Δ} affine resolvable, then $(\mathcal{D}, G) \in \mathcal{F}$.

■ The parameters of D_∆ are known as a consequence of a result of Bose (1942) on affine resolvable designs;

- The parameters of D_Δ are known as a consequence of a result of Bose (1942) on affine resolvable designs;
- The replication number of \mathcal{D}_{Δ} is coprime to λ/θ .

- The parameters of D_Δ are known as a consequence of a result of Bose (1942) on affine resolvable designs;
- The replication number of \mathcal{D}_{Δ} is coprime to λ/θ .

Lemma [Alavi, Daneshkhah, M., Zhou et al. (2022)]

The group G_{Δ}^{Δ} is flag-transitive and point primitive on \mathcal{D}_{Δ} , and one of the following holds:

- (1) G^{Δ}_{Δ} is almost simple and one of the following holds:
 - (a) \mathcal{D}_{Δ} is a 2-(8, 4, 3) design with $G_{\Delta}^{\Delta} = PSL_2(7)$;
 - (b) \mathcal{D}_{Δ} is a 2-(12, 6, 5) design with $G_{\Delta}^{\Delta} = M_{11}$;
- (11) G_{Δ}^{Δ} is of affine type and \mathcal{D}_{Δ} is a 2- $(p^{i}, p^{j}, \lambda_{0})$ design with either $\lambda_{0} = 1$ or $\lambda_{0} = \frac{p^{j}-1}{p^{\text{gcd}(j,i/z)}-1}$ for some $z \mid i$ such that gcd(j, z, i/z) = 1, or $\lambda_{0} = \frac{p^{j}-1}{a}$ for some $a \mid p^{gcd(j,i)} - 1$. The points and blocks of \mathcal{D}_{Δ} are the points and (certain) *j*-subspaces of $AG_{i}(p)$.

Theorem [M., Praeger (2023+)]

Let \mathcal{D} be a non-trivial symmetric 2-design admitting a flag-transitive point-imprimitive automorphism group G. If $(\mathcal{D}, G) \in \mathcal{F}$ and G_{Δ}^{Δ} is of affine type,

Theorem [M., Praeger (2023+)]

Let \mathcal{D} be a non-trivial symmetric 2-design admitting a flag-transitive point-imprimitive automorphism group G. If $(\mathcal{D}, G) \in \mathcal{F}$ and G_{Δ}^{Δ} is of affine type, then G^{Σ} is 2-transitive on Σ , and one of the following holds:

Theorem [M., Praeger (2023+)]

Let \mathcal{D} be a non-trivial symmetric 2-design admitting a flag-transitive point-imprimitive automorphism group G. If $(\mathcal{D}, G) \in \mathcal{F}$ and G_{Δ}^{Δ} is of affine type, then G^{Σ} is 2-transitive on Σ , and one of the following holds:

(1) G^{Σ} is almost simple, and one of the following holds:

- (a) \mathcal{D} is the 2-(45, 12, 3) design constructed by Praeger-Zhou (2006) and $G \cong S_5, S_5.Z_3$.
- (b) \mathcal{D} is one of the four 2-(96, 20, 4) designs constructed by Law-Praeger-Reichard (2007).
- (c) \mathcal{D} is a 2-(1408, 336, 80) design constructed by Cameron-Praeger (2016) and $G \cong 2^6$: ((3 · M_{22}) : 2).

Theorem [M., Praeger (2023+)]

Let \mathcal{D} be a non-trivial symmetric 2-design admitting a flag-transitive point-imprimitive automorphism group G. If $(\mathcal{D}, G) \in \mathcal{F}$ and G_{Δ}^{Δ} is of affine type, then G^{Σ} is 2-transitive on Σ , and one of the following holds:

(1) G^{Σ} is almost simple, and one of the following holds:

- (a) \mathcal{D} is the 2-(45, 12, 3) design constructed by Praeger-Zhou (2006) and $G \cong S_5, S_5.Z_3$.
- (b) \mathcal{D} is one of the four 2-(96, 20, 4) designs constructed by Law-Praeger-Reichard (2007).
- (c) \mathcal{D} is a 2-(1408, 336, 80) design constructed by Cameron-Praeger (2016) and $G \cong 2^6$: ((3 · M_{22}) : 2).
- (1) G^{Σ} is of affine type, and one of the following holds:
 - (a) G is solvable.
 - (b) \mathcal{D} is a 2-(2^{2n} , $2^{n-1}(2^n-1)$, $2^{n-1}(2^{n-1}-1)$) design $n \ge 2$, and $G \cong 2^{2n}$: $GL_2(n)$.

The case where G^{Δ}_{Δ} is almost simple

Theorem [M., Praeger (2023+)]

Let \mathcal{D} be a non-trivial symmetric 2-design admitting a flag-transitive automorphism group G. If $(\mathcal{D}, G) \in \mathcal{F}$ and G_{Δ}^{Δ} is almost simple,

Theorem [M., Praeger (2023+)]

Let \mathcal{D} be a non-trivial symmetric 2-design admitting a flag-transitive automorphism group G. If $(\mathcal{D}, G) \in \mathcal{F}$ and G_{Δ}^{Δ} is almost simple, then \mathcal{D} is a 2-(144, 66, 30) design and $G \cong M_{12}$.

Construction and properties of the examples in the examples in the same of the same of the examples in the same of the

Construction and properties of the examples MONTINARO

•
$$G \cong M_{12}$$
.

Construction and properties of the example MONTINARO

•
$$G \cong M_{12}$$
.
• $\mathcal{P} = \mathcal{R} \times \mathcal{C}$.

Construction and properties of the examples MINIVERSITA

- $G \cong M_{12}$.
- $\bullet \mathcal{P} = \mathcal{R} \times \mathcal{C}.$
- $B(\Gamma) = \{(i,j) \in \mathcal{P} : \{i,j\} \text{ is an edge of } \Gamma\}.$

Construction and properties of the examples MINVERSIT

- $G \cong M_{12}$.
- $\bullet \mathcal{P} = \mathcal{R} \times \mathcal{C}.$
- $B(\Gamma) = \{(i,j) \in \mathcal{P} : \{i,j\} \text{ is an edge of } \Gamma\}.$
- $\blacksquare \mathcal{B} = \{B(\Gamma^g) : g \in G\}.$

Construction and properties of the examples MINVERSIT

- $G \cong M_{12}$.
- $\bullet \mathcal{P} = \mathcal{R} \times \mathcal{C}.$
- $B(\Gamma) = \{(i,j) \in \mathcal{P} : \{i,j\} \text{ is an edge of } \Gamma\}.$
- $\blacksquare \mathcal{B} = \{B(\Gamma^g) : g \in G\}.$
- \$\mathcal{D} = (\mathcal{P}, \mathcal{B})\$ is the symmetric 2-(144, 66, 30) design admitting G as flag-transititive point-imprimitive automorphism group.

Construction and properties of the examples of the examples of the samples of the

- $G \cong M_{12}$.
- $\bullet \mathcal{P} = \mathcal{R} \times \mathcal{C}.$
- $B(\Gamma) = \{(i,j) \in \mathcal{P} : \{i,j\} \text{ is an edge of } \Gamma\}.$
- $\blacksquare \mathcal{B} = \{B(\Gamma^g) : g \in G\}.$
- D = (P, B) is the symmetric 2-(144, 66, 30) design admitting G as flag-transititive point-imprimitive automorphism group.
- Aut(D) ≃ M₁₂ : Z₂ acts flag-transitively and point-primitively on D.

Construction and properties of the examples with the examples with the same of the same of

- $G \cong M_{12}$.
- $\bullet \mathcal{P} = \mathcal{R} \times \mathcal{C}.$
- $B(\Gamma) = \{(i,j) \in \mathcal{P} : \{i,j\} \text{ is an edge of } \Gamma\}.$
- $\blacksquare \mathcal{B} = \{B(\Gamma^g) : g \in G\}.$
- D = (P, B) is the symmetric 2-(144, 66, 30) design admitting G as flag-transititive point-imprimitive automorphism group.
- $Aut(\mathcal{D}) \cong M_{12} : Z_2$ acts flag-transitively and point-primitively on \mathcal{D} .
- The incidence matrix of D is a regular Hadamard matrix of order 144.

Construction and properties of the example UNIVERSIT

- $G \cong M_{12}$.
- $\bullet \mathcal{P} = \mathcal{R} \times \mathcal{C}.$
- $B(\Gamma) = \{(i,j) \in \mathcal{P} : \{i,j\} \text{ is an edge of } \Gamma\}.$
- $\blacksquare \mathcal{B} = \{B(\Gamma^g) : g \in G\}.$
- D = (P, B) is the symmetric 2-(144,66,30) design admitting G as flag-transititive point-imprimitive automorphism group.
- Aut(D) ≃ M₁₂ : Z₂ acts flag-transitively and point-primitively on D.
- The incidence matrix of D is a regular Hadamard matrix of order 144.
- **•** Γ is a 6-valent 2-arc-transitive graph contained in $K_{11,11}$.

Construction and properties of the examples with the examples with the same of the same of

- $G \cong M_{12}$.
- $\bullet \mathcal{P} = \mathcal{R} \times \mathcal{C}.$
- $B(\Gamma) = \{(i,j) \in \mathcal{P} : \{i,j\} \text{ is an edge of } \Gamma\}.$
- $\blacksquare \mathcal{B} = \{B(\Gamma^g) : g \in G\}.$
- D = (P, B) is the symmetric 2-(144, 66, 30) design admitting G as flag-transititive point-imprimitive automorphism group.
- $Aut(\mathcal{D}) \cong M_{12} : Z_2$ acts flag-transitively and point-primitively on \mathcal{D} .
- The incidence matrix of D is a regular Hadamard matrix of order 144.
- **•** Γ is a 6-valent 2-arc-transitive graph contained in $K_{11,11}$.
- **Γ** is the incidence graph of the complementary design of the 2-(11, 5, 2) Paley-Hadamard design.

Hvala Na Pažnji!

