Distance-regular graphs with classical parameters that support a uniform structure: case $q \geq 2$

Giusy Monzillo

(Joint work with B. Fernández, R. Maleki, and Š. Miklavič)

RICCOTA2023

$$
\text { July } 3-7,2023
$$

Notations and preliminaries

Notations and preliminaries

$\Gamma=(X, \mathcal{R}):($ simple, connected, undirected) graph with vertex set X and edge set \mathcal{R}
$D=\max \{\partial(x, y) \mid x, y \in X\}$, with ∂ distance on Γ : diameter of Γ
V : vector space over \mathbb{C} of column vectors with coordinates indexed by X and entries in \mathbb{C}
$\varepsilon:=\varepsilon(x)=\max \{\partial(x, y) \mid y \in X\}:$ eccentricity of x (fixed)
E_{i}^{*} : i-th dual idempotent of Γ w.r.t. $\times(0 \leq i \leq \varepsilon)$
$T:=T(x)$: Terwilliger algebra of 「 w.r.t. x
L, F, and R : lowering, flat, and raising matrices w.r.t. x
$\Rightarrow T=\left\langle L, F, R,\left\{E_{i}^{*}\right\}_{i=0}^{\varepsilon}\right\rangle$
$W \leq V$: (irreducible) T-module (with endpoint r, dual endpoint t, and diameter d)
W is thin if $\operatorname{dim}\left(E_{i}^{*} W\right) \leq 1(0 \leq i \leq \varepsilon)$.
Γ is r-thin if every irreducible T-module with endpoint r is thin.
$W \leq V$: (irreducible) T-module (with endpoint r, dual endpoint t, and diameter d)
W is thin if $\operatorname{dim}\left(E_{i}^{*} W\right) \leq 1(0 \leq i \leq \varepsilon)$.
Γ is r-thin if every irreducible T-module with endpoint r is thin.
Assume 「 non-bipartite.
Γ_{f} : (bipartite and connected) subgraph of Γ with $F=0$
$T_{f}:=T_{f}(x)$: Terwilliger algebra of Γ_{f} w.r.t. x
$\Rightarrow T_{f}=\left\langle L, R,\left\{E_{i}^{*}\right\}_{i=0}^{\varepsilon}\right\rangle$
$W \leq V$: (irreducible) T-module (with endpoint r, dual endpoint t, and diameter d)
W is thin if $\operatorname{dim}\left(E_{i}^{*} W\right) \leq 1(0 \leq i \leq \varepsilon)$.
Γ is r-thin if every irreducible T-module with endpoint r is thin.
Assume 「 non-bipartite.
Γ_{f} : (bipartite and connected) subgraph of Γ with $F=0$
$T_{f}:=T_{f}(x)$: Terwilliger algebra of Γ_{f} w.r.t. x
$\Rightarrow T_{f}=\left\langle L, R,\left\{E_{i}^{*}\right\}_{i=0}^{\varepsilon}\right\rangle$

Lemma

Let W denote a T-module. Then,

- W is a T_{f}-module.
- If W is a thin irreducible T-module, then W is a thin irreducible T_{f}-module.

Definition(s)

Consider a so-called parameter matrix $U=\left(e_{i j}\right)_{1 \leq i, j \leq \varepsilon}$ over \mathbb{C}, i.e,

- $e_{i i}=1(1 \leq i \leq \varepsilon)$,
- $e_{i}^{-}:=e_{i, i-1} \neq 0(2 \leq i \leq \varepsilon)$ or $e_{i}^{+}:=e_{i-1, i} \neq 0(2 \leq i \leq \varepsilon)$,
$-\operatorname{det}\left(e_{i j}\right)_{s \leq i, j \leq t} \neq 0(1 \leq s \leq t \leq \varepsilon)$.

Definition(s)
Consider a so-called parameter matrix $U=\left(e_{i j}\right)_{1 \leq i, j \leq \varepsilon}$ over \mathbb{C}, i.e,

- $e_{i i}=1(1 \leq i \leq \varepsilon)$,
- $e_{i}^{-}:=e_{i, i-1} \neq 0(2 \leq i \leq \varepsilon)$ or $e_{i}^{+}:=e_{i-1, i} \neq 0(2 \leq i \leq \varepsilon)$,
$-\operatorname{det}\left(e_{i j}\right)_{s \leq i, j \leq t} \neq 0(1 \leq s \leq t \leq \varepsilon)$.
Γ supports a uniform structure w.r.t. x if Γ_{f} admits a uniform structure $(U, f)($ w.r.t. $x)$, with $f=\left\{f_{i}\right\}_{i=1}^{\varepsilon}, f_{i} \in \mathbb{C}$, i.e.,

$$
\begin{equation*}
e_{i}^{-} R L^{2}+L R L+e_{i}^{+} L^{2} R=f_{i} L \tag{1}
\end{equation*}
$$

is satisfied on $E_{i}^{*} V(1 \leq i \leq \varepsilon)$.

Definition(s)

Consider a so-called parameter matrix $U=\left(e_{i j}\right)_{1 \leq i, j \leq \varepsilon}$ over \mathbb{C}, i.e,

- $e_{i i}=1(1 \leq i \leq \varepsilon)$,
- $e_{i}^{-}:=e_{i, i-1} \neq 0(2 \leq i \leq \varepsilon)$ or $e_{i}^{+}:=e_{i-1, i} \neq 0(2 \leq i \leq \varepsilon)$,
$-\operatorname{det}\left(e_{i j}\right)_{s \leq i, j \leq t} \neq 0(1 \leq s \leq t \leq \varepsilon)$.
Γ supports a uniform structure w.r.t. x if Γ_{f} admits a uniform structure $(U, f)($ w.r.t. $x)$, with $f=\left\{f_{i}\right\}_{i=1}^{\varepsilon}, f_{i} \in \mathbb{C}$, i.e.,

$$
\begin{equation*}
e_{i}^{-} R L^{2}+L R L+e_{i}^{+} L^{2} R=f_{i} L \tag{1}
\end{equation*}
$$

is satisfied on $E_{i}^{*} V(1 \leq i \leq \varepsilon)$.

Proposition

(1) holds on $E_{i}^{*} V$ if and only if (1) holds on $E_{i}^{*} W$ for every irreducible T-module W.

Two T-modules W and W^{\prime} are T-isomorphic if there is a vector space isomorphism $\sigma: W \rightarrow W^{\prime}$ such that $(\sigma B-B \sigma) W=0$ for all $B \in T$.

Two T-modules W and W^{\prime} are T-isomorphic if there is a vector space isomorphism $\sigma: W \rightarrow W^{\prime}$ such that $(\sigma B-B \sigma) W=0$ for all $B \in T$.

Theorem (P. Terwilliger, 1990)
Let G denote a bipartite graph and fix $x \in V(G)$.
Let $T=T(x)$ denote the Terwilliger algebra of G, and assume G admits a uniform structure with respect to x. Then,

- Every irreducible T-module is thin.
- Let W denote an irreducible T-module with endpoint r and diameter d. Then, the isomorphism class of W is determined by r and d.

Further definitions

Γ is distance-regular if, for all integers $0 \leq h, i, j \leq D$ and all $z, y \in X$ with $\partial(z, y)=h$, the number

$$
p_{i j}^{h}:=\left|\Gamma_{i}(z) \cap \Gamma_{j}(y)\right|
$$

is independent of the choice of z, y. The constants $p_{i j}^{h}$ are the intersection numbers of Γ.

Further definitions

Γ is distance-regular if, for all integers $0 \leq h, i, j \leq D$ and all $z, y \in X$ with $\partial(z, y)=h$, the number

$$
p_{i j}^{h}:=\left|\Gamma_{i}(z) \cap \Gamma_{j}(y)\right|
$$

is independent of the choice of z, y. The constants $p_{i j}^{h}$ are the intersection numbers of Γ.

- It is enough to consider $c_{i}:=p_{1 i-1}^{i}(1 \leq i \leq D), a_{i}:=p_{1 i}^{i}(0 \leq$ $i \leq D), b_{i}:=p_{1 i+1}^{i}(0 \leq i \leq D-1)$, where $c_{0}:=0, b_{D}:=0$.
- $k_{i}:=p_{i i}^{0}=\frac{b_{0} b_{1} \cdots b_{i-1}}{c_{1} c_{2} \cdots c_{i}}(0 \leq i \leq D)$: valencies of Γ
- Γ is regular with valency $k:=b_{0}=k_{1}$ and $c_{i}+a_{i}+b_{i}=k$ ($0 \leq i \leq D$).
- $\varepsilon(z)=D$ for every $z \in X$, and $\varepsilon=D$
- 「 is bipartite if and only if $a_{i}=0$ for $0 \leq i \leq D$.

A strongly regular graph, i.e., $\operatorname{srg}(v, k, \lambda, \mu)$, is a regular graph with v vertices and valency k, such that every two (distinct) vertices have λ or μ common neighbors depending on whether the vertices are respectively nonadjacent or not.

A strongly regular graph, i.e., $\operatorname{srg}(v, k, \lambda, \mu)$, is a regular graph with v vertices and valency k, such that every two (distinct) vertices have λ or μ common neighbors depending on whether the vertices are respectively nonadjacent or not.
\Rightarrow A connected strongly regular graph is a distance-regular of diameter 2.

Theorem

A regular graph has 3 distinct eigenvalues if and only if it is (connected) strongly regular.

A strongly regular graph, i.e., $\operatorname{srg}(v, k, \lambda, \mu)$, is a regular graph with v vertices and valency k, such that every two (distinct) vertices have λ or μ common neighbors depending on whether the vertices are respectively nonadjacent or not.
\Rightarrow A connected strongly regular graph is a distance-regular of diameter 2.

Theorem

A regular graph has 3 distinct eigenvalues if and only if it is (connected) strongly regular.
\Rightarrow A disconnected strongly regular graph is a disjoint union of cliques of the same size.

Proposition

Let G denote a strongly regular graph. If G is a disjoint union of cliques, then -1 is an eigenvalue for G, and vice-versa.

Let Γ be a distance-regular graph with $D \geq 3$.
Γ has classical parameters (D, q, α, β) with $q \neq 1$ if

$$
\begin{array}{ll}
c_{i}=\frac{q^{i}-1}{q-1}\left(1+\alpha \frac{q^{i-1}-1}{q-1}\right) & (1 \leq i \leq D) \\
b_{i}=\frac{q^{D}-q^{i}}{q-1}\left(\beta-\alpha \frac{q^{i}-1}{q-1}\right) & (0 \leq i \leq D-1)
\end{array}
$$

where $q, \alpha, \beta \in \mathbb{C}$.

Let Γ be a distance-regular graph with $D \geq 3$.
Γ has classical parameters (D, q, α, β) with $q \neq 1$ if

$$
\begin{array}{ll}
c_{i}=\frac{q^{i}-1}{q-1}\left(1+\alpha \frac{q^{i-1}-1}{q-1}\right) & (1 \leq i \leq D) \\
b_{i}=\frac{q^{D}-q^{i}}{q-1}\left(\beta-\alpha \frac{q^{i}-1}{q-1}\right) & (0 \leq i \leq D-1)
\end{array}
$$

where $q, \alpha, \beta \in \mathbb{C}$.
$\Rightarrow q \in \mathbb{Z} \backslash\{-1,0,1\}$ and $\alpha, \beta \in \mathbb{Q}$.
\Rightarrow Such a graph 「 is Q-polynomial (A. Brouwer et al., 1989).

Let Γ be a distance-regular graph with $D \geq 3$.
Γ has classical parameters (D, q, α, β) with $q \neq 1$ if

$$
\begin{array}{ll}
c_{i}=\frac{q^{i}-1}{q-1}\left(1+\alpha \frac{q^{i-1}-1}{q-1}\right) & (1 \leq i \leq D) \\
b_{i}=\frac{q^{D}-q^{i}}{q-1}\left(\beta-\alpha \frac{q^{i}-1}{q-1}\right) & (0 \leq i \leq D-1)
\end{array}
$$

where $q, \alpha, \beta \in \mathbb{C}$.
$\Rightarrow q \in \mathbb{Z} \backslash\{-1,0,1\}$ and $\alpha, \beta \in \mathbb{Q}$.
\Rightarrow Such a graph 「 is Q-polynomial (A. Brouwer et al., 1989).

Assume that Γ is (non-bipartite) distance-regular, having classical parameters (D, q, α, β) with $D \geq 4$ and $q \geq 2$, and that Γ is 1 -thin.

Local graph and thin irreducible T-modules

$k=b_{0}=\theta_{0}>\theta_{1}>\cdots>\theta_{D}$: (distinct) eigenvalues of Γ
$\Delta:=\Delta(x)$: subgraph of Γ induced on the set of vertices in X adjacent to x, known as the local graph of Γ w.r.t. x.

Local graph and thin irreducible T-modules

$k=b_{0}=\theta_{0}>\theta_{1}>\cdots>\theta_{D}$: (distinct) eigenvalues of Γ
$\Delta:=\Delta(x)$: subgraph of Γ induced on the set of vertices in X adjacent to x, known as the local graph of Γ w.r.t. x.

- Δ has $k=b_{0}$ vertices and is regular with valency a_{1}.
- $a_{1}=\eta_{1} \geq \eta_{2} \geq \cdots \geq \eta_{k}\left(\geq-a_{1}\right)$: eigenvalues of Δ, i.e, local eigenvalues of $\Gamma \mathrm{w}$. r. t. x
- $\tilde{\theta_{1}} \leq \eta_{i} \leq \tilde{\theta_{D}}(2 \leq i \leq k)$, with $\tilde{\theta_{1}}=-1-b_{1}\left(1+\theta_{1}\right)^{-1}$ and $\tilde{\theta_{D}}=-1-b_{1}\left(1+\theta_{D}\right)^{-1}$

Local graph and thin irreducible T-modules

$k=b_{0}=\theta_{0}>\theta_{1}>\cdots>\theta_{D}$: (distinct) eigenvalues of Γ
$\Delta:=\Delta(x)$: subgraph of Γ induced on the set of vertices in X adjacent to x, known as the local graph of Γ w.r.t. x.

- Δ has $k=b_{0}$ vertices and is regular with valency a_{1}.
- $a_{1}=\eta_{1} \geq \eta_{2} \geq \cdots \geq \eta_{k}\left(\geq-a_{1}\right)$: eigenvalues of Δ, i.e, local eigenvalues of $\Gamma \mathrm{w}$. r. t. x
- $\tilde{\theta_{1}} \leq \eta_{i} \leq \tilde{\theta_{D}}(2 \leq i \leq k)$, with $\tilde{\theta_{1}}=-1-b_{1}\left(1+\theta_{1}\right)^{-1}$ and $\tilde{\theta_{D}}=-1-b_{1}\left(1+\theta_{D}\right)^{-1}$

Definition

If W is any thin irreducible T-module with endpoint 1 , then $E_{1}^{*} W$ is a one-dimensional eigenspace for $E_{1}^{*} A E_{1}^{*}$, whose eigenvalue η is called the local eigenvalue of W.
$\Rightarrow \eta \in\left\{\eta_{2}, \eta_{3}, \ldots, \eta_{k}\right\}$, so $\tilde{\theta_{1}} \leq \eta \leq \tilde{\theta_{D}}$.

Theorem (P. Terwilliger, 2002)
Let W denote a thin irreducible T-module with endpoint 1 and local eigenvalue η, and W^{\prime} denote an irreducible T-module. Then, the followings are equivalent.

- W and W^{\prime} are isomorphic as T-modules.
- W^{\prime} is thin with endpoint 1 and local eigenvalue η.

Theorem (P. Terwilliger, 2002)
Let W denote a thin irreducible T-module with endpoint 1 and local eigenvalue η, and W^{\prime} denote an irreducible T-module.
Then, the followings are equivalent.

- W and W^{\prime} are isomorphic as T-modules.
- W^{\prime} is thin with endpoint 1 and local eigenvalue η.

Proposition (J. Go and P. Terwilliger, 2002)

Let W denote a thin irreducible T-module with endpoint 1 , diameter d, and local eigenvalue η.
Then, the followings hold.

- If $\eta \in\left\{\tilde{\theta_{1}}, \tilde{\theta_{D}}\right\}$, then $d=D-2$.
- If $\tilde{\theta_{1}}<\eta<\tilde{\theta_{D}}$, then $d=D-1$.

Theorem (P. Terwilliger, 2004)

Let Φ denote the set of distinct scalars among $\eta_{2}, \eta_{3}, \ldots, \eta_{k}$. For $\eta \in \Phi$, let m_{η} denote the number of times η appears among $\eta_{2}, \eta_{3}, \ldots, \eta_{k}$.
Then, there exist polynomials $p_{0}=1, p_{1}, \ldots, p_{D}$ (given by a known recursive formula) with real coefficients such that

$$
1+\sum_{\eta \in \Phi} \frac{p_{i-1}(\tilde{\eta})}{p_{i}(\tilde{\eta})(1+\tilde{\eta})} m_{\eta} \leq \frac{k}{b_{i}} \quad(1 \leq i \leq D-1)
$$

where $\tilde{\eta}=-1-b_{1}(1+\eta)^{-1}$.
Additionally, the equality in (2) for $1 \leq i \leq D-1$ holds if and only if every irreducible T-module with endpoint 1 is thin.

Our analysis: 「 supporting a uniform structure

\Rightarrow The isomorphism class of a thin irreducible T-module W with endpoint 1 is determined by its local eigenvalue η.

For our Γ (1-thin, non-bipartite distance-regular with classical parameters $(D, q, \alpha, \beta), D \geq 4, q \geq 2)$, it is known that η is in the set

$$
\left\{\eta_{1}:=-q-1, \eta_{2}:=\beta-\alpha-1, \eta_{3}:=-1, \eta_{4}:=\alpha \frac{q^{D-1}-1}{q-1}-1\right\}
$$

Our analysis: 「 supporting a uniform structure

\Rightarrow The isomorphism class of a thin irreducible T-module W with endpoint 1 is determined by its local eigenvalue η.

For our Γ (1-thin, non-bipartite distance-regular with classical parameters $(D, q, \alpha, \beta), D \geq 4, q \geq 2)$, it is known that η is in the set
$\left\{\eta_{1}:=-q-1, \eta_{2}:=\beta-\alpha-1, \eta_{3}:=-1, \eta_{4}:=\alpha \frac{q^{D-1}-1}{q-1}-1\right\}$

- $\eta \in\left\{\eta_{1}, \eta_{2}\right\} \Rightarrow \underline{d}=D-2$, otherwise, $\underline{d=D-1}$.
- η_{1}, η_{2}, and η_{3} are distinct, and $\eta_{4} \neq \eta_{1}$.
- $\eta_{4}=\eta_{2} \Longleftrightarrow \beta=\alpha \frac{q^{D}-1}{q-1}$
- $\eta_{4}=\eta_{3} \Longleftrightarrow \alpha=0$

Case $\alpha \neq 0$
Proposition 1 (B. Fernández, R. Maleki, Š. Miklavič, G.M.)
Let W and W^{\prime} denote two non-isomorphic, thin irreducible T-modules with endpoint 1 . Then, W and W^{\prime} remain non-isomorphic when considered as T_{f}-modules.

Proposition 2 (B. Fernández, R. Maleki, Š. Miklavič, G.M.)
If Γ supports a uniform structure, then there are, up to isomorphism, exactly two thin irreducible T-modules with endpoint 1 , one with diameter $D-2$ and the other with diameter $D-1$.

Case $\alpha \neq 0$
Proposition 1 (B. Fernández, R. Maleki, Š. Miklavič, G.M.) Let W and W^{\prime} denote two non-isomorphic, thin irreducible T-modules with endpoint 1 . Then, W and W^{\prime} remain non-isomorphic when considered as T_{f}-modules.

Proposition 2 (B. Fernández, R. Maleki, Š. Miklavič, G.M.)
If Γ supports a uniform structure, then there are, up to isomorphism, exactly two thin irreducible T-modules with endpoint 1 , one with diameter $D-2$ and the other with diameter $D-1$.
$\Rightarrow \Delta$ is not complete (otherwise $b_{1}=0$), and has at most three distinct eigenvalues, i.e., Δ is strongly regular.

$$
\left\{\underset{D-2}{\eta_{1}}:=-q-1, \eta_{D-2}:=\beta-\alpha-1, \eta_{D-1}:=-1, \eta_{D-1}:=\alpha \frac{q^{D-1}-1}{q-1}-1\right\}
$$

\Rightarrow Pairs to be considered are those corresponding to different diameters.
\Rightarrow The case $\left\{\eta_{1}, \eta_{3}\right\}$ never occurs since both eigenvalues would be negative.

$$
\left\{\begin{array}{c}
\left.\eta_{1}:=-q-1, \eta_{D-2}:=\beta-\alpha-1, \eta_{D-1}:=-1, \eta_{D-1}:=\alpha \frac{q^{D-1}-1}{q-1}-1\right\} \\
\eta_{D-2}
\end{array}\right\}
$$

\Rightarrow Pairs to be considered are those corresponding to different diameters.
\Rightarrow The case $\left\{\eta_{1}, \eta_{3}\right\}$ never occurs since both eigenvalues would be negative.

Lemma 1 (B. Fernández, R. Maleki, Š. Miklavič, G.M.) Let Δ be the local graph of Γ with eigenvalues a_{1}, r, s with $a_{1} \geq r \geq 0$ and $s<0$. Then, $\{r, s\} \neq\left\{\eta_{2}, \eta_{3}\right\}$ and $\{r, s\} \neq\left\{\eta_{2}, \eta_{4}\right\}$.

Sketch of the proof

- $\{r, s\}=\left\{\eta_{2}, \eta_{3}\right\} \Longleftrightarrow \Delta$ is a disjoint union of cliques $\left(\eta_{3}=-1\right)$ with $a_{1}=\eta_{2}=\beta-\alpha-1 \Longleftrightarrow \alpha=0$: contradiction.
- $\{r, s\}=\left\{\eta_{2}, \eta_{4}\right\}$: the equality

$$
1+\sum_{\substack{\eta \in \Phi \\ \eta \neq-1}} \frac{p_{i-1}(\tilde{\eta})}{p_{i}(\tilde{\eta})(1+\tilde{\eta})} m_{\eta}=\frac{k}{b_{i}} \quad(1 \leq i \leq D-1)
$$

holding for every 1-thin graph, is not satisfied in particular for $i=1, D-1$; otherwise $\beta=0$ when $r=\eta_{2}\left(s=\eta_{4}\right)$, and $s=\eta_{2}=0$ when $r=\eta_{4}$.

Only the case $\{r, s\}=\left\{\eta_{1}, \eta_{4}\right\}$ remains to be considered.
\Rightarrow The previous equality is verified for every $1 \leq i \leq D-1$, and

$$
\beta=\alpha \frac{q^{D-1}-1}{q-1}-q, \quad \quad \mu=\alpha(q+1)
$$

Only the case $\{r, s\}=\left\{\eta_{1}, \eta_{4}\right\}$ remains to be considered.
\Rightarrow The previous equality is verified for every $1 \leq i \leq D-1$, and

$$
\beta=\alpha \frac{q^{D-1}-1}{q-1}-q, \quad \quad \mu=\alpha(q+1)
$$

Theorem (Neumaier, 1979)
Let G be a strongly regular graph with parameters (n, k, λ, μ) and eigenvalues $k>r>s$. Then, at least one of the following conditions must hold:
(a) $r \leq \max \{2(-s-1)(\mu+1+s), s(s+1)(\mu+1) / 2-s-1\}$.
(b) $\mu=s^{2}: G$ is a Steiner graph derived from a Steiner 2-system in which each line contains s points.
(c) $\mu=s(s+1): G$ is a Latin square graph derived from an s-net.

Lemma 2 (B. Fernández, R. Maleki, Š. Miklavič, G.M.) Let Δ be the local graph of Γ with eigenvalues a_{1}, r, s with $a_{1}>r=\alpha \frac{q^{D-1}-1}{q-1}-1$ and $s=-q-1$. Then,
case (a) never happens.

Lemma 2 (B. Fernández, R. Maleki, Š. Miklavič, G.M.) Let Δ be the local graph of Γ with eigenvalues a_{1}, r, s with $a_{1}>r=\alpha \frac{q^{D-1}-1}{q-1}-1$ and $s=-q-1$. Then,
case (a) never happens.
Sketch of the proof

- Claim 1: Δ is not a conference graph.
- Claim 2: $r \geq 1$.
- The integrality of λ yields that (a) cannot be.

Two feasible families

Cases $\mu=s^{2}$ and $\mu=s(s+1)$ are both feasible, and the classical parameters of the respective distance-regular graphs are

$$
\left(D, q, q+1, \frac{q^{D+1}(q+1)-q^{2}-1}{q-1}\right), \quad\left(D, q, q, \frac{q^{2}\left(q^{D}-1\right)}{q-1}\right)
$$

Lemma 3 (B. Fernández, R. Maleki, Š. Miklavič, G.M.)
The family of distance-regular graphs with classical parameters

$$
\left(D, q, q+1, \frac{q^{D+1}(q+1)-q^{2}-1}{q-1}\right)
$$

does not exist.

Lemma 3 (B. Fernández, R. Maleki, Š. Miklavič, G.M.)
The family of distance-regular graphs with classical parameters

$$
\left(D, q, q+1, \frac{q^{D+1}(q+1)-q^{2}-1}{q-1}\right)
$$

does not exist.
Sketch of the proof

- $D \geq 6$: the intersection number

$$
p_{33}^{6}=\frac{c_{4} C_{5} c_{6}}{c_{1} c_{2} c_{3}}
$$

(independent of both D and β) is an integer only for $q=2,4$.

Lemma 3 (B. Fernández, R. Maleki, Š. Miklavič, G.M.)
The family of distance-regular graphs with classical parameters

$$
\left(D, q, q+1, \frac{q^{D+1}(q+1)-q^{2}-1}{q-1}\right)
$$

does not exist.
Sketch of the proof

- $D \geq 6$: the intersection number

$$
p_{33}^{6}=\frac{c_{4} C_{5} c_{6}}{c_{1} c_{2} c_{3}}
$$

(independent of both D and β) is an integer only for $q=2,4$.

- $D=4, D=5, q=2, q=4$: the multiplicity f_{2} of the 2 nd eigenvalue of Γ turns out not to be an integer.

Lemma 4 (B. Fernández, R. Maleki, Š. Miklavič, G.M.)
If $D \not \equiv 0(\bmod 6)$, then the family of distance-regular graphs with classical parameters

$$
\left(D, q, q, \frac{q^{2}\left(q^{D}-1\right)}{q-1}\right)
$$

does not exist.

Lemma 4 (B. Fernández, R. Maleki, Š. Miklavič, G.M.)
If $D \not \equiv 0(\bmod 6)$, then the family of distance-regular graphs with classical parameters

$$
\left(D, q, q, \frac{q^{2}\left(q^{D}-1\right)}{q-1}\right)
$$

does not exist.

Sketch of the proof

- Claim: the multiplicity f_{2} of the 2 nd eigenvalue of Γ is an integer only for D even.

Lemma 4 (B. Fernández, R. Maleki, Š. Miklavič, G.M.)
If $D \not \equiv 0(\bmod 6)$, then the family of distance-regular graphs with classical parameters

$$
\left(D, q, q, \frac{q^{2}\left(q^{D}-1\right)}{q-1}\right)
$$

does not exist.

Sketch of the proof

- Claim: the multiplicity f_{2} of the 2nd eigenvalue of Γ is an integer only for D even.
- Claim: the multiplicity f_{3} of the 3rd eigenvalue of Γ is an integer only for $D \equiv 0(\bmod 6)$.

Main Theorem (B. Fernández, R. Maleki, Š. Miklavič, G.M.)
Let Γ be a 1-thin, non-bipartite distance-regular graph with classical parameters $D \geq 4, q \geq 2, \alpha \neq 0$.
If Γ supports a uniform structure w.r.t. x, then it must have classical parameters

$$
\left(D, q, q, \frac{q^{2}\left(q^{D}-1\right)}{q-1}\right), \quad D \equiv 0 \quad(\bmod 6)
$$

Proof

It follows from previous Propositions 1, 2 and Lemmas 1-4

Remark

The valency k_{D} and the multiplicity f_{D} of Γ (with $\alpha=q$ and $\left.\left.\beta=q^{2}\left(q^{D}-1\right) /(q-1)\right)\right)$ respectively are

$$
\begin{gathered}
k_{D}=q^{\frac{D(D+1)}{2}+1} \prod_{i=1}^{D-1}\left(q \frac{q^{D}-1}{q^{i}-1}-1\right), \\
f_{D}=\left(q^{D}(q+1)-q\right) \prod_{i=2}^{D}\left(q^{i+1} \frac{q^{D}-1}{q^{i}-1}+1\right) .
\end{gathered}
$$

\Rightarrow Computational results (Mathematica), show that they are never integers for every $q, D \leq 2000$

Conjecture

The family of distance-regular graphs with classical parameters

$$
\left(D, q, q, \frac{q^{2}\left(q^{D}-1\right)}{q-1}\right)
$$

does not exist.

Conjecture
The family of distance-regular graphs with classical parameters

$$
\left(D, q, q, \frac{q^{2}\left(q^{D}-1\right)}{q-1}\right)
$$

does not exist.

Corollary to Conjecture
Let Γ be a 1-thin, non-bipartite distance-regular graph with classical parameters $D \geq 4, q \geq 2, \alpha \neq 0$.
Then, Γ does not supports a uniform structure w.r.t. x.

Case $\alpha=0$

Examples are dual polar graphs which have classical parameters

$$
\left(D, q, 0, q^{e}\right), e \in\left\{0, \frac{1}{2}, 1, \frac{3}{2}, 2\right\} .
$$

\Rightarrow Dual polar graphs support a uniform structure (C.
Worawannotai, 2013)

Case $\alpha=0$
Examples are dual polar graphs which have classical parameters

$$
\left(D, q, 0, q^{e}\right), e \in\left\{0, \frac{1}{2}, 1, \frac{3}{2}, 2\right\}
$$

\Rightarrow Dual polar graphs support a uniform structure (C.
Worawannotai, 2013)
Remark

- For our 「 (1-thin w.r.t. x), $\alpha=0 \Longleftrightarrow \Delta=\Delta(x)$ is a disjoint union of cliques, where $r=a_{1}=\beta-1$ and $s=-1$.
$-\alpha=0 \Rightarrow a_{i}=a_{1} c_{i}(1 \leq i \leq D-1)$

Definition

$K_{1,1,2}$ complete multipartite graph with three parts of order 1, 1, and 2, respectively

A distance-regular graph G is a near polygon if $a_{i}=a_{1} c_{i}$ $(1 \leq i \leq D-1)$, and G does not contain $K_{1,1,2}$ as an induced subgraph.

Definition

$K_{1,1,2}$: complete multipartite graph with three parts of order 1, 1, and 2, respectively

A distance-regular graph G is a near polygon if $a_{i}=a_{1} c_{i}$ $(1 \leq i \leq D-1)$, and G does not contain $K_{1,1,2}$ as an induced subgraph.

Theorem (A. Brouwer et al.,1989)
Let G be a distance-regular graph with classical parameters
$(D, q, 0, \beta), D \geq 3$. If G is a near polygon, then G is a Hamming graph $(q=1)$ or a dual polar graph.

Theorem (B. Fernández, R. Maleki, Š. Miklavič, G.M.)
Let Γ be a non-bipartite distance-regular graph with classical parameters $D \geq 3, q \geq 2, \alpha=0$. Assume that Γ is 1 -thin w.r.t. every vertex.
Then, Γ is a dual polar graph.
Proof
It follows from previous Remark and Theorem (A. Brouwer et al.,1989).

Thank you for your attention!

