Distance-regular graphs with classical parameters that support a uniform structure: case $q \ge 2$

Giusy Monzillo

(Joint work with B. Fernández, R. Maleki, and Š. Miklavič)

RICCOTA2023

July 3 - 7, 2023

イロン 不良 とくほど 不良とう ほ

1/27

Notations and preliminaries

< □ > < ⑦ > < ≧ > < ≧ > < ≧ > ≥ の < ⊘ 2/27

Notations and preliminaries

 $\Gamma=(X,\mathcal{R})$: (simple, connected, undirected) graph with vertex set X and edge set \mathcal{R}

 $D = \max\{\partial(x, y) \mid x, y \in X\}$, with ∂ distance on Γ : *diameter* of Γ

V : vector space over $\mathbb C$ of column vectors with coordinates indexed by X and entries in $\mathbb C$

 $\varepsilon := \varepsilon(x) = \max\{\partial(x, y) \mid y \in X\} : eccentricity of x (fixed)$

 E_i^* : *i*-th dual idempotent of Γ w.r.t. $x (0 \le i \le \varepsilon)$

- T := T(x): Terwilliger algebra of Γ w.r.t. x
- L, F, and R : lowering, flat, and raising matrices w.r.t. x
- $\Rightarrow T = \langle L, F, R, \{E_i^*\}_{i=0}^{\varepsilon} \rangle$

 $W \leq V$: (irreducible)T-module (with endpoint r, dual endpoint t, and diameter d)

W is *thin* if dim $(E_i^*W) \leq 1$ $(0 \leq i \leq \varepsilon)$.

 Γ is *r*-thin if every irreducible T-module with endpoint *r* is thin.

 $W \leq V$: (*irreducible*)*T*-module (with *endpoint r*, *dual endpoint t*, and *diameter d*)

W is *thin* if dim $(E_i^*W) \leq 1$ $(0 \leq i \leq \varepsilon)$.

 Γ is *r*-thin if every irreducible T-module with endpoint *r* is thin.

Assume Γ non-bipartite.

 Γ_f : (bipartite and connected) subgraph of Γ with F = 0

 $T_f := T_f(x)$: Terwilliger algebra of Γ_f w.r.t. x

 $\Rightarrow T_f = \langle L, R, \{E_i^*\}_{i=0}^{\varepsilon} \rangle$

 $W \leq V$: (*irreducible*)*T*-module (with *endpoint r*, *dual endpoint t*, and *diameter d*)

W is *thin* if dim $(E_i^*W) \leq 1$ $(0 \leq i \leq \varepsilon)$.

 Γ is *r*-thin if every irreducible T-module with endpoint *r* is thin.

Assume Γ non-bipartite.

 Γ_f : (bipartite and connected) subgraph of Γ with F=0

 $T_f := T_f(x)$: Terwilliger algebra of Γ_f w.r.t. x

 $\Rightarrow T_f = \langle L, R, \{E_i^*\}_{i=0}^{\varepsilon} \rangle$

Lemma

Let W denote a T-module. Then,

- W is a T_f -module.
- If W is a <u>thin irreducible T-module</u>, then W is a <u>thin</u> irreducible T_f -module.

3/27

Definition(s)

Consider a so-called *parameter matrix* $U = (e_{ij})_{1 \le i,j \le \varepsilon}$ over \mathbb{C} , i.e,

- $e_{ii} = 1 \ (1 \le i \le \varepsilon),$
- $e_i^- := e_{i,i-1} \neq 0 \ (2 \le i \le \varepsilon) \text{ or } e_i^+ := e_{i-1,i} \neq 0 \ (2 \le i \le \varepsilon),$
- $\det(e_{ij})_{s \le i, j \le t} \neq 0 \ (1 \le s \le t \le \varepsilon).$

Definition(s)

Consider a so-called *parameter matrix* $U = (e_{ij})_{1 \leq i,j \leq \varepsilon}$ over \mathbb{C} , i.e,

- $e_{ii} = 1 \ (1 \leq i \leq \varepsilon),$

-
$$e_i^- := e_{i,i-1} \neq 0$$
 $(2 \le i \le \varepsilon)$ or $e_i^+ := e_{i-1,i} \neq 0$ $(2 \le i \le \varepsilon)$,
- $\det(e_{ii})_{s \le i, i \le t} \neq 0$ $(1 \le s \le t \le \varepsilon)$.

 Γ supports a uniform structure w.r.t. x if Γ_f admits a uniform structure (U, f) (w.r.t. x), with $f = \{f_i\}_{i=1}^{\varepsilon}, f_i \in \mathbb{C}$, i.e.,

$$e_i^- RL^2 + LRL + e_i^+ L^2 R = f_i L \tag{1}$$

(ロ) (同) (三) (三) (三) (000)

4 / 27

is satisfied on $E_i^* V$ $(1 \le i \le \varepsilon)$.

Definition(s)

Consider a so-called *parameter matrix* $U = (e_{ij})_{1 \leq i,j \leq \varepsilon}$ over \mathbb{C} , i.e,

- $e_{ii} = 1 \ (1 \leq i \leq \varepsilon),$

-
$$e_i^- := e_{i,i-1} \neq 0$$
 ($2 \le i \le \varepsilon$) or $e_i^+ := e_{i-1,i} \neq 0$ ($2 \le i \le \varepsilon$),
- $\det(e_{ii})_{s \le i, i \le t} \neq 0$ ($1 \le s \le t \le \varepsilon$).

 Γ supports a uniform structure w.r.t. x if Γ_f admits a uniform structure (U, f) (w.r.t. x), with $f = \{f_i\}_{i=1}^{\varepsilon}$, $f_i \in \mathbb{C}$, i.e.,

$$\mathbf{e}_i^- \mathbf{R} \mathbf{L}^2 + \mathbf{L} \mathbf{R} \mathbf{L} + \mathbf{e}_i^+ \mathbf{L}^2 \mathbf{R} = \mathbf{f}_i \mathbf{L} \tag{1}$$

is satisfied on $E_i^* V$ $(1 \le i \le \varepsilon)$.

Proposition

(1) holds on $E_i^* V$ if and only if (1) holds on $E_i^* W$ for every irreducible T-module W.

Two *T*-modules *W* and *W'* are *T*-isomorphic if there is a vector space isomorphism $\sigma : W \to W'$ such that $(\sigma B - B\sigma) W = 0$ for all $B \in T$.

Two *T*-modules *W* and *W'* are *T*-isomorphic if there is a vector space isomorphism $\sigma: W \to W'$ such that $(\sigma B - B\sigma) W = 0$ for all $B \in T$.

Theorem (P. Terwilliger, 1990)

Let G denote a **bipartite** graph and fix $x \in V(G)$. Let T = T(x) denote the Terwilliger algebra of G, and assume G admits a **uniform structure** with respect to x. Then,

- Every irreducible *T*-module is <u>thin</u>.
- Let W denote an irreducible T-module with endpoint r and diameter d. Then, the isomorphism class of W is determined by r and d.

Further definitions

Γ is *distance-regular* if, for all integers $0 \le h, i, j \le D$ and all $z, y \in X$ with $\partial(z, y) = h$, the number

$$p_{ij}^h := |\Gamma_i(z) \cap \Gamma_j(y)|$$

is independent of the choice of z, y. The constants p_{ij}^h are the *intersection numbers* of Γ .

Further definitions

 Γ is *distance-regular* if, for all integers $0 \le h, i, j \le D$ and all $z, y \in X$ with $\partial(z, y) = h$, the number

 $p_{ij}^h := |\Gamma_i(z) \cap \Gamma_j(y)|$

is independent of the choice of z, y. The constants p_{ij}^h are the *intersection numbers* of Γ .

- It is enough to consider $c_i := p_{1\,i-1}^i \ (1 \le i \le D)$, $a_i := p_{1i}^i \ (0 \le i \le D)$, $b_i := p_{1i+1}^i \ (0 \le i \le D-1)$, where $c_0 := 0, b_D := 0$.

-
$$k_i := p_{ii}^0 = \frac{b_0 b_1 \cdots b_{i-1}}{c_1 c_2 \cdots c_i} \ (0 \le i \le D)$$
: valencies of Γ

- Γ is regular with valency $k := b_0 = k_1$ and $c_i + a_i + b_i = k$ ($0 \le i \le D$).

-
$$arepsilon(z)=D$$
 for every $z\in X$, and $arepsilon=D$

- Γ is bipartite if and only if $a_i = 0$ for $0 \le i \le D$.

A strongly regular graph, i.e., $srg(v, k, \lambda, \mu)$, is a regular graph with v vertices and valency k, such that every two (distinct) vertices have λ or μ common neighbors depending on whether the vertices are respectively nonadjacent or not.

A strongly regular graph, i.e., $srg(v, k, \lambda, \mu)$, is a regular graph with v vertices and valency k, such that every two (distinct) vertices have λ or μ common neighbors depending on whether the vertices are respectively nonadjacent or not.

 \Rightarrow A *connected* strongly regular graph is a distance-regular of diameter 2.

Theorem

A regular graph has 3 distinct eigenvalues if and only if it is (connected) strongly regular.

A strongly regular graph, i.e., $srg(v, k, \lambda, \mu)$, is a regular graph with v vertices and valency k, such that every two (distinct) vertices have λ or μ common neighbors depending on whether the vertices are respectively nonadjacent or not.

 \Rightarrow A *connected* strongly regular graph is a distance-regular of diameter 2.

Theorem

A regular graph has 3 distinct eigenvalues if and only if it is (connected) strongly regular.

 \Rightarrow A *disconnected* strongly regular graph is a disjoint union of cliques of the same size.

Proposition

Let G denote a strongly regular graph. If G is a disjoint union of cliques, then -1 is an eigenvalue for G, and vice-versa.

Let Γ be a distance-regular graph with $D \ge 3$. Γ has *classical parameters* (D, q, α, β) with $q \ne 1$ if

$$c_{i} = \frac{q^{i} - 1}{q - 1} \left(1 + \alpha \frac{q^{i-1} - 1}{q - 1} \right) \qquad (1 \le i \le D),$$

$$b_{i} = \frac{q^{D} - q^{i}}{q - 1} \left(\beta - \alpha \frac{q^{i} - 1}{q - 1} \right) \qquad (0 \le i \le D - 1),$$

where $q, \alpha, \beta \in \mathbb{C}$.

Let Γ be a distance-regular graph with $D \ge 3$. Γ has *classical parameters* (D, q, α, β) with $q \ne 1$ if

$$c_{i} = \frac{q^{i} - 1}{q - 1} \left(1 + \alpha \frac{q^{i-1} - 1}{q - 1} \right) \qquad (1 \le i \le D),$$

$$b_{i} = \frac{q^{D} - q^{i}}{q - 1} \left(\beta - \alpha \frac{q^{i} - 1}{q - 1} \right) \qquad (0 \le i \le D - 1),$$

where $q, \alpha, \beta \in \mathbb{C}$.

⇒ $q \in \mathbb{Z} \setminus \{-1, 0, 1\}$ and $\alpha, \beta \in \mathbb{Q}$. ⇒ Such a graph Γ is <u>*Q*-polynomial</u> (A. Brouwer et al., 1989). Let Γ be a distance-regular graph with $D \ge 3$. Γ has *classical parameters* (D, q, α, β) with $q \ne 1$ if

$$c_{i} = \frac{q^{i} - 1}{q - 1} \left(1 + \alpha \frac{q^{i-1} - 1}{q - 1} \right) \qquad (1 \le i \le D),$$

$$b_{i} = \frac{q^{D} - q^{i}}{q - 1} \left(\beta - \alpha \frac{q^{i} - 1}{q - 1} \right) \qquad (0 \le i \le D - 1),$$

where $q, \alpha, \beta \in \mathbb{C}$.

$$\Rightarrow q \in \mathbb{Z} \setminus \{-1, 0, 1\} \text{ and } \alpha, \beta \in \mathbb{Q}.$$

 \Rightarrow Such a graph Γ is *Q-polynomial* (A. Brouwer et al., 1989).

Assume that Γ is (non-bipartite) distance-regular, having classical parameters (D, q, α, β) with $D \ge 4$ and $q \ge 2$, and that Γ is 1-thin.

Local graph and thin irreducible *T*-modules

 $k = b_0 = \theta_0 > \theta_1 > \cdots > \theta_D$: (distinct) eigenvalues of Γ $\Delta := \Delta(x)$: subgraph of Γ induced on the set of vertices in X adjacent to x, known as the *local graph of* Γ w.r.t. x.

Local graph and thin irreducible T-modules

 $k = b_0 = \theta_0 > \theta_1 > \cdots > \theta_D$: (distinct) *eigenvalues of* Γ $\Delta := \Delta(x)$: subgraph of Γ induced on the set of vertices in X adjacent to x, known as the *local graph of* Γ w.r.t. x.

- Δ has $\underline{k} = b_0$ vertices and is regular with valency a_1 .
- a₁ = η₁ ≥ η₂ ≥ ··· ≥ η_k(≥ −a₁) : eigenvalues of Δ, i.e, *local* eigenvalues of Γ w. r. t. x
- $\tilde{\theta_1} \leq \eta_i \leq \tilde{\theta_D} \ (2 \leq i \leq k)$, with $\tilde{\theta_1} = -1 b_1(1 + \theta_1)^{-1}$ and $\tilde{\theta_D} = -1 b_1(1 + \theta_D)^{-1}$

Local graph and thin irreducible T-modules

 $k = b_0 = \theta_0 > \theta_1 > \cdots > \theta_D$: (distinct) eigenvalues of Γ $\Delta := \Delta(x)$: subgraph of Γ induced on the set of vertices in X adjacent to x, known as the *local graph of* Γ w.r.t. x.

- Δ has $\underline{k} = b_0$ vertices and is regular with valency a_1 .
- a₁ = η₁ ≥ η₂ ≥ · · · ≥ η_k(≥ −a₁) : eigenvalues of Δ, i.e, *local* eigenvalues of Γ w. r. t. x

-
$$\tilde{\theta_1} \leq \eta_i \leq \tilde{\theta_D} \ (2 \leq i \leq k)$$
, with $\tilde{\theta_1} = -1 - b_1(1 + \theta_1)^{-1}$ and $\tilde{\theta_D} = -1 - b_1(1 + \theta_D)^{-1}$

Definition

If W is any thin irreducible T-module with endpoint 1, then E_1^*W is a one-dimensional eigenspace for $E_1^*AE_1^*$, whose eigenvalue η is called the *local eigenvalue of* W.

$$\Rightarrow \eta \in \{\eta_2, \eta_3, \dots, \eta_k\}$$
, so $\tilde{\theta_1} \leq \eta \leq \tilde{\theta_D}$.

9/27

(日)(周)(日)(日)(日)(日)

Theorem (P. Terwilliger, 2002)

Let W denote a thin irreducible T-module with endpoint 1 and local eigenvalue η , and W' denote an irreducible T-module. Then, the followings are **equivalent**.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

- W and W' are isomorphic as T-modules.
- W' is thin with endpoint 1 and local eigenvalue η .

Theorem (P. Terwilliger, 2002)

Let W denote a thin irreducible T-module with endpoint 1 and local eigenvalue η , and W' denote an irreducible T-module. Then, the followings are equivalent.

- W and W' are isomorphic as T-modules.
- W' is thin with endpoint 1 and local eigenvalue η .

Proposition (J. Go and P. Terwilliger, 2002)

Let W denote a thin irreducible T-module with endpoint 1, diameter d, and local eigenvalue η . Then, the followings hold.

- If
$$\eta \in {\{\tilde{\theta_1}, \tilde{\theta_D}\}}$$
, then $d = D - 2$.
- If $\tilde{\theta_1} < \eta < \tilde{\theta_D}$, then $d = D - 1$.

Theorem (P. Terwilliger, 2004)

Let Φ denote the set of distinct scalars among $\eta_2, \eta_3, \ldots, \eta_k$. For $\eta \in \Phi$, let m_η denote the number of times η appears among $\eta_2, \eta_3, \ldots, \eta_k$.

Then, there exist polynomials $p_0 = 1, p_1, \ldots, p_D$ (given by a known recursive formula) with real coefficients such that

$$1 + \sum_{\substack{\eta \in \Phi \\ \eta \neq -1}} \frac{p_{i-1}(\tilde{\eta})}{p_i(\tilde{\eta})(1+\tilde{\eta})} m_{\eta} \leq \frac{k}{b_i} \qquad (1 \leq i \leq D-1), \qquad (2)$$

where $\tilde{\eta} = -1 - b_1 (1 + \eta)^{-1}$.

Additionally, the equality in (2) for $1 \le i \le D - 1$ holds if and only if every irreducible T-module with endpoint 1 is thin.

Our analysis: Γ supporting a uniform structure

 \Rightarrow The isomorphism class of a thin irreducible *T*-module *W* with endpoint 1 is <u>determined</u> by its local eigenvalue η .

For our Γ (1-thin, non-bipartite distance-regular with classical parameters (D, q, α, β) , $D \ge 4$, $q \ge 2$), it is known that η is in the set

$$\left\{\eta_1:=-q-1,\ \eta_2:=eta-lpha-1,\ \eta_3:=-1,\ \eta_4:=lpharac{q^{D-1}-1}{q-1}-1
ight\}$$

Our analysis: Γ supporting a uniform structure

 \Rightarrow The isomorphism class of a thin irreducible *T*-module *W* with endpoint 1 is <u>determined</u> by its local eigenvalue η .

For our Γ (1-thin, non-bipartite distance-regular with classical parameters (D, q, α, β) , $D \ge 4$, $q \ge 2$), it is known that η is in the set

$$\left\{\eta_1:=-q-1,\,\eta_2:=eta-lpha-1,\,\eta_3:=-1,\,\eta_4:=lpharac{q^{D-1}-1}{q-1}-1
ight\}$$

- $\eta \in \{\eta_1, \eta_2\} \Rightarrow \underline{d = D 2}$, otherwise, $\underline{d = D 1}$.
- η_1 , η_2 , and η_3 are distinct, and $\eta_4 \neq \eta_1$.
- $-\eta_4 = \eta_2 \iff \beta = \alpha \frac{q^{D} 1}{q 1}$ $-\eta_4 = \eta_3 \iff \alpha = 0$

Case $\alpha \neq 0$

Proposition 1 (B. Fernández, R. Maleki, Š. Miklavič, G.M.)

Let W and W' denote two non-isomorphic, thin irreducible T-modules with endpoint 1. Then, W and W' remain non-isomorphic when considered as T_f -modules.

Proposition 2 (B. Fernández, R. Maleki, Š. Miklavič, G.M.)

If Γ supports a <u>uniform structure</u>, then there are, up to isomorphism, exactly two thin irreducible T-modules with endpoint 1, one with diameter D-2 and the other with diameter D-1.

Case $\alpha \neq 0$

Proposition 1 (B. Fernández, R. Maleki, Š. Miklavič, G.M.)

Let W and W' denote two non-isomorphic, thin irreducible T-modules with endpoint 1. Then, W and W' remain non-isomorphic when considered as T_f -modules.

Proposition 2 (B. Fernández, R. Maleki, Š. Miklavič, G.M.)

If Γ supports a <u>uniform structure</u>, then there are, up to isomorphism, exactly two thin irreducible T-modules with endpoint 1, one with diameter D-2 and the other with diameter D-1.

 $\Rightarrow \Delta$ is not complete (otherwise $b_1 = 0$), and has at most three distinct eigenvalues, i.e., Δ is strongly regular.

$$\left\{ \begin{matrix} \eta_1 := -q-1, \ \eta_2 := \beta - \alpha - 1, \ \eta_3 := -1, \ \eta_4 := \alpha \frac{q^{D-1}-1}{q-1} - 1 \end{matrix} \right\}$$

 \Rightarrow Pairs to be considered are those corresponding to different diameters.

 \Rightarrow The case $\{\eta_1,\eta_3\}$ never occurs since both eigenvalues would be negative.

$$\left\{ \begin{matrix} \eta_1 := -q-1, \ \eta_2 := \beta - \alpha - 1, \ \eta_3 := -1, \ \eta_4 := \alpha \frac{q^{D-1}-1}{q-1} - 1 \end{matrix} \right\}$$

 \Rightarrow Pairs to be considered are those corresponding to different diameters.

 \Rightarrow The case $\{\eta_1,\eta_3\}$ never occurs since both eigenvalues would be negative.

Lemma 1 (B. Fernández, R. Maleki, Š. Miklavič, G.M.) Let Δ be the local graph of Γ with eigenvalues a_1, r, s with $a_1 \ge r \ge 0$ and s < 0. Then, $\{r, s\} \ne \{\eta_2, \eta_3\}$ and $\{r, s\} \ne \{\eta_2, \eta_4\}$.

Sketch of the proof

- $\{r, s\} = \{\eta_2, \eta_3\} \iff \Delta$ is a disjoint union of cliques $(\eta_3 = -1)$ with $a_1 = \eta_2 = \beta \alpha 1 \iff \alpha = 0$: contradiction.
- $\{r,s\} = \{\eta_2,\eta_4\}$: the equality

$$1 + \sum_{\substack{\eta \in \Phi \\ \eta \neq -1}} \frac{p_{i-1}(\tilde{\eta})}{p_i(\tilde{\eta})(1+\tilde{\eta})} m_{\eta} = \frac{k}{b_i} \qquad (1 \le i \le D-1),$$

holding for every 1-thin graph, is not satisfied in particular for i = 1, D - 1; otherwise $\beta = 0$ when $r = \eta_2$ ($s = \eta_4$), and $s = \eta_2 = 0$ when $r = \eta_4$.

Only the case $\{r, s\} = \{\eta_1, \eta_4\}$ remains to be considered.

 \Rightarrow The previous equality is verified for every $1 \leq i \leq D-1$, and

$$eta=lpharac{q^{D-1}-1}{q-1}-q,\qquad \mu=lpha(q+1).$$

Only the case $\{r, s\} = \{\eta_1, \eta_4\}$ remains to be considered.

 \Rightarrow The previous equality is verified for every $1 \leq i \leq D-1$, and

$$eta = lpha rac{q^{D-1}-1}{q-1} - q, \qquad \mu = lpha (q+1).$$

Theorem (Neumaier, 1979)

Let G be a strongly regular graph with parameters (n, k, λ, μ) and eigenvalues k > r > s. Then, at least one of the following conditions must hold:

(a)
$$r \le \max\{2(-s-1)(\mu+1+s), s(s+1)(\mu+1)/2 - s - 1\}.$$

(b) $\mu = s^2$: G is a Steiner graph derived from a Steiner 2-system in which each line contains s points.

(c) $\mu = s(s+1)$: G is a Latin square graph derived from an s-net.

Lemma 2 (B. Fernández, R. Maleki, Š. Miklavič, G.M.) Let Δ be the local graph of Γ with eigenvalues a_1, r, s with $a_1 > r = \alpha \frac{q^{D-1}-1}{q-1} - 1$ and s = -q - 1. Then, case (a) never happens.

Lemma 2 (B. Fernández, R. Maleki, Š. Miklavič, G.M.) Let Δ be the local graph of Γ with eigenvalues a_1, r, s with $a_1 > r = \alpha \frac{q^{D-1}-1}{q-1} - 1$ and s = -q - 1. Then, case (a) never happens.

Sketch of the proof

- Claim 1: Δ is not a conference graph.
- Claim 2: $r \ge 1$.
- The integrality of λ yields that (a) cannot be.

Two feasible families

Cases $\mu = s^2$ and $\mu = s(s + 1)$ are both <u>feasible</u>, and the classical parameters of the respective distance-regular graphs are

$$(D, q, q+1, \frac{q^{D+1}(q+1)-q^2-1}{q-1}), \qquad (D, q, q, \frac{q^2(q^D-1)}{q-1}).$$

Lemma 3 (B. Fernández, R. Maleki, Š. Miklavič, G.M.)

The family of distance-regular graphs with classical parameters

$$\Bigl(D,q,q+1,rac{q^{D+1}(q+1)-q^2-1}{q-1}\Bigr)$$

does not exist.

Lemma 3 (B. Fernández, R. Maleki, Š. Miklavič, G.M.)

The family of distance-regular graphs with classical parameters

$$\Big(D,q,q+1,rac{q^{D+1}(q+1)-q^2-1}{q-1}\Big)$$

does not exist.

Sketch of the proof

- $D \ge 6$: the intersection number

$$p_{33}^6 = \frac{c_4 c_5 c_6}{c_1 c_2 c_3}$$

(independent of both D and β) is an integer only for q = 2, 4.

< □ ▶ < 圕 ▶ < ≧ ▶ < ≧ ▶ < ≧ ▶ 19/27 Lemma 3 (B. Fernández, R. Maleki, Š. Miklavič, G.M.)

The family of distance-regular graphs with classical parameters

$$\Big(D,q,q+1,rac{q^{D+1}(q+1)-q^2-1}{q-1}\Big)$$

does not exist.

Sketch of the proof

- $D \ge 6$: the intersection number

$$p_{33}^6 = \frac{c_4 c_5 c_6}{c_1 c_2 c_3}$$

(independent of both D and β) is an integer only for q = 2, 4.

- D = 4, D = 5, q = 2, q = 4: the multiplicity f_2 of the 2nd eigenvalue of Γ turns out not to be an integer.

Lemma 4 (B. Fernández, R. Maleki, Š. Miklavič, G.M.) If $D \not\equiv 0 \pmod{6}$, then the family of distance-regular graphs with classical parameters

$$\left(D,q,q,rac{q^2(q^D-1)}{q-1}
ight)$$

does not exist.

 Lemma 4 (B. Fernández, R. Maleki, Š. Miklavič, G.M.) If $D \not\equiv 0 \pmod{6}$, then the family of distance-regular graphs with classical parameters

$$\left(D,q,q,rac{q^2(q^D-1)}{q-1}
ight)$$

does not exist.

Sketch of the proof

- Claim: the multiplicity f_2 of the 2nd eigenvalue of Γ is an integer only for D even.

Lemma 4 (B. Fernández, R. Maleki, Š. Miklavič, G.M.) If $D \not\equiv 0 \pmod{6}$, then the family of distance-regular graphs with classical parameters

$$\left(D,q,q,rac{q^2(q^D-1)}{q-1}
ight)$$

does not exist.

Sketch of the proof

- Claim: the multiplicity f_2 of the 2nd eigenvalue of Γ is an integer only for D even.
- Claim: the multiplicity f_3 of the 3rd eigenvalue of Γ is an integer only for $D \equiv 0 \pmod{6}$.

Main Theorem (B. Fernández, R. Maleki, Š. Miklavič, G.M.)

Let Γ be a 1-thin, non-bipartite distance-regular graph with classical parameters $D \ge 4$, $q \ge 2$, $\alpha \ne 0$. If Γ supports a uniform structure w.r.t. x, then it must have

classical parameters

$$\left(D,q,q,rac{q^2(q^D-1)}{q-1}
ight), \qquad D\equiv 0 \pmod{6}$$

Proof

It follows from previous Propositions 1,2 and Lemmas 1-4

Remark

The valency k_D and the multiplicity f_D of Γ (with $\alpha = q$ and $\beta = q^2(q^D - 1)/(q - 1)$)) respectively are

$$k_D = q^{rac{D(D+1)}{2}+1} \prod_{i=1}^{D-1} \left(q rac{q^D - 1}{q^i - 1} - 1
ight),$$

$$f_D = (q^D(q+1)-q) \prod_{i=2}^D \left(q^{i+1} rac{q^D-1}{q^i-1} + 1
ight).$$

 \Rightarrow Computational results (Mathematica), show that they are never integers for every $q,D \leq 2000$

Conjecture

The family of distance-regular graphs with classical parameters

$$\left(D,q,q,\frac{q^2(q^D-1)}{q-1}\right)$$

does not exist.

Conjecture

The family of distance-regular graphs with classical parameters

$$\left(D,q,q,rac{q^2(q^D-1)}{q-1}
ight)$$

does not exist.

Corollary to Conjecture

Let Γ be a 1-thin, non-bipartite distance-regular graph with classical parameters $D \ge 4$, $q \ge 2$, $\alpha \ne 0$. Then, Γ does not supports a uniform structure w.r.t. x.

Case $\alpha = 0$

Examples are *dual polar graphs* which have classical parameters

$$(D, q, 0, q^e), e \in \left\{0, \frac{1}{2}, 1, \frac{3}{2}, 2\right\}.$$

⇒ Dual polar graphs support a uniform structure (C. Worawannotai, 2013)

Case $\alpha = 0$

Examples are *dual polar graphs* which have classical parameters

$$(D, q, 0, q^e), e \in \left\{0, \frac{1}{2}, 1, \frac{3}{2}, 2\right\}.$$

⇒ Dual polar graphs support a uniform structure (C. Worawannotai, 2013)

Remark

- For our Γ (1-thin w.r.t. x), $\alpha = 0 \iff \Delta = \Delta(x)$ is a disjoint union of cliques, where $r = a_1 = \beta - 1$ and s = -1.

$$-\alpha = \mathbf{0} \Rightarrow \mathbf{a}_i = \mathbf{a}_1 \mathbf{c}_i \ (1 \le i \le D - 1)$$

Definition

 $\textit{K}_{1,1,2}\text{:}$ complete multipartite graph with three parts of order 1, 1, and 2, respectively

A distance-regular graph G is a *near polygon* if $a_i = a_1c_i$ ($1 \le i \le D-1$), and G does not contain $K_{1,1,2}$ as an induced subgraph.

Definition

 $K_{1,1,2}$: complete multipartite graph with three parts of order 1, 1, and 2, respectively

A distance-regular graph G is a *near polygon* if $a_i = a_1c_i$ ($1 \le i \le D - 1$), and G does not contain $K_{1,1,2}$ as an induced subgraph.

Theorem (A. Brouwer et al., 1989)

Let G be a distance-regular graph with classical parameters $(D, q, 0, \beta)$, $D \ge 3$. If G is a near polygon, then G is a Hamming graph (q = 1) or a dual polar graph.

Theorem (B. Fernández, R. Maleki, Š. Miklavič, G.M.) Let Γ be a non-bipartite distance-regular graph with classical parameters $D \ge 3$, $q \ge 2$, $\alpha = 0$. Assume that Γ is 1-thin w.r.t. every vertex. Then, Γ is a dual polar graph.

Proof

It follows from previous Remark and Theorem (A. Brouwer et al.,1989).

Thank you for your attention!