s-PD-sets for codes from projective planes $PG(2, 2^h)$, where $5 \le h \le 9$

Nina Mostarac (nmavrovic@math.uniri.hr) Faculty of Mathematics, University of Rijeka, Croatia

Joint work with:

Dean Crnković

Bernardo G. Rodrigues

Leo Storme

RICCOTA 2023

Rijeka Conference on Combinatorial Objects and Their Applications

July 7, 2023

(日) (四) (문) (문) (문)

Introduction

- permutation decoding was introduced in 1964 by MacWilliams
- it uses sets of code automorphisms called PD-sets
- the problem of existence of PD-sets and finding them
- we construct 2-PD-sets and 3-PD-sets for partial permutation decoding of codes obtained from certain **Desarguesian projective planes**

э

Refrences

- [1] D. Crnković, N. Mostarac, B. G. Rodrigues, L. Storme, *s*-PD-sets for codes from projective planes $PG(2, 2^h)$, $5 \le h \le 9$, Adv. Math. Comm., 15 (3) (2021), 423–440.
- [2] P. Vandendriessche, Codes of Desarguesian projective planes of even order, projective triads and (q + t, t)-arcs of type (0, 2, t), *Finite Fields Appl.*, 17 (2011), 521–531.
 - in [1] we construct 2-PD-sets of 16 elements for codes from PG(2, q), where $q = 2^h$ and $5 \le h \le 9$
 - we also construct 3-PD-sets of 75 elements for the code from PG(2, q), where $q = 2^9$
 - we use a basis of a code of a projective plane $PG(2, 2^h)$, that was found by Vandendriessche [2] for $h \leq 9$

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・

Codes

Definition 1

Let p be a prime. A p-ary linear code C of length n and dimension k is a k-dimensional subspace of the vector space $(\mathbb{F}_p)^n$.

Definition 2

- Let $x = (x_1, ..., x_n)$ and $y = (y_1, ..., y_n) \in \mathbb{F}_p^n$. The Hamming distance between words x and y is the number $d(x, y) = |\{i : x_i \neq y_i\}|$.
- The minimum distance of the code C is defined by $d = \min\{d(x, y) : x, y \in C, x \neq y\}$.
- Notation: $[n, k, d]_p$ code
- it can detect at most d-1 errors in one codeword and correct at most $t = \lfloor \frac{d-1}{2} \rfloor$ errors

Information sets

 The algorithm of permutation decoding (introduced in 1964 by MacWilliams) uses sets of code automorphisms called PD-sets, that are defined with respect to a given information set of the code.

Definition 3

- Let $C \subseteq \mathbb{F}_p^n$ be a linear [n, k, d] code. For $I \subseteq \{1, ..., n\}$ let $p_I : \mathbb{F}_p^n \to \mathbb{F}_p^{|I|}, x \mapsto x|_I$, be an I-projection of \mathbb{F}_p^n . Then I is called an information set for C if |I| = k and $p_I(C) = \mathbb{F}_p^{|I|}$.
 - The set of the first *k* coordinates for a code with a generating matrix in the standard form is an information set.
 - The first k coordinates are then called *information symbols* and the last n − k coordinates are the *check symbols* and they form the corresponding check set.

イロト 不得 トイヨト イヨト 一日

PD-sets

Definition 4

Let $C \subseteq \mathbb{F}_p^n$ be a linear [n, k, d] code that can correct at most t errors, and let I be an information set for C. A subset $S \subseteq \text{Aut}C$ is a PD-set for C if every t-set of coordinate positions can be moved by at least one element of S out of the information set I.

The algorithm of permutation decoding is more efficient the smaller the size of a PD-set is. A lower bound on the size of a PD-set:

Theorem 2.1 (The Gordon bound)

If S is a PD-set for an [n, k, d] code C that can correct t errors, r = n - k, then:

s-PD-sets

- for some codes PD-sets do not exist, or they are not easy to find
- then one can use **partial permutation decoding**, which includes finding *s*-PD-sets, where $s \leq t$
 - [3] J.D. Key, T.P. McDonough and V.C. Mavron, Partial permutation decoding for codes from finite planes, *European J. Combin.*, 26 (2005), 665–682.

イロト 不得 トイヨト イヨト 一日

Codes from projective planes PG(2, *q*)

- Let PG(2, q) denote the *Desarguesian projective plane* of order $q = p^h$, where p is a prime and h is a positive integer, and let M_q be the incidence matrix of PG(2, q).
 - Then M_q has p-rank $\binom{p+1}{2}^h + 1$, and is symmetric, because of the self-duality of PG(2, q).
- The linear code C_{gen} generated by the rows of M_q over \mathbb{F}_p is a *p*-ary code with parameters $[q^2 + q + 1, {p+1 \choose 2}^h + 1, q + 1]_p$, and the codewords of minimum weight are exactly the incidence vectors of the projective lines.
 - The points of the geometry correspond to the positions of the code.

Codes from projective planes PG(2, *q*)

- The full automorphism group of PG(2, q) is the projective semi-linear group PFL(3, q), acting doubly transitively on points. Moreover, PFL(3, q) is the full automorphism group of the code C_{gen} .
- For a translation $\tau_{u,v} : (\gamma, \beta) \mapsto (\gamma, \beta) + (u, v)$, we denote $\hat{\tau}_{u,v}$ the corresponding element from PFL(**3**, *q*). Then for projective lines the following holds:

 $\hat{\tau}_{u,v}([\gamma,\beta,1]) = [\gamma + u,\beta + v,1],$

 $\hat{\tau}_{u,v}(\![1,0,0]\!) = [1,0,0], \ \hat{\tau}_{u,v}(\![\gamma,1,0]\!) = [\gamma,1,0].$

• Let σ_1 be the automorphism that interchanges the first two homogeneous coordinates of the projective lines, and let σ_2 be the automorphism that interchanges the first and the last homogeneous coordinates.

A basis for the code of PG(2, q), q even

• Let α be a primitive element of \mathbb{F}_q and

$$eta=a_{h-1}lpha^{h-1}+a_{h-2}lpha^{h-2}+\cdots+a_1lpha+a_0\in \mathbb{F}_q,\ eta
eq 0,$$

where all $a_i \in \mathbb{F}_2$ (i.e. $\beta = (a_0, a_1, ..., a_{h-1})$).

• The leading position of β is

$$lp(\beta) = \max\{i : a_i \neq 0\} + 1$$

For any projective point $b = (0, 1, \beta)$ on the projective line $X_0 = 0$, we define: $lp(b) = lp(\beta)$

- the leading position of (0, 1, 0) is defined to be 0
- the leading position of (0, 0, 1) is defined to be $+\infty$

• Let $|\beta| = |\{i : a_i \neq 0\}|$

A basis for the code of PG(2, q), q even

- P. Vandendriessche conjectured how a basis for the code of the projective plane can look like for the case p = 2 (so $q = 2^{h}$).
- The conjecture was proven to hold for $h \le 9$ (i.e. $q \le 512$) by computer and conjectured to hold for all even q.

Conjecture ([2])

The line $X_0 = 0$ and the set of lines

 $\{\langle (0, 1, \beta), (1, 0, \gamma) \rangle : |\gamma| + lp(\beta) \le h\}$

together form a basis for C_{gen} .

- The line X₀ = 0 has homogeneous coordinates [1, 0, 0].
- The set of lines from the previous Conjecture consists of lines with homogeneous coordinates $[\gamma, \beta, 1]$, where $|\gamma| + lp(\beta) \le h$.

s-PD-sets for codes from PG(2, *q*), $q = 2^{h}$

- In this section, we describe a construction of 2-PD-sets for the binary codes from projective planes PG(2, q), where $q = 2^{h}$ and $5 \le h \le 9$, and a construction of 3-PD-sets for the binary code from the projective plane PG(2, 2^{9}).
- It was shown in [3] that PD-sets for full error-correction for projective Desarguesian planes do not exist for order q large enough. Specifically, for: q = p prime and p > 103, $q = 2^e$ and e > 12, $q = 3^e$ and e > 6, $q = 5^e$ and e > 4, $q = 7^e$ and e > 3, $q = 11^e$ and e > 2, $q = 13^e$ and e > 2, or $q = p^e$ for p > 13 and e > 1

• *s*-PD-sets can be found for some small values of $s \ge 2$

s-PD-sets for codes from PG(2, q), $q = 2^{h}$

- Since the full automorphism group of a Desarguesian projective plane is 2-transitive on points, the whole group acts as a 2-PD-set, for any information set.
- Using a Moorhouse basis, 2-PD-sets of 43 elements for Desarguesian projective planes of any prime order q = p were constructed in [3].
- The **existence** of 3-PD-sets, for any information set, for the code of any Desarguesian projective plane was also proven in [3]. To ensure that the code will correct three errors, the order $q \ge 7$ must be taken there.

Table: Codes of PC(2, q): lower bounds on sizes of PD-sets (b) and 2-PD-sets (b_2)

q	Code	t	r	b	<i>b</i> ₂
32	[1057,244,33]	16	813	180	3
64	[4161,730,65]	32	3431	1623	3
128	[16513,2188,129]	64	14325	40696	3
256	[65793,6562,257]	128	59231	3965945	3
512	[262657,19684,513]	256	242973	3625171287	3

For h = 9, the lower bound on the size of a 3-PD-set equals 4.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

In the following constructions, we will use as an information set the basis of Vandendriessche (which is a generalization of the Moorhouse basis for q = p prime to the case $q = 2^h$):

$$I_{V} = \{ [1, 0, 0] \} \cup \{ [\gamma, \beta, 1] : |\gamma| + lp(\beta) \le h; \gamma, \beta \in \mathbb{F}_{q} \}.$$

The corresponding check set is then:

$$C_{V} = \{ [\gamma, \beta, 1] : |\gamma| + lp(\beta) > h; \gamma, \beta \in \mathbb{F}_{q} \} \cup \{ [\gamma, 1, 0] : \gamma \in \mathbb{F}_{q} \}.$$

Construction of 2-PD-sets

The full automorphism group of a Desarguesian plane acts as a 2-PD-set. Our aim is to find smaller 2-PD-sets in the case of $PG(2, 2^h)$, $5 \le h \le 9$.

Theorem 4.1

Let $\Pi = PG(2, q)$, where $q = 2^h$, and let G be the full automorphism group of Π . Furthermore, let $C_{gen} = [q^2 + q + 1, 3^h + 1, q + 1]_2$ be the binary code of Π . If $5 \le h \le 9$, then G contains a 2-PD-set with 16 elements for C_{gen} , for the information set I_V .

・ロン ・四 と ・ ヨ と ・ ヨ と

Proof.

Main idea: Let us assume that 2 errors occur.

- I. Suppose that 2 errors are in the information set.
 - a) First, let those errors correspond to the lines $[\gamma_1, \beta_1, 1]$ with $|\gamma_1| + Ip(\beta_1) \le h$ and $[\gamma_2, \beta_2, 1]$ with $|\gamma_2| + Ip(\beta_2) \le h$.
 - b) Let one of the errors correspond to the line $X_0 = 0$ (i.e. [1, 0, 0]), and the other to the line $[\gamma, \beta, 1]$, where $|\gamma| + lp(\beta) \le h$.
- **II.** Assume that one error is in I_V , and the other is in C_V .
 - a) Let those errors correspond to the lines $[\gamma_1, \beta_1, 1]$ with $|\gamma_1| + lp(\beta_1) \le h$ and $[\gamma_2, \beta_2, 1]$ with $|\gamma_2| + lp(\beta_2) > h$.
 - b) Let the error in I_V correspond to the line $[\gamma_1, \beta_1, 1]$ such that $|\gamma_1| + Ip(\beta_1) \le h$, and the error in C_V to the line $[\gamma_2, 1, 0]$.
 - c) Let the error in I_V be $X_0 = 0$, and the one in $C_V [\gamma, 1, 0]$.
 - d) Let the error in I_V be [1, 0, 0], and let the error in C_V be $[\gamma, \beta, 1]$ with $|\gamma| + Ip(\beta) > h$.
- III. Let us assume that both errors are in the check set. This case is trivial.

Remark 1

If Vandendriessche's Conjecture on a basis for the code of PG(2, 2^h) is proven true also for h > 9, then Theorem 4.1 is valid for every $h \ge 5$, since the construction of this 2-PD-set does not require that $h \le 9$.

An explicit example of a 2-PD-set:

Corollary 5

Let $\Pi = PG(2, 2^h)$, $5 \le h \le 9$, and $C_{gen} = [2^{2h} + 2^h + 1, 3^h + 1, 2^h + 1]_2$ be its binary code. Furthermore, let

$$a = (1, 0, ..., 0), a' = (0, 1, 0, ..., 0), b = (1, ..., 1, 0), c = (1, ..., 1) \in \mathbb{F}_{2^h}$$

Then the following set is a 2-PD-set for C_{qen} , for the information set I_V :

$$S = \begin{array}{l} \left\{ \hat{\tau}_{0,0}, \hat{\tau}_{a,a}, \hat{\tau}_{a,b}, \hat{\tau}_{a,c}, \hat{\tau}_{a',b}, \hat{\tau}_{b,a}, \hat{\tau}_{b,b}, \hat{\tau}_{b,c}, \hat{\tau}_{c,a}, \hat{\tau}_{c,b}, \hat{\tau}_{c,c}, \right. \\ \left. \sigma_{1}, \hat{\tau}_{a,b}\sigma_{1}, \hat{\tau}_{a,c}\sigma_{1}, \hat{\tau}_{b,c}\sigma_{1}, \hat{\tau}_{a,c}\sigma_{2} \right\}. \end{array}$$

< ロ > < 同 > < 回 > < 回 >

Construction of 3-PD-sets

The following theorem gives a construction of 3-PD-sets for the code of the Desarguesian projective plane PG(2, q), where $q = 2^9$.

Theorem 4.2

Let $\Pi = PG(2, q)$, $q = 2^{h}$, and let G be its automorphism group. Furthermore, let $C_{gen} = [q^{2} + q + 1, 3^{h} + 1, q + 1]_{2}$ be the binary code of Π . If h = 9, a 3-PD-set for C_{gen} consisting of 75 elements can be found in G, for the information set I_{V} .

Proof.

Main idea:

Assume that **3** errors occur. I. Suppose that **3** errors are in I_V .

- (a) First, let those errors correspond to the lines $[\gamma_i, \beta_i, 1]$ with $|\gamma_i| + lp(\beta_i) \le h$, where i = 1, 2, 3.
- (b) Let one of the errors correspond to the line $X_0 = 0$, and the other two to be the lines $[\gamma_i, \beta_i, 1]$ with $|\gamma_i| + lp(\beta_i) \le h$, where i = 1, 2.
- II. Suppose that 2 errors are in I_V , and one is in C_V .
 - (a) Let the errors in I_V be $[\gamma_i, \beta_i, 1]$ with $|\gamma_i| + lp(\beta_i) \le h$, i = 1, 2, and the error in C_V the line $[\gamma_3, \beta_3, 1]$ with $|\gamma_3| + lp(\beta_3) > h$.
 - (b) Let the two errors in I_V correspond to the lines $[\gamma_i, \beta_i, 1]$ with $|\gamma_i| + Ip(\beta_i) \le h$, i = 1, 2, and the error in C_V to the line $[\gamma_3, 1, 0]$.
 - (c) Let one error be the line $X_0 = 0$, second the line $[\gamma_1, \beta_1, 1]$ with $|\gamma_1| + lp(\beta_1) \le h$, and the last the line $[\gamma_2, \beta_2, 1]$ with $|\gamma_2| + lp(\beta_2) > h$.
 - (d) Let the errors in I_V be the lines [1, 0, 0] and $[\gamma_1, \beta_1, 1]$ such that $|\gamma_1| + Ip(\beta_1) \le h$, and the error in C_V the line $[\gamma_2, 1, 0]$.

Proof.

III. Suppose that there are 2 errors in the check set, and one in I_V .

- (a) Let those errors be $[\gamma_1, \beta_1, 1]$ with $|\gamma_1| + lp(\beta_1) \le h$, and $[\gamma_i, \beta_i, 1]$ with $|\gamma_i| + lp(\beta_i) > h$, for i = 2, 3.
- (b) Let the error in I_V be the line $[\gamma_1, \beta_1, 1]$ with $|\gamma_1| + Ip(\beta_1) \le h$, and the errors in C_V the lines $[\gamma_2, \beta_2, 1]$ with $|\gamma_2| + Ip(\beta_2) > h$ and $[\gamma_3, 1, 0]$.
- (c) Let the error in I_V correspond to the line $[\gamma_1, \beta_1, 1]$ with $|\gamma_1| + Ip(\beta_1) \le h$, and the errors in C_V correspond to the lines $[\gamma_2, 1, 0]$ and $[\gamma_3, 1, 0]$.
- (d) Let the error in I_V correspond to the line [1, 0, 0], and the other two correspond to the lines $[\gamma_i, \beta_i, 1]$ with $|\gamma_i| + lp(\beta_i) > h$, i = 1, 2.
- (e) Let the error in I_V correspond to the line [1, 0, 0] and the errors in C_V correspond to the lines $[\gamma_1, \beta_1, 1]$ with $|\gamma_1| + Ip(\beta_1) > h$ and $[\gamma_2, 1, 0]$.
- (f) Let the error in I_V correspond to the line [1, 0, 0] and the errors in C_V correspond to the lines $[\gamma_2, 1, 0]$ and $[\gamma_3, 1, 0]$.
- IV. If we have **3** errors in the check set, then we can use the identity map.

Construction of 3-PD-sets

Remark 2

The preceding explicit example of a 3-PD-set can only be used for the code of the projective plane $PG(2, 2^9)$ since we explicitly make use of a number of vectors of length 9, which describe field elements of \mathbb{F}_{2^9} .

< ロ > < 同 > < 回 > < 回 >

Corollary 6

Let $\Pi = PG(2, 2^9)$, $C_{gen} = [2^{18} + 2^9 + 1, 3^9 + 1, 2^9 + 1]_2$ its 2-ary code, and:

$$\begin{split} & a = (1, 0, \dots, 0), \ a' = (0, 1, 0, \dots, 0), \ a'' = (0, 0, 1, 0, \dots, 0), \\ & b = (1, 1, 0, \dots, 0), \ b' = (0, 0, 1, 1, 0, \dots, 0), \ b'' = (0, 0, 0, 0, 0, 1, 1, 0, 0, 0), \\ & c = (1, 1, 1, 0, \dots, 0), \ c' = (0, 0, 0, 1, 1, 1, 0, 0, 0), \ c'' = (0, \dots, 0, 1, 1, 1), \\ & d = (1, 1, 1, 1, 0, \dots, 0), \ d' = (0, 0, 0, 0, 1, 1, 1, 1, 0), \ d''' = (1, 1, 0, 0, 1, 1, 0, 0, 0), \\ & d''' = (1, 1, 0, 0, 1, 0, 0, 0, 1), \ d^{IV} = (0, 0, 1, 1, 0, 0, 1, 0, 1), \ d^{V} = (1, 1, 0, 0, 0, 1, 1, 0, 0), \\ & e = (1, 1, 1, 1, 1, 0, 0, 0, 0), \ e' = (0, 0, 1, 1, 1, 1, 1, 0, 0), \ e'' = (0, 0, 0, 0, 1, 1, 1, 1, 1), \\ & f = (1, \dots, 1, 0, 0, 0), \ f' = (0, 0, 0, 1, \dots, 1), \ g = (1, \dots, 1, 0, 0), \\ & i = (1, \dots, 1, 0), \ i' = (1, \dots, 1, 0, 1), \ j = (1, \dots, 1) \in \mathbb{F}_{2^9}. \end{split}$$

Then the following set S is a 3-PD-set for C_{aen} , for the information set I_V :

$$\begin{split} S &= \{\hat{\tau}_{x,f} | x \in X_1\} \cup \{\hat{\tau}_{x,g} | x \in X_1 \cup \{c'\}\} \cup \{\hat{\tau}_{x,i} | x \in X_2\} \cup \{\hat{\tau}_{x,j} | x \in \{a, a', i, j\}\} \\ &\cup \{\hat{\tau}_{j,a}, \hat{\tau}_{0,0}, \sigma_1, \hat{\tau}_{a,i}\sigma_1, \hat{\tau}_{a',i}\sigma_1, \hat{\tau}_{i,j}\sigma_1, \hat{\tau}_{a,j}\sigma_1, \hat{\tau}_{a',j}\sigma_1, \hat{\tau}_{a'',j}\sigma_1, \hat{\tau}_{a,g}\sigma_1, \hat{\tau}_{i,g}\sigma_1, \hat{\tau}_{j,g}\sigma_1\} \\ &\cup \{\hat{\tau}_{a,j}\sigma_2 \hat{\tau}_{0,a}, \hat{\tau}_{i,i}\sigma_2, \hat{\tau}_{j,i}\sigma_2, \hat{\tau}_{a,j}\sigma_2, \hat{\tau}_{a',j}\sigma_2\}, \text{ where } \end{split}$$

$$\begin{split} X_1 &= \{a, a', b, b', b'', c, d, d', d''', d^{V'}, d^{V}, e, e'', f, f', i, i', j\}, \\ X_2 &= \{a, a', a'', c, c', c'', d, d', d'', e, e', e'', f, i, i', j\}. \end{split}$$

> < 同 > < 回 > < 回 >

Construction of 3-PD-sets

Thank you!

2

ヘロン ヘロン ヘビン ヘビン