## s-PD-sets for codes from projective planes $\operatorname{PG}\left(2,2^{h}\right)$, where

$$
5 \leq h \leq 9
$$

Nina Mostarac (nmavrovic@math.uniri.hr)<br>Faculty of Mathematics, University of Rijeka, Croatia<br>Joint work with:<br>Dean Crnković<br>Bernardo G. Rodrigues<br>Leo Storme

RICCOTA 2023
Rijeka Conference on Combinatorial Objects and Their Applications

July 7, 2023

## Introduction

- permutation decoding was introduced in 1964 by MacWilliams
- it uses sets of code automorphisms called PD-sets
- the problem of existence of PD-sets and finding them
- we construct 2-PD-sets and 3-PD-sets for partial permutation decoding of codes obtained from certain Desarguesian projective planes


## Refrences

[1] D. Crnković, N. Mostarac, B. G. Rodrigues, L. Storme, s-PD-sets for codes from projective planes $P G\left(2,2^{h}\right), 5 \leq h \leq 9$, Adv. Math. Comm., 15 (3) (2021), 423-440.
[2] P. Vandendriessche, Codes of Desarguesian projective planes of even order, projective triads and $(q+t, t)$-arcs of type $(0,2, t)$, Finite Fields Appl., 17 (2011), 521-531.

- in [1] we construct 2-PD-sets of 16 elements for codes from $\operatorname{PG}(2, q)$, where $q=2^{h}$ and $5 \leq h \leq 9$
- we also construct 3-PD-sets of 75 elements for the code from $\operatorname{PG}(2, q)$, where $q=2^{9}$
- we use a basis of a code of a projective plane PG $\left(2,2^{h}\right)$, that was found by Vandendriessche [2] for $h \leq 9$


## Codes

## Definition 1

Let $p$ be a prime. A $p$-ary linear code $C$ of length $n$ and dimension $k$ is a $k$-dimensional subspace of the vector space $\left(\mathbb{F}_{p}\right)^{n}$.

## Definition 2

- Let $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{F}_{p}^{n}$. The Hamming distance between words $x$ and $y$ is the number $d(x, y)=\left|\left\{i: x_{i} \neq y_{i}\right\}\right|$.
- The minimum distance of the code $C$ is defined by $d=\min \{d(x, y): x, y \in C, x \neq y\}$.
- Notation: $[n, k, d]_{p}$ code
- it can detect at most $d-1$ errors in one codeword and correct at most $t=\left\lfloor\frac{d-1}{2}\right\rfloor$ errors


## Information sets

- The algorithm of permutation decoding (introduced in 1964 by MacWilliams) uses sets of code automorphisms called PD-sets, that are defined with respect to a given information set of the code.


## Definition 3

Let $C \subseteq \mathbb{F}_{p}^{n}$ be a linear $[n, k, d]$ code. For $I \subseteq\{1, \ldots, n\}$ let $p_{I}: \mathbb{F}_{p}^{n} \rightarrow \mathbb{F}_{p}^{|| |},\left.x \mapsto x\right|_{I}$, be an $\boldsymbol{I}$-projection of $\mathbb{F}_{p}^{n}$. Then $\boldsymbol{I}$ is called an information set for $C$ if $|\boldsymbol{I}|=k$ and $p_{l}(C)=\mathbb{F}_{p}^{|I|}$.

- The set of the first $k$ coordinates for a code with a generating matrix in the standard form is an information set.
- The first $k$ coordinates are then called information symbols and the last $n-k$ coordinates are the check symbols and they form the corresponding check set.


## PD-sets

## Definition 4

Let $C \subseteq \mathbb{F}_{p}^{n}$ be a linear $[\boldsymbol{n}, \boldsymbol{k}, \boldsymbol{d}]$ code that can correct at most $t$ errors, and let $\boldsymbol{I}$ be an information set for $C$. A subset $S \subseteq$ Aut $C$ is a PD-set for $C$ if every $t$-set of coordinate positions can be moved by at least one element of $S$ out of the information set $\boldsymbol{I}$.

The algorithm of permutation decoding is more efficient the smaller the size of a PD-set is. A lower bound on the size of a PD-set:

Theorem 2.1 (The Gordon bound)
If $S$ is a $P D$-set for an $[n, k, d]$ code $C$ that can correct $t$ errors, $r=n-k$, then:

$$
|S| \geq\left\lceil\frac{n}{r}\left\lceil\frac{n-1}{r-1}\left\lceil\cdots\left\lceil\frac{n-t+1}{r-t+1}\right\rceil \cdots\right\rceil\right\rceil\right\rceil
$$

## $s-P D-s e t s$

- for some codes PD-sets do not exist, or they are not easy to find
- then one can use partial permutation decoding, which includes finding s-PD-sets, where $s \leq t$
[3] J.D. Key, T.P. McDonough and V.C. Mavron, Partial permutation decoding for codes from finite planes, European J. Combin., 26 (2005), 665-682.


## Codes from projective planes $\operatorname{PG}(2, q)$

- Let $\operatorname{PG}(2, q)$ denote the Desarguesian projective plane of order $q=p^{h}$, where $p$ is a prime and $h$ is a positive integer, and let $M_{q}$ be the incidence matrix of $\operatorname{PG}(2, q)$.
- Then $M_{q}$ has $p$-rank $\binom{p+1}{2}^{h}+1$, and is symmetric, because of the self-duality of $\operatorname{PG}(2, q)$.
- The linear code $C_{\text {gen }}$ generated by the rows of $M_{q}$ over $\mathbb{F}_{p}$ is a $p$-ary code with parameters $\left[q^{2}+q+1,\binom{p+1}{2}^{h}+1, q+1\right]_{p}$, and the codewords of minimum weight are exactly the incidence vectors of the projective lines.
- The points of the geometry correspond to the positions of the code.


## Codes from projective planes $\operatorname{PG}(2, q)$

- The full automorphism group of $\operatorname{PG}(2, q)$ is the projective semi-linear group $\operatorname{P\Gamma L}(3, q)$, acting doubly transitively on points. Moreover, $\mathrm{P} \Gamma \mathrm{L}(3, q)$ is the full automorphism group of the code $C_{\text {gen }}$.
- For a translation $\tau_{u, v}:(\gamma, \beta) \mapsto(\nu, \beta)+(u, v)$, we denote $\hat{\tau}_{u, v}$ the corresponding element from $\operatorname{P\Gamma L}(3, q)$. Then for projective lines the following holds:

$$
\begin{gathered}
\hat{\tau}_{u, v}([\gamma, \beta, 1])=[\gamma+u, \beta+v, 1], \\
\hat{\tau}_{u, v}([1,0,0])=[1,0,0], \hat{\tau}_{u, v}([\gamma, 1,0])=[\gamma, 1,0] .
\end{gathered}
$$

- Let $\sigma_{1}$ be the automorphism that interchanges the first two homogeneous coordinates of the projective lines, and let $\sigma_{2}$ be the automorphism that interchanges the first and the last homogeneous coordinates.


## A basis for the code of $\operatorname{PG}(2, q), q$ even

- Let $\alpha$ be a primitive element of $\mathbb{F}_{q}$ and

$$
\beta=a_{h-1} \alpha^{h-1}+a_{h-2} \alpha^{h-2}+\cdots+a_{1} \alpha+a_{0} \in \mathbb{F}_{q}, \beta \neq 0,
$$

where all $a_{i} \in \mathbb{F}_{2}\left(\right.$ i.e. $\left.\beta=\left(a_{0}, a_{1}, \ldots, a_{h-1}\right)\right)$.

- The leading position of $\beta$ is

$$
\operatorname{Ip}(\beta)=\max \left\{i: a_{i} \neq 0\right\}+1
$$

For any projective point $b=(0,1, \beta)$ on the projective line $X_{0}=0$, we define:
$\operatorname{lp}(b)=\operatorname{lp}(\beta)$

- the leading position of $(0,1,0)$ is defined to be 0
- the leading position of $(0,0,1)$ is defined to be $+\infty$
- Let $|\beta|=\left|\left\{i: a_{i} \neq 0\right\}\right|$


## A basis for the code of $\mathrm{PG}(2, q), q$ even

- P. Vandendriessche conjectured how a basis for the code of the projective plane can look like for the case $p=2\left(\right.$ so $\left.q=2^{h}\right)$.
- The conjecture was proven to hold for $h \leq 9$ (i.e. $q \leq 512$ ) by computer and conjectured to hold for all even $q$.

Conjecture ([2])
The line $X_{0}=0$ and the set of lines

$$
\{\langle(0,1, \beta),(1,0, \gamma)\rangle:|\gamma|+\operatorname{lp}(\beta) \leq h\}
$$

together form a basis for $C_{\text {gen }}$.

- The line $X_{0}=0$ has homogeneous coordinates $[1,0,0]$.
- The set of lines from the previous Conjecture consists of lines with homogeneous coordinates $[\gamma, \beta, 1]$, where $|\gamma|+\operatorname{lp}(\beta) \leq h$.


## $s$-PD-sets for codes from $\operatorname{PG}(2, q), q=2^{h}$

- In this section, we describe a construction of 2-PD-sets for the binary codes from projective planes $\operatorname{PG}(2, q)$, where $q=2^{h}$ and $5 \leq h \leq 9$, and a construction of 3-PD-sets for the binary code from the projective plane $\mathrm{PG}\left(2,2^{9}\right)$.
- It was shown in [3] that PD-sets for full error-correction for projective Desarguesian planes do not exist for order $q$ large enough. Specifically, for: $q=p$ prime and $p>103, q=2^{e}$ and $e>12, q=3^{e}$ and $e>6, q=5^{e}$ and $e>4, q=7^{e}$ and $e>3, q=11^{e}$ and $e>2, q=13^{e}$ and $e>2$, or $q=p^{e}$ for $p>13$ and $e>1$
- s-PD-sets can be found for some small values of $s \geq 2$


## $s$-PD-sets for codes from $\operatorname{PG}(2, q), q=2^{h}$

- Since the full automorphism group of a Desarguesian projective plane is 2 -transitive on points, the whole group acts as a 2-PD-set, for any information set.
- Using a Moorhouse basis, 2-PD-sets of 43 elements for Desarguesian projective planes of any prime order $q=p$ were constructed in [3].
- The existence of 3-PD-sets, for any information set, for the code of any

Desarguesian projective plane was also proven in [3]. To ensure that the code will correct three errors, the order $q \geq 7$ must be taken there.

Table: Codes of $\mathrm{PG}(2, q)$ : lower bounds on sizes of PD-sets $(b)$ and 2-PD-sets $\left(b_{2}\right)$

| $q$ | Code | $t$ | $r$ | $b$ | $b_{2}$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 32 | $[1057,244,33]$ | 16 | 813 | 180 | 3 |
| 64 | $[4161,730,65]$ | 32 | 3431 | 1623 | 3 |
| 128 | $[16513,2188,129]$ | 64 | 14325 | 40696 | 3 |
| 256 | $[65793,6562,257]$ | 128 | 59231 | 3965945 | 3 |
| 512 | $[262657,19684,513]$ | 256 | 242973 | 3625171287 | 3 |

For $h=9$, the lower bound on the size of a 3-PD-set equals 4 .

In the following constructions, we will use as an information set the basis of Vandendriessche (which is a generalization of the Moorhouse basis for $q=p$ prime to the case $q=2^{h}$ ):

$$
I_{V}=\{[1,0,0]\} \cup\left\{[\gamma, \beta, 1]:|\gamma|+I p(\beta) \leq h ; \gamma, \beta \in \mathbb{F}_{q}\right\} .
$$

The corresponding check set is then:

$$
C_{V}=\left\{[\gamma, \beta, 1]:|\gamma|+\operatorname{lp}(\beta)>h ; \gamma, \beta \in \mathbb{F}_{q}\right\} \cup\left\{[\gamma, 1,0]: \gamma \in \mathbb{F}_{q}\right\} .
$$

## Construction of 2-PD-sets

The full automorphism group of a Desarguesian plane acts as a 2-PD-set. Our aim is to find smaller 2-PD-sets in the case of $\mathrm{PG}\left(2,2^{h}\right), 5 \leq h \leq 9$.

Theorem 4.1
Let $\Pi=P \mathrm{P}(2, q)$, where $q=2^{h}$, and let $G$ be the full automorphism group of $\Pi$. Furthermore, let $C_{\text {gen }}=\left[q^{2}+q+1,3^{h}+1, q+1\right]_{2}$ be the binary code of $\Pi$. If $5 \leq h \leq 9$, then $G$ contains a 2 -PD-set with 16 elements for $C_{\text {gen }}$, for the information set $I_{V}$.

## Proof.

Main idea: Let us assume that 2 errors occur.
I. Suppose that 2 errors are in the information set.
a) First, let those errors correspond to the lines $\left[\gamma_{1}, \beta_{1}, 1\right]$ with $\left|\gamma_{1}\right|+\operatorname{lp}\left(\beta_{1}\right) \leq h$ and $\left[\gamma_{2}, \beta_{2}, 1\right]$ with $\left|\gamma_{2}\right|+\operatorname{Ip}\left(\beta_{2}\right) \leq h$.
b) Let one of the errors correspond to the line $X_{0}=0$ (i.e. $[1,0,0]$ ), and the other to the line $[\gamma, \beta, 1]$, where $|\gamma|+I p(\beta) \leq h$.
II. Assume that one error is in $I_{V}$, and the other is in $C_{V}$.
a) Let those errors correspond to the lines $\left[\gamma_{1}, \beta_{1}, 1\right]$ with $\left|\gamma_{1}\right|+\operatorname{lp}\left(\beta_{1}\right) \leq h$ and $\left[\gamma_{2}, \beta_{2}, 1\right]$ with $\left|\gamma_{2}\right|+\operatorname{Ip}\left(\beta_{2}\right)>h$.
b) Let the error in $I_{V}$ correspond to the line $\left[\gamma_{1}, \beta_{1}, 1\right]$ such that $\left|\gamma_{1}\right|+\operatorname{lp}\left(\beta_{1}\right) \leq h$, and the error in $C_{V}$ to the line $\left[\gamma_{2}, 1,0\right]$.
c) Let the error in $I_{V}$ be $X_{0}=0$, and the one in $C_{V}[\gamma, 1,0]$.
d) Let the error in $I_{V}$ be $[1,0,0]$, and let the error in $C_{V}$ be $[\gamma, \beta, 1]$ with $|\gamma|+I p(\beta)>h$.
III. Let us assume that both errors are in the check set. This case is trivial.

## Remark 1

If Vandendriessche's Conjecture on a basis for the code of $\mathrm{PG}\left(2,2^{h}\right)$ is proven true also for $h>9$, then Theorem 4.1 is valid for every $h \geq 5$, since the construction of this 2-PD-set does not require that $h \leq 9$.

An explicit example of a 2-PD-set:
Corollary 5
Let $\Pi=\mathrm{PG}\left(2,2^{h}\right), 5 \leq h \leq 9$, and $C_{\text {gen }}=\left[2^{2 h}+2^{h}+1,3^{h}+1,2^{h}+1\right]_{2}$ be its binary code. Furthermore, let

$$
a=(1,0, \ldots, 0), a^{\prime}=(0,1,0, \ldots, 0), b=(1, \ldots, 1,0), c=(1, \ldots, 1) \in \mathbb{F}_{2^{h}} .
$$

Then the following set is a $2-P D$-set for $C_{\text {gen }}$, for the information set $I_{V}$ :

$$
S=\begin{aligned}
& \left\{\hat{\tau}_{0,0}, \hat{\tau}_{a, a}, \hat{\tau}_{a, b}, \hat{\tau}_{a, c}, \hat{\tau}_{a^{\prime}, b}, \hat{\tau}_{b, a}, \hat{\tau}_{b, b}, \hat{\tau}_{b, c}, \hat{\tau}_{c, a}, \hat{\tau}_{c, b}, \hat{\tau}_{c, c}\right. \\
& \left.\sigma_{1}, \hat{\tau}_{a, b} \sigma_{1}, \hat{\tau}_{a, c} \sigma_{1}, \hat{\tau}_{b, c} \sigma_{1}, \hat{\tau}_{a, c} \sigma_{2}\right\} .
\end{aligned}
$$

## Construction of 3-PD-sets

The following theorem gives a construction of 3-PD-sets for the code of the Desarguesian projective plane $\mathrm{PG}(2, q)$, where $q=2^{9}$.

Theorem 4.2
Let $\Pi=P G(2, q), q=2^{h}$, and let $G$ be its automorphism group. Furthermore, let $C_{\text {gen }}=\left[q^{2}+q+1,3^{h}+1, q+1\right]_{2}$ be the binary code of $\Pi$. If $h=9$, a 3-PD-set for $C_{\text {gen }}$ consisting of 75 elements can be found in $G$, for the information set $I_{V}$.

## Proof.

## Main idea:

Assume that 3 errors occur. I. Suppose that 3 errors are in $I_{V}$.
(a) First, let those errors correspond to the lines $\left[\gamma_{i}, \beta_{i}, 1\right]$ with $\left|\gamma_{i}\right|+\operatorname{lp}\left(\beta_{i}\right) \leq h$, where $i=1,2,3$.
(b) Let one of the errors correspond to the line $X_{0}=0$, and the other two to be the lines $\left[\gamma_{i}, \beta_{i}, 1\right]$ with $\left|\gamma_{i}\right|+\operatorname{lp}\left(\beta_{i}\right) \leq h$, where $i=1,2$.
II. Suppose that 2 errors are in $I_{V}$, and one is in $C_{V}$.
(a) Let the errors in $I_{V}$ be $\left[\gamma_{i}, \beta_{i}, 1\right]$ with $\left|\gamma_{i}\right|+I p\left(\beta_{i}\right) \leq h, i=1,2$, and the error in $C_{V}$ the line $\left[\gamma_{3}, \beta_{3}, 1\right]$ with $\left|\gamma_{3}\right|+\operatorname{lp}\left(\beta_{3}\right)>h$.
(b) Let the two errors in $I_{V}$ correspond to the lines $\left[\gamma_{i}, \beta_{i}, 1\right]$ with $\left|\gamma_{i}\right|+\operatorname{lp}\left(\beta_{i}\right) \leq h, i=1,2$, and the error in $C_{V}$ to the line $\left[\gamma_{3}, 1,0\right]$.
(c) Let one error be the line $X_{0}=0$, second the line $\left[\gamma_{1}, \beta_{1}, 1\right]$ with $\left|\gamma_{1}\right|+\operatorname{lp}\left(\beta_{1}\right) \leq h$, and the last the line $\left[\gamma_{2}, \beta_{2}, 1\right]$ with $\left|\gamma_{2}\right|+\operatorname{lp}\left(\beta_{2}\right)>h$.
(d) Let the errors in $I_{V}$ be the lines $[1,0,0]$ and $\left[\gamma_{1}, \beta_{1}, 1\right]$ such that $\left|\gamma_{1}\right|+\operatorname{Ip}\left(\beta_{1}\right) \leq h$, and the error in $C_{V}$ the line $\left[\gamma_{2}, 1,0\right]$.

## Proof.

III. Suppose that there are 2 errors in the check set, and one in $I_{V}$.
(a) Let those errors be $\left[\gamma_{1}, \beta_{1}, 1\right]$ with $\left|\gamma_{1}\right|+\operatorname{lp}\left(\beta_{1}\right) \leq h$, and $\left[\gamma_{i}, \beta_{i}, 1\right]$ with $\left|\gamma_{i}\right|+\operatorname{lp}\left(\beta_{i}\right)>h$, for $i=2,3$.
(b) Let the error in $I_{V}$ be the line $\left[\gamma_{1}, \beta_{1}, 1\right]$ with $\left|\gamma_{1}\right|+I p\left(\beta_{1}\right) \leq h$, and the errors in $C_{V}$ the lines $\left[\gamma_{2}, \beta_{2}, 1\right]$ with $\left|\gamma_{2}\right|+\operatorname{lp}\left(\beta_{2}\right)>h$ and $\left[\gamma_{3}, 1,0\right]$.
(c) Let the error in $I_{V}$ correspond to the line $\left[\gamma_{1}, \beta_{1}, 1\right]$ with $\left|\gamma_{1}\right|+\operatorname{lp}\left(\beta_{1}\right) \leq h$, and the errors in $C_{V}$ correspond to the lines $\left[\gamma_{2}, 1,0\right]$ and $\left[\gamma_{3}, 1,0\right]$.
(d) Let the error in $I_{V}$ correspond to the line $[1,0,0]$, and the other two correspond to the lines $\left[\gamma_{i}, \beta_{i}, 1\right]$ with $\left|\gamma_{i}\right|+\operatorname{lp}\left(\beta_{i}\right)>h, i=1,2$.
(e) Let the error in $I_{V}$ correspond to the line $[1,0,0]$ and the errors in $C_{V}$ correspond to the lines $\left[\gamma_{1}, \beta_{1}, 1\right]$ with $\left|\gamma_{1}\right|+I p\left(\beta_{1}\right)>h$ and $\left[\gamma_{2}, 1,0\right]$.
(f) Let the error in $I_{V}$ correspond to the line $[1,0,0]$ and the errors in $C_{V}$ correspond to the lines $\left[\gamma_{2}, 1,0\right]$ and $\left[\gamma_{3}, 1,0\right]$.
IV. If we have 3 errors in the check set, then we can use the identity map.

## Construction of 3-PD-sets

## Remark 2

The preceding explicit example of a 3-PD-set can only be used for the code of the projective plane $\mathrm{PG}\left(2,2^{9}\right)$ since we explicitly make use of a number of vectors of length 9 , which describe field elements of $\mathbb{F}_{2^{9}}$.

## Corollary 6

Let $\Pi=\mathrm{PG}\left(2,2^{9}\right), C_{\text {gen }}=\left[2^{18}+2^{9}+1,3^{9}+1,2^{9}+1\right]_{2}$ its 2 -ary code, and:

$$
\begin{aligned}
& a=(1,0, \ldots, 0), a^{\prime}=(0,1,0, \ldots, 0), a^{\prime \prime}=(0,0,1,0, \ldots, 0), \\
& b=(1,1,0, \ldots, 0), b^{\prime}=(0,0,1,1,0, \ldots, 0), b^{\prime \prime}=(0,0,0,0,1,1,0,0,0), \\
& c=(1,1,1,0, \ldots, 0), c^{\prime}=(0,0,0,1,1,1,0,0,0), c^{\prime \prime}=(0, \ldots, 0,1,1,1), \\
& d=(1,1,1,1,0, \ldots, 0), d^{\prime}=(0,0,0,0,1,1,1,1,0), d^{\prime \prime}=(1,1,0,0,1,1,0,0,0), \\
& d^{\prime \prime \prime}=(1,1,0,0,1,0,0,0,1), d^{\prime}=(0,0,1,1,0,0,1,0,1), d^{V}=(1,1,0,0,0,1,1,0,0), \\
& e=(1,1,1,1,1,0,0,0,0), e^{\prime}=(0,0,1,1,1,1,1,0,0), e^{\prime \prime}=(0,0,0,0,1,1,1,1,1), \\
& f=(1, \ldots, 1,0,0,0), f^{\prime}=(0,0,0,1, \ldots, 1), g=(1, \ldots, 1,0,0), \\
& i=(1, \ldots, 1,0), i^{\prime}=(1, \ldots, 1,0,1), j=(1, \ldots, 1) \in \mathbb{F}_{2^{9}} .
\end{aligned}
$$

Then the following set $S$ is a $3-P D$-set for $C_{\text {gen }}$, for the information set $I_{V}$ :

$$
\left.\begin{array}{rl} 
& S=\left\{\hat{\tau}_{x, f} \mid x \in X_{1}\right\} \cup\left\{\hat{\tau}_{x, g} \mid x \in X_{1} \cup\left\{c^{\prime}\right\}\right\} \cup\left\{\hat{\tau}_{x, i} \mid x \in X_{2}\right\} \cup\left\{\hat{\tau}_{x, j} \mid x \in\left\{a, a^{\prime}, i, j\right\}\right\} \\
& \cup\left\{\hat{\tau}_{j, a}, \hat{\tau}_{0,0}, \sigma_{1}, \hat{\tau}_{a, i} \sigma_{1}, \hat{\tau}_{a^{\prime}, i} \sigma_{1}, \hat{\tau}_{i, i} \sigma_{1}, \hat{\tau}_{j, i} \sigma_{1}, \hat{\tau}_{a, j} \sigma_{1}, \hat{\tau}_{a^{\prime}, j} \sigma_{1}, \hat{\tau}_{a^{\prime \prime}, j} \sigma_{1}, \hat{\tau}_{a, g} \sigma_{1}, \hat{\tau}_{i, g} \sigma_{1}, \hat{\tau}_{j, g} \sigma_{1}\right\} \\
& \cup\left\{\hat{\tau}_{a, j} \sigma_{2} \hat{\tau}_{0, a}, \hat{\tau}_{i, i} \sigma_{2}, \hat{\tau}_{j, i} \sigma_{2}, \hat{\tau}_{a, j} \sigma_{2}, \hat{\tau}_{a^{\prime}, j} \sigma_{2}\right\}, \text { where }
\end{array}\right\} \begin{aligned}
& X_{1}=\left\{a, a^{\prime}, b, b^{\prime}, b^{\prime \prime}, c, d, d^{\prime}, d^{\prime \prime \prime}, d^{\prime V}, d^{V}, e, e^{\prime \prime}, f, f^{\prime}, i, i^{\prime}, j\right\}, \\
& X_{2}=\left\{a, a^{\prime}, a^{\prime \prime}, c, c^{\prime}, c^{\prime \prime}, d, d^{\prime}, d^{\prime \prime}, e, e^{\prime}, e^{\prime \prime}, f, i, i^{\prime}, j\right\} .
\end{aligned}
$$

## Thank you!

