Some new extremal \mathbb{Z}_4 -codes of lengths 32 and 40

Matteo Mravić matteo.mravic@math.uniri.hr

Joint work with Sanja Rukavina Faculty of Mathematics, University of Rijeka, Croatia

- Binary [n, k] code is a k-dimensional vector subspace of a vector space 𝔽ⁿ₂,
- Every binary [n, k] code C have generator matrix in form:

$$G = \begin{bmatrix} F & I_k \end{bmatrix},$$

where rows of G form a basis of space C,

- Binary code C is doubly-even if the number of non-zero coordinates in every v ∈ C is the multiple of 4
- The dual code of C is $C^{\perp} = \{x \in \mathbb{F}_2^n \mid \langle x, y \rangle = 0 \text{ for all } y \in C\}$,
- A code C is self-orthogonal if $C \subseteq C^{\perp}$,
- Every doubly-even binary code is self-orthogonal

\mathbb{Z}_4 -codes

- A \mathbb{Z}_4 -code *C* of length *n* is a sub-module of the \mathbb{Z}_4 -module \mathbb{Z}_4^n ,
- **Dual code**: $C^{\perp} = \{x \in \mathbb{Z}_4^n | \langle x, c \rangle = 0 \text{ for all } c \in C\},\$
- C is self-dual if $C = C^{\perp}$,
- Every self-dual \mathbb{Z}_4 -code *C* can be represented with **generator matrix** of the form:

$$G = \begin{bmatrix} F & I_k + 2B \\ 2H & O \end{bmatrix},$$

where rows form a generating set of module C,

- It is of type $4^k 2^{n-2k}$,
- For $x = (x_1, x_2, \dots, x_n) \in C$, Euclidean weight of x is defined as

$$wt_E(x) = n_1(x) + 4n_2(x) + n_3(x),$$

where $n_i(x) = |\{x_j | x_j = i, j \in \{1, 2, ..., n\}\}|, i = 1, 2, 3.$

- Self-dual Z₄-code C is Type II code if Euclidean weight of every codeword is divisible by 8. Otherwise, it is Type I code.
- Type II \mathbb{Z}_4 -code of length *n* exists only for 8 *n*

3/21

\mathbb{Z}_4 -codes

• The minimum Euclidean weight of the \mathbb{Z}_4 -code C is:

$$wt_E(C) = \min \left\{ wt_E(x) \middle| x \in C, \, x \neq 0 \right\}.$$

- The minimum Euclidean weight of the self-dual \mathbb{Z}_4 -code *C* is at most $8 \lfloor \frac{n}{24} \rfloor + 8$,
- If C have minimum Euclidean weight 8 $\left|\frac{n}{24}\right|$ + 8 then it is extremal,
- The **Euclidean weight enumerator** of the self-dual \mathbb{Z}_4 -code *C* is polynomial $p(x) = \sum_{i=0}^n A_{4i} x^{4i}$, where $A_{4i} = |\{v \in C | wt_E(v) = 4i\}|$.

Remark

There are two binary codes associated with self-dual \mathbb{Z}_4 -code:

• Residue code:

$$Res(C) = \{c \pmod{2} \mid c \in C\}.$$

Torsion code:

$$Tor(C) = \{c \in \mathbb{F}_2^n | 2c \in C\}.$$

Construction of self-dual \mathbb{Z}_4 -code from doubly-even binary code

Start with a doubly-even binary code C₁ (Res(C)):

$$G_1 = \begin{bmatrix} F & I_k \end{bmatrix}$$

2 Expand the matrix G_1 to the generator matrix of C_1^{\perp} (*Tor*(*C*)):

$$G_2 = \left[egin{array}{cc} F & I_k \ H & O \end{array}
ight],$$

Solution Choose a binary $k \times k$ matrix B such that the rows of:

$$G(B) = \begin{bmatrix} F & I_k + 2B \\ 2H & O \end{bmatrix},$$

are orthogonal. The matrix G(B) is the generator matrix of a self-dual \mathbb{Z}_4 -code.

Remark

Elements above the diagonal of *B* can be chosen freely, and they uniquely determine elements below the diagonal. Therefore, there are $2^{\frac{k(k-1)}{2}}$ self-dual \mathbb{Z}_4 -codes constructed from a fixed doubly-even binary [n, k] code.

5/21

V. Pless, J. S. Leon, J. Fields, All Z4 Codes of Type II and Length 16 Are Known, J. Comb. Theory, Ser. A 78 (1997), 32-50.

P. Gaborit, M. Harada, Construction of Extremal Type II Codes over Z4, Des. Codes, Cryptogr. 16(3) (1999), 257-269.

Binary residue codes obtained from skew-symmetric Hadamard matrix of order 8

Code	[n,k,d]	0	4	8	12	16
$C_{32,1} = RM(1,5)$	$\left[32,6,16\right]$	1				62
C _{32,2} , C _{32,7}	[32, 9, 8]	1		28		454
C _{32,3}	[32, 12, 4]	1	28	84	420	3030
C _{32,4}	$\left[32,15,4\right]$	1	56	924	3976	22854
C _{32,5}	[32, 9, 4]	1	7		49	398
C _{32,6}	[32, 15, 4]	1	42	560	5558	20446
C _{32,8}	[32, 10, 4]	1	14	4	98	790
$C_{32,9}, C_{32,13}$	$\left[32, 16, 4 \right]$	1	56	1180	11144	40774
C _{32,10}	[32, 7, 8]	1		4		118
C _{32,11}	[32, 10, 8]	1		32	112	734

Code	[n,k,d]	0	4	8	12	16
C _{32,12}	$\left[32,13,4\right]$	1	28	228	868	5942
C _{32,14}	$\left[32,10,8\right]$	1		60		902
C _{32,15}	$\left[32,10,4\right]$	1	8	28	56	838
C _{32,16}	$\left[32, 16, 4 \right]$	1	120	1820	8008	45638
$C_{32,17}$	[32, 7, 4]	1	1		7	110
C _{32,18}	$\left[32,10,4\right]$	1	8	7	140	712
C _{32,19}	$\left[32,13,4\right]$	1	36	196	924	5878
C _{32,20}	$\left[32,10,4\right]$	1	1	42	63	810
C _{32,21}	$\left[32, 16, 4 \right]$	1	50	1120	11438	40318

S. Ban, D. Crnković, M. Mravić and S. Rukavina, New extremal Type II Z₄ -codes of length 32 obtained from Hadamard matrices, Discrete Math. Algorithms Appl. 11(5) (2019), 1950057

Obtained extremal \mathbb{Z}_4 -codes of length 32 with RS

- ¹There is an unique, known, extremal Type II \mathbb{Z}_4 -code with residue code RM(1,5)
- In total 4 new type II codes, and 443 new Type I codes
- RS method was unable to find new codes on some binary residue codes

	Туре І											
The binary	The number of obtained	At least	The	The binary								
code	extremal \mathbb{Z}_4 -codes	inequivalent	type	residue code								
C _{32,3}	13	10	4 ¹² 2 ⁸	[32,12,4]								
C _{32,4}	6	6	41522	[32,15,4]								
C _{32,8}	35	2	4 ¹⁰ 2 ¹²	[32,10,4]								
C _{32,12}	5	5	4 ¹³ 2 ⁶	[32,13,4]								
C _{32,15}	210	2	4 ¹⁰ 2 ¹²	[32,10,4]								
C _{32,16}	272	240	4 ¹⁶ 2 ⁰	[32,16,4]								
C _{32,18}	44	1	4 ¹⁰ 2 ¹²	[32,10,4]								
C _{32,19}	188	177	4 ¹³ 2 ⁶	[32,13,4]								

Туре II												
The binary	The number of obtained	At least	The	The binary								
code	extremal \mathbb{Z}_4 -codes	inequivalent	type	residue code								
C _{32,1}	118	1	4 ⁶ 2 ²⁰	[32,6,16]								
C _{32,2}	114	1	4 ⁹ 2 ¹⁴	[32,9,8]								
C32,7	91	1	4 ⁹ 2 ¹⁴	[32,9,8]								
C _{32,10}	296	1	4 ⁷ 2 ¹⁸	[32,7,8]								
C _{32,14}	304	1	410212	[32,10,8]								

¹M. Harada, On the Residue Codes of Extremal Type II Z₄ -Codes of Lengths 32 and 40, Discrete Math. (2011), 2148-2157.

S. Ban, D. Crnković, M. Mravić and S. Rukavina, New extremal Type II Z₄ -codes of length 32 obtained from Hadamard matrices, Discrete Math. Algorithms Appl. 11(5) (2019), 1950057

- Checking minimum Euclidean weight for every possible (randomly generated) matrix B (in total $2^{\frac{k(k-1)}{2}}$),
- Problem: slow computation of minimum Euclidean weight even for small lengths and dimensions of starting binary code!

n	k	One code	Search space
16	6	< 0.001s	32.768s
24	6	0.734s	6.6h,
32	6	170.830s	10.6yrs

All computations are performed by MAGMA

Definition

Let $B = [b_{s,t}]$ and $B' = [b'_{s,t}]$ be two $k \times k$ binary matrices that define generator matrices G(B) and G(B') of two self-dual \mathbb{Z}_4 -codes C and C'. Let (i,j), $1 \le i < j \le k$, be the upper diagonal position of B such that $b_{ij} = 0$. If for $1 \le s < t \le k$:

$$egin{aligned} b_{st}' = egin{cases} b_{st}, & (s,t)
eq (i,j) \ 1, & (s,t) = (i,j), \end{aligned}$$

then we say that C' is (i, j)-neighbor of C.

Change of weight by codeword

Theorem

Let C be a self-dual \mathbb{Z}_4 -code of length n with the generator matrix G(B) as before. Let C' be the (i, j)-neighbor of C, with the generator matrix G(B') as before. Let $v \in C$ be of the form:

$$v = c_i g_i + c_j g_j + \sum_{\substack{m=1\\m\neq i,j}}^k c_m g_m + \sum_{\substack{m=k+1}}^{n-k} c_m g_m,$$

where g_s , $s \in \{1, 2, ..., n - 2k\}$, is the *s*-th row of the matrix G(B). Let $v' \in C'$ be:

$$v' = c_i g'_i + c_j g'_j + \sum_{\substack{m=1 \ m \neq i,j}}^k c_m g_m + \sum_{\substack{m=k+1}}^{n-k} c_m g_m.$$

If c_i and c_j are both even or both odd then $wt_E(v') = wt_E(v)$.

Change of weight by codeword

Theorem

Let C, C', G(B), G(B'), v and v' be as in the previous theorem. Let c_i and c_j be of different parity, and $s \in \{i, j\}$ such that c_s is even. Let $\sigma(c_i, c_j)$ be defined as follows:

$$\sigma\left(c_{i},c_{j}
ight) = egin{cases} -1,&2\in\left\{ c_{i},c_{j}
ight\} ,\ 1,&2
otin\left\{ c_{i},c_{j}
ight\} . \end{cases}$$

Let S be the following set:

$$S = \left\{t \in \{1, 2, \ldots, k\} \setminus \{i, j\} \left| (c_t g_t)_{n-k+s} = 2\right\}.\right.$$

Then, $wt_E(v') = wt_E(v) + 4r$, where r is defined as follows:

$$r = \begin{cases} (-1)^{|S|} \cdot \sigma(c_i, c_j), & b_{i,j} \neq b_{j,i} \text{ and } s = j, \\ (-1)^{|S| + b_{i,j} + b_{j,i}} \cdot \sigma(c_i, c_j), & \text{otherwise.} \end{cases}$$

$$\begin{split} v &= c_i g_i + c_j g_j + \sum_{\substack{m=1 \\ m \neq i,j}}^k c_m g_m + \sum_{\substack{m=k+1 \\ m \neq i,j}}^{n-k} c_m g_m, \\ v' &= c_i g_i' + c_j g_j' + \sum_{\substack{m=1 \\ m \neq i,j}}^k c_m g_m + \sum_{\substack{m=k+1 \\ m \neq i,j}}^{n-k} c_m g_m. \end{split}$$

			i		j		
	Γ°		b_{i1}		b_{1j}		b_{1k}
	:	÷.,	:		:		:
i	b _{i1}		0		b _{ij}		b _{ik}
B =	:		:	۰.	:		:
j	b _{j1}		bji		0		b _{jk}
	:		:		:	÷.	:
	 		b _{ki}		b _{kj}		0 .

$b_{ij} = b_{ji}$								
ci	cj	<i>I</i> (mod 2)	$ J \pmod{2}$	r				
0	1,3	0	*	1				
		1	*	-1				
1,3	0	*	0	1				
		*	1	-1				
2	1,3	0	*	-1				
		1	*	1				
1.3	2	*	0	-1				
		*	1	1				

$b_{ij} eq b_{ji}$									
ci	cj	<i>I</i> (mod 2)	$ J \pmod{2}$	r					
0	1,3	0	*	-1					
		1	*	1					
1,3	0	*	0	1					
		*	1	-1					
2	1,3	0	*	1					
		1	*	-1					
1,3	2	*	0	-1					
		*	1	1					

Theorem

Let C be a self-dual \mathbb{Z}_4 -code of length n, and C' its (r, s)-neighbor. Let $p(x) = \sum_{i=0}^n A_{ii}x^{4i}$ and $p'(x) = \sum_{i=0}^n A'_{ii}x^{4i}$ be the Euclidean weight enumerators of C and C', respectively. For $m \in \{0, 4, \dots, 4n\}$, let \mathcal{G}_m and \mathcal{G}_m denote the sets of codewords of Euclidean weight m from C and C', respectively. For $i = 1, 2, \dots, n$, we define the following sets and their cardinality:

$$\begin{array}{ll} S_{ii}^- = \left\{ v \in S_{4i} | v' \in S_{4i-4}^* \right\}, & |S_{ii}^-| = A_{ii}^-, \\ S_{4i}^0 = \left\{ v \in S_{4i} | v' \in S_{4i}^+ \right\}, & |S_{4i}^0| = A_{4i}^0, \\ S_{4i}^+ = \left\{ v \in S_{4i} | v' \in S_{4i+4}^+ \right\}, & |S_{4i}^+| = A_{4i}^+, \end{array}$$

where for $v \in C$, v' is the codeword from C' with the same coefficients as v. Then the following holds:

- $A'_{4i} = A^+_{4i-4} + A^0_{4i} + A^-_{4i+4}$, for i > 1, and $A'_4 = A^0_4 + A^-_8$
- $A'_4 + A'_8 + \ldots + A'_{N-4} = A_4 + A_8 + \ldots + A_{N-4} A^+_{N-4} + A^-_N$

where $N \in \{8, 12, \dots, 4n\}$.

The modification

Let *N* be desired minimum Euclidean weight of the self-dual \mathbb{Z}_4 -code $(N = 8 \lfloor \frac{n}{24} \rfloor + 8$ for the extremal \mathbb{Z}_4 -codes). Then:

- Start with the arbitrary matrix B,
- In each iteration of the algorithm do the following:
 - Generate a self-dual \mathbb{Z}_4 -code *C* with the generator matrix *G*(*B*), and evaluate

$$D = |\{v \in C | 0 < wt_E(v) < N\}|,\$$

- If D = 0 then C is extremal,
- Determine the sets S_{N-4} and S_N ,
- For every upper diagonal element (i, j) of the matrix B which is equal to 0 determine the (i, j)-neighbor C'. If extremality of the corresponding neighbor is undetermined, evaluate numbers A⁺_{N-4}, A⁻_N and d = D - A⁺_{N-4} + A⁻_N.
- All C' that have d = 0 are extremal,
- Mark all neighbors of B as checked,
- Repeat the process with the next matrix *B*.

Performance of the algorithm

Figure: Comparison of the random search method (RS), the neighborhood search with lexicographic traversal (NS-L), and the neighborhood search with random choice of B (NS-R), on residue code [16, 6, 4]

- RS method: 155.844s
- NS-L better untill 127.438s,
- NS-R 95% of codes in 115.047s,
- Slowdown due to exploitation of unchecked codes.

Obtained extremal \mathbb{Z}_4 -codes of length 32 with NS-R

The binary code	# of obtained extremal \mathbb{Z}_4 -codes	# of nonequivalent Type I	# of nonequivalent Type II	The	The binary residue code
C _{32,2}	6137	≥ 3	≥ 1(1)	4 ⁹ 2 ¹⁴	[32, 9, 8]
C32,3	161	≥ 88	\geq 35(1)	4 ¹² 2 ⁸	[32, 12, 4]
C _{32,4}	42	24	18	4 ¹⁵ 2 ²	[32, 15, 4]
C _{32,5}	1664	≥ 2	≥ 1	4 ⁹ 2 ¹⁴	[32, 9, 4]
C _{32,6}	27	0	≥ 27	4 ¹⁵ 2 ²	[32, 15, 4]
C _{32,7}	3035	\geq 3	$\geq 1(1)$	4 ⁹ 2 ¹⁴	[32, 9, 8]
C _{32,8}	532	$\geq 21(1)$	≥ 6	$4^{10}2^{12}$	[32, 10, 4]
C _{32,9}	11	0	11	4 ¹⁶	[32, 16, 4]
C _{32,10}	44687	≥ 3	$\geq 1(1)$	4 ⁷ 2 ¹⁸	[32, 7, 8]
C _{32,11}	409	0	≥ 1	$4^{10}2^{12}$	[32, 10, 8]
C _{32,12}	7	2	5	4 ¹³ 2 ⁶	[32, 13, 4]
C _{32,13}	11	0	11	4 ¹⁶	[32, 16, 4]
C _{32,14}	722	≥ 2	$\geq 1(1)$	$4^{10}2^{12}$	[32, 10, 8]
C _{32,15}	3456	$\ge 99(1)$	≥ 24	$4^{10}2^{12}$	[32, 10, 4]
C _{32,16}	17	8(1)	9	4 ¹⁶	[32, 16, 4]
C _{32,17}	4800	≥ 2	$\geq 1(1)$	4 ⁷ 2 ¹⁸	[32, 7, 4]
C _{32,18}	24	≥ 5	≥ 1	$4^{10}2^{12}$	[32, 10, 4]
C _{32,19}	109	\geq 55(2)	$\ge 49(1)$	4 ¹³ 2 ⁶	[32, 13, 4]
C _{32,20}	1483	≥ 7	≥ 5	$4^{10}2^{12}$	[32, 10, 4]
C _{32,21}	8	0	8	416	[32, 16, 4]

- NS-R successfully constructed extremal codes from missing binary residue codes
- Non equivalence determined by invariants,
- In total 182 new Type II codes, and 762 new Type I codes

15/21

In context of known Type II codes

Туре	4 ⁶ 2 ²⁰	4 ⁷ 2 ¹⁸	4 ⁸ 2 ¹⁶	4 ⁹ 2 ¹⁴	4 ¹⁰ 2 ¹²	4 ¹¹ 2 ¹⁰
#	1	7	27	15 +1	5+37	3
References	[5]	[1, 2, 5]	[1,5]	[1, 2, 5]	[1, 2, 5]	[5,6]
Туре	4 ¹² 2 ⁸	4 ¹³ 2 ⁶	4 ¹⁴ 2 ⁴	4 ¹⁵ 2 ²	4 ¹⁶	
#	1+35	220 +53	5148	356 <mark>+18</mark>	134 +39	
References	[5]	[3, 5]	[1, 3, 5]	[3, 5]	[4, 5]	

¹S. Ban, Construction of Extremal Type II Z4-Codes, PhD Thesis, University of Zagreb, Zagreb, Croatia, 2019. (in Croatian)

 2 S. Ban, D. Crnković, M. Mravić, S. Rukavina, New extremal Type II \mathbb{Z}_4 -codes of length 32 obtained from Hadamard matrices, Discrete Math. Algorithms Appl. 11(5) (2019), 1950057

 3 K. H. Chan, Three new methods for construction of extremal Type II \mathbb{Z}_{4} -codes, PhD Thesis, University of Illinois at Chicago, 2012.

⁴P. Gaborit, M. Harada, Construction of Extremal Type II Codes over Z₄, Des. Codes, Cryptogr. 16(3) (1999), 257-269.

⁵M. Harada, On the Residue Codes of Extremal Type II Z₄ -Codes of Lengths 32 and 40, Discrete Math. (2011), 2148-2157.

⁶V. Pless, P. Solé, Z. Qian, S. Antipolis, Cyclic Self-Dual Z₄ -Codes, Finite Fields Appl. 3 (1997), 48-69.

Туре	4 ⁷ 2 ²⁶	4 ⁸ 2 ²⁴	4 ⁹ 2 ²²	4 ¹⁰ 2 ²⁰	4 ¹¹ 2 ¹⁸	$4^{12}2^{16}$	4 ¹³ 2 ¹⁴
#	3	228	100	2	3	20	15
References	[1,4]	[1,4]	[1,4]	[1, 4]	[1,4]	[1, 4]	[1, 4, 5]
Туре	$4^{14}2^{12}$	4 ¹⁵ 2 ¹⁰	4 ¹⁶ 2 ⁸	4 ¹⁷ 2 ⁶	4 ¹⁸ 2 ⁴	4 ¹⁹ 2 ²	4 ²⁰
#	5	3	1	134	902	432	94343
References	[1, 4]	[1, 4]	[4]	[2,4]	[1, 2, 4]	[2, 4]	[3, 5]

¹S. Ban, S. Rukavina, On some new extremal Type II Z₄-codes of length 40, Math. Commun. 25(2) (2020), 253-268.

 2 K. H. Chan, Three new methods for construction of extremal Type II \mathbb{Z}_{4} -codes, PhD Thesis, University of Illinois at Chicago, 2012.

³M. Harada, Extremal Type II Z₄-codes constructed from binary doubly even self-dual codes of length 40, Discrete Math. **340**(10) (2017), 253-268.

⁴M. Harada, On the Residue Codes of Extremal Type II Z₄ -Codes of Lengths 32 and 40, Discrete Math. (2011), 2148-2157.
 ⁵V. Pless, P. Solé, Z. Qian, S. Antipolis, Cyclic Self-Dual Z₄ -Codes, Finite Fields Appl. 3 (1997), 48-69.

Binary residue codes of length 40

Code	[n,k,d]	0	4	8	12	16	20
C _{40,1}	[40, 7, 12]	1			1	11	102
C _{40,2}	[40, 7, 16]	1				15	96
C _{40,3}	[40, 10, 4]	1	6	1	10	150	688
C _{40,4}	$\left[40,10,12\right]$	1			18	223	540
C _{40,5}	[40, 11, 4]	1	10	6	22	313	1344
C _{40,6}	[40, 11, 12]	1			34	479	1020
C _{40,7}	[40, 11, 12]	1			42	447	1068
C _{40,8}	[40, 15, 4]	1	37	175	688	5296	20374
C _{40,9}	[40, 15, 8]	1		10	634	7589	16300
C _{40,10}	$\left[40,15,8\right]$	1		6	658	7529	16380
C _{40,11}	$\left[40,16,4\right]$	1	47	313	1548	10694	40330
C _{40,12} , C _{40,13}	[40, 20, 8]	1	0	285	21280	239970	525504
C _{40,14}	[40, 20, 4]	1	190	4845	38760	125970	709044

¹S. Ban, S. Rukavina, On some new extremal Type II Z₄ -codes of length 40, Math. Commun. 25(2) (2020), 253-268.

²M. Harada, On the Residue Codes of Extremal Type II Z₄ -Codes of Lengths 32 and 40, Discrete Math. (2011), 2148-2157.

 3 D. Crnković, M. Mravić, S. Rukavina, Construction of extremal \mathbb{Z}_{4} -codes using a neighborhood search algorithm (submitted)

Obtained extremal \mathbb{Z}_4 -codes of length 40

The binary code	The type	$\#$ of obtained extremal \mathbb{Z}_4 codes	# of nonequivalent Type I	# of nonequivalent Type II	
C _{40,1}	4 ⁷ 2 ²⁶	488	\geq 4	≥ 1	
C _{40,2}	4 ⁷ 2 ²⁶	959	\geq 3	0	
C _{40,3}	4 ¹⁰ 2 ²⁰	17	≥ 6	0	
C _{40,4}	4 ¹⁰ 2 ²⁰	129	≥ 3	≥ 3	
C _{40,5}	4 ¹¹ 2 ¹⁸	7	7	0	
C _{40,6}	4 ¹¹ 2 ¹⁸	31	0	\geq 5(1)	
C _{40,7}	4 ¹¹ 2 ¹⁸	13	0	≥ 4	
C _{40,8}	4 ¹⁵ 2 ¹⁰	37	≥ 17	0	
C _{40,9}	4 ¹⁵ 2 ¹⁰	7	0	7	
C _{40,10}	4 ¹⁵ 2 ¹⁰	9	0	9	
C _{40,11}	4 ¹⁶ 2 ⁸	104	≥ 14	≥ 1	
C _{40,12}	420	7	0	7	
C _{40,13}	420	1	0	1	
C _{40,14}	4 ²⁰	4194	\geq 4090	≥ 3	

• In total 4144 Type I codes and 40 Type II codes,

• To the best of our knowledge, Type I codes of types $4^72^{26}, 4^{11}2^{18}, 4^{15}2^{10}, 4^{16}2^8$ have not been constructed before.

Туре	4 ⁷ 2 ²⁶	4 ⁸ 2 ²⁴	4 ⁹ 2 ²²	4 ¹⁰ 2 ²⁰	4 ¹¹ 2 ¹⁸	4 ¹² 2 ¹⁶	4 ¹³ 2 ¹⁴
#	3+1	228	100	2 +3	3+8	20	15
References	[1, 4]	[1, 4]	[1, 4]	[1, 4]	[1,4]	[1, 4]	[1, 4, 5]
Туре	4 ¹⁴ 2 ¹²	4 ¹⁵ 2 ¹⁰	4 ¹⁶ 2 ⁸	4 ¹⁷ 2 ⁶	4 ¹⁸ 2 ⁴	4 ¹⁹ 2 ²	4 ²⁰
#	5	3+1 <mark>6</mark>	1 + 1	134	902	432	94343+11
References	[1, 4]	[1, 4]	[4]	[2, 4]	[1, 2, 4]	[2, 4]	[3, 5]

¹S. Ban, S. Rukavina, On some new extremal Type II Z₄-codes of length 40, Math. Commun. 25(2) (2020), 253-268.

 2 K. H. Chan, Three new methods for construction of extremal Type II \mathbb{Z}_{4} -codes, PhD Thesis, University of Illinois at Chicago, 2012.

³M. Harada, Extremal Type II Z₄-codes constructed from binary doubly even self-dual codes of length 40, Discrete Math. **340**(10) (2017), 253-268.

⁴M. Harada, On the Residue Codes of Extremal Type II Z₄ -Codes of Lengths 32 and 40, Discrete Math. (2011), 2148-2157.
 ⁵V. Pless, P. Solé, Z. Qian, S. Antipolis, Cyclic Self-Dual Z₄ -Codes, Finite Fields Appl. 3 (1997), 48-69.

Thank you!