On the additivity of 2- (v, k, λ) designs

Anamari Nakic

University of Zagreb

Joint work with Marco Buratti

Rijeka, July 2023

4 ロ > 4 日 > 4 日 > 4 日 > 4 日 > 4 日 > 9 4 0 4 1/41

Definition

A 2- (v, k, λ) design is a pair (V, \mathcal{B}) such that

- V is a set of v points;
- B is a collection of k-subsets of V (called blocks);
- each 2-subset of V is contained in λ blocks.

Figure: The Fano plane. 2-(7, 3, 1) design.

A 2-design is symmetric if $|V| = |\mathcal{B}|$.

• A Steiner system is a design with $\lambda = 1$.

Definition (Caggegi, Falcone, Pavone, 2017) A design (V, \mathcal{B}) is *additive* under an abelian group G if

 $\blacktriangleright \ V \subseteq G \text{ and }$

$$\sum_{x \in B} x = 0, \quad \forall B \in \mathcal{B}.$$

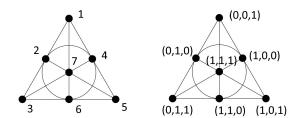


Figure: The Fano plane is additive under \mathbb{Z}_2^3 .

▶ check for one one line: (0,0,1) + (0,1,0) + (0,1,1) = (0,0,0)

Definition (Caggegi, Falcone, Pavone, 2017) A design (V, \mathcal{B}) is *additive* under an abelian group G if

 $\blacktriangleright \ V \subseteq G \text{ and }$

$$\sum_{x \in B} x = 0, \quad \forall B \in \mathcal{B}.$$

Examples:

Parameters	Group	Description
$(p^{mn}, p^m, 1)$	\mathbb{Z}_p^{mn}	$AG_1(n,p^m)$, points-lines design of $AG(n,p^m)$
$([n+1]_2, 3, 1)$	\mathbb{Z}_2^n	$PG_1(n,2)$, points-lines design of $PG(n,2)$

The number of points of $\mathsf{PG}(n,q)$ is denoted by $[n+1]_q = \frac{q^{n+1}-1}{q-1}$

(a)

Definition (Cameron, 1974. Delsarte, 1976.) A 2- (v, k, λ) design over \mathbb{F}_q is a pair (V, \mathcal{B}) such that

- V is the set of points of PG(v-1,q)
- ▶ \mathcal{B} is a collection of (k-1)-dimensional subspaces PG(v-1,q) (blocks)
- each line is contained in λ blocks.

Properties:

- The Fano plane is (3, 2, 1) design over \mathbb{F}_2
- (v, k, λ) design over \mathbb{F}_q is a classical $([v]_q, [k]_q, \lambda)$ design
- (v, k, λ) design over \mathbb{F}_2 is additive under \mathbb{Z}_2^v

Parameters	Description	Reference	
$([v]_2, 7, 7)$	$(v,3,7)$ design over \mathbb{F}_2 for all v odd	Thomas, 1987 + Buratti, A.N., 2019	
(8191, 7, 1)	$(13,3,1)$ design over \mathbb{F}_2	Braun, Etzion, Ostergaard, Vardy, Wassermann, 2017	

Additivity of...

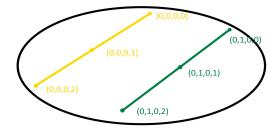
- ► *k*-parallel designs
- $\blacktriangleright \mathsf{PG}_d(n,q)$
- (cyclic) symmetric designs
- Steiner 2-designs
 - A.N. The first example of a simple 2-(81, 6, 2) design. Examples and Counterexamples, 1 (2021)
 - A.N., M. Buratti, Super-regular Steiner 2-designs. Finite Fields and Their Applications Volume 85, 102116 (2023)
 - A.N., M. Buratti, Additivity of symmetric and subspace designs, arXiv:2307.08134

Additivity of k-parallel designs

< □ ▶ < ⑦ ▶ < ≧ ▶ < ≧ ▶ 7/41

Simple (81, 6, 2) design

- construct a simple additive (81, 6, 2) design
- ▶ the only known (81, 6, 2) design has repeated blocks (Hanani, 1975)
- \blacktriangleright we note: every union of two parallel lines of AG(4,3) is a zero-sum 6-subset of \mathbb{Z}_3^4



Simple (81, 6, 2) design

- ▶ 432 blocks are obtained from 16 orbits of \mathbb{Z}_3^4 of size 27 (representatives bellow)
- it is additive!
- it is simple
- ▶ the only known (81, 6, 2) design has repeated blocks (Hanani, 1975)

 $\{(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 0, 2), (0, 1, 0, 0), (0, 1, 0, 1), (0, 1, 0, 2)\}$ $\{(0,0,0,0), (0,0,1,1), (0,0,2,2), (2,1,0,0), (2,1,1,1), (2,1,2,2)\}$ $\{(0,0,0,0), (0,1,1,1), (0,2,2,2), (0,0,1,0), (0,1,2,1), (0,2,0,2)\}$ $\{(0,0,0,0), (0,1,2,0), (0,2,1,0), (2,0,2,1), (2,1,1,1), (2,2,0,1)\}$ $\{(0,0,0,0), (1,0,0,0), (2,0,0,0), (0,2,2,1), (1,2,2,1), (2,2,2,1)\}$ $\{(0,0,0,0), (1,0,1,0), (2,0,2,0), (0,1,0,0), (1,1,1,0), (2,1,2,0)\}$ $\{(0,0,0,0), (1,0,1,1), (2,0,2,2), (0,0,2,0), (1,0,0,1), (2,0,1,2)\}$ $\{(0, 0, 0, 0), (1, 0, 2, 0), (2, 0, 1, 0), (0, 2, 1, 1), (1, 2, 0, 1), (2, 2, 2, 1)\}$ $\{(0,0,0,0), (1,0,2,2), (2,0,1,1), (0,1,2,1), (1,1,1,0), (2,1,0,2)\}$ $\{(0,0,0,0), (1,1,0,0), (2,2,0,0), (0,2,0,1), (1,0,0,1), (2,1,0,1)\}$ $\{(0,0,0,0), (1,1,0,1), (2,2,0,2), (0,2,2,0), (1,0,2,1), (2,1,2,2)\}$ $\{(0, 0, 0, 0), (1, 1, 2, 0), (2, 2, 1, 0), (0, 0, 2, 1), (1, 1, 1, 1), (2, 2, 0, 1)\}$ $\{(0, 0, 0, 0), (1, 1, 2, 1), (2, 2, 1, 2), (0, 2, 1, 1), (1, 0, 0, 2), (2, 1, 2, 0)\}$ $\{(0, 0, 0, 0), (1, 1, 2, 2), (2, 2, 1, 1), (0, 2, 2, 0), (1, 0, 1, 2), (2, 1, 0, 1)\}$ $\{(0, 0, 0, 0), (1, 2, 1, 2), (2, 1, 2, 1), (0, 0, 2, 1), (1, 2, 0, 0), (2, 1, 1, 2)\}$ $\{(0, 0, 0, 0), (1, 2, 2, 0), (2, 1, 1, 0), (0, 2, 2, 1), (1, 1, 1, 1), (2, 0, 0, 1)\}$

Simple (81, 6, 2) design

- ▶ 432 blocks are obtained from 16 orbits of \mathbb{Z}_3^4 of size 27 (representatives bellow)
- it is additive!
- it is simple
- ▶ the only known (81, 6, 2) design has repeated blocks (Hanani, 1975)

[A.N., Examples and Counterexamples, 2021]

Parameters	Group	Description
(81, 6, 2)	\mathbb{Z}_3^4	each block is a union of two parallel lines of $AG(4,3)$

Definition (k-parallel design)

A (q^n, kq, λ) design (V, \mathcal{B}) is k-parallel if

 \triangleright V is the set of points of AG(n, q),

• each block $B \in \mathcal{B}$ is union of k parallel lines of AG(n, q).

Every k-parallel design is additive under \mathbb{F}_{q^n} .

Theorem

Let G be a t-transitive group acting on the set X, |X| = v, and let B be a subset X, |B| = k.

Then the pair (X, \mathcal{B}) , where \mathcal{B} is the orbit of B under G

$$\mathcal{B} = \{ \alpha(B) \mid \alpha \in G \}$$

is a t- (v, k, λ) designs for $\lambda = \frac{|G|}{|Stab_G(B)|} \cdot \frac{k(k-1)}{v(v-1)}$.

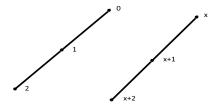
Natural choice of G to obtain k-parallel designs if the group G of affinities of \mathbb{F}_q which acts sharply 2-transitively on \mathbb{F}_q

 $G = \{\alpha_{mt} : \mathbb{F}_q \to \mathbb{F}_q, \alpha_{mt}(x) = mx + t \mid m \in \mathbb{F}_q \setminus \{0\}, t \in \mathbb{F}_q\}$

k-parallel $(27, 6, \lambda)$ designs

- The group G of affinities of \mathbb{F}_{27} is sharply 2-transitive on \mathbb{F}_{27}
- ▶ The following 6-subset B of \mathbb{F}_{27} is a union of 2 parallel lines of AG(3,3)

$$B = \{0, 1, 2, x, x + 1, x + 2\}, \qquad x \in \mathbb{F}_{27} \setminus \{0, 1, 2\}$$



The stablizer of B in G has order 6

$$Stab_G(B) = \langle \alpha_{11}, \alpha_{-1,x} \rangle$$

Compute the parameter λ:

$$\lambda = \frac{|G|}{|Stab_G(B)|} \cdot \frac{k(k-1)}{v(v-1)} = \frac{27 \cdot 26}{6} \cdot \frac{6 \cdot 5}{27 \cdot 26} = 5$$

• Choices for x: $\mathbb{F}_{27} \setminus \{0, 1, 2\}$

 • We obtain two non isomorphic 2-parallel (27, 6, 5) designs

	\mathcal{D}_1	\mathcal{D}_2	Abel	Hanani
$ Aut(\mathcal{D}) $	2106	702	78	78
$ B_i \cap B_j = 0$	1404	1404	1040	702
$ B_i \cap B_j = 1$	2106	2106	3198	3900
$ B_i \cap B_j = 2$	3159	3159	2067	1911
$ B_i \cap B_j = 3$	117	117	481	117
$ B_i \cap B_j = 4$	0	0	0	78
$ B_i \cap B_j = 5$	0	0	0	78

Parameters	Group	Description
(81, 6, 2)	\mathbb{F}_{3^4}	each block is a union of two parallel lines of $AG(4,3)$
(27, 6, 5)	\mathbb{F}_{3^3}	each block is a union of two parallel lines of $AG(3,3)$

Definition (Difference set and difference family)

Let G be an additive group.

A k-subset D of G is a (G, k, λ) difference set if the list of differences of D covers each non-zero element of $G \lambda$ times:

$$\Delta D = \{x - y : x \neq y, x, y \in D\} = \lambda \left(G \setminus \{0\}\right)$$

A collection of k-subsets $\mathcal{F} = \{D_1, \dots, D_t\}$ of G is a (G, k, λ) difference family if the

list of differences of the blocks covers each non-zero element of $G \lambda$ times:

$$\Delta \mathcal{F} = \uplus \Delta D_i = \lambda \left(G \setminus \{0\} \right)$$

• Let $G = \mathbb{Z}_7$ and let $D = \{0, 1, 3\} \subset G$

Difference table of D:

		0	1	3
0	Π	٠	6	4
1	Ī	1	٠	5
3		3	2	٠

▶ \Rightarrow {D} is a ($\mathbb{Z}_7, 3, 1$)-DF.

▶ The translates of D form the block-set of a G-regular (7,3,1) design (Fano plane)

 $\{0,1,3\},\ \{1,2,4\},\ \{2,3,5\},\ \{3,4,6\},\ \{4,5,0\}, \ \{5,6,1\}, \ \{\underline{6},0,2\}, \ \ \underline{5},0,0\}, \ \ \underline{5},0,0,0\}$

Theorem (Buratti, A.N., 202?)

If there exists a (q,k,λ) difference family in \mathbb{F}_q then there exists a k-parallel (q^n,kq,μ) design with

$$\mu = \frac{\lambda(kq-1)}{k-1},$$

for every $n \geq 2$.

An example.

- consider the difference set $D = \{0, 1, 3\}$ with parameters (7, 3, 1)
- ▶ applying the theorem with n = 2, we obtain a 3-parallel $(7^2, 7 \cdot 3, 10)$ design
- not isomorphic to the design of Abel, 1996

Parameters	Group	Description
(81, 6, 2)	\mathbb{F}_{3^4}	each block is a union of two parallel lines of $AG(4,3)$
(27, 6, 5)	\mathbb{F}_{3^3}	each block is a union of two parallel lines of $AG(3,3)$
(49, 21, 10)	\mathbb{F}_{7^2}	each block is a union of three parallel lines of $AG(2,7)$
(q^n, kq, μ)	\mathbb{F}_{q^n}	k-parallel designs from difference families

Corollary [Buratti, A.N., 202?]

Parameters	Description	Reference
$(q^n, 2q, 2q-1)$	(q,2,1) DF, q odd	patterned starter
$(q^n, 3q, \frac{3q-1}{2})$	$(q,3,1)$ DF, $q \equiv 1 \pmod{6}$	Peltesohn, 1938
$(q^n, 4q, \frac{4q-1}{3})$	$(q,4,1)$ DF, $q \equiv 1 \pmod{12}$	Chen, Zhu, 1999
$(q^n, 5q, \frac{5q-1}{4})$	$(q,5,1)$ DF, $q \equiv 1 \pmod{20}$	Chen, Zhu, 1999
$(q^n, 6q, \frac{6q-1}{5})$	$(q, 6, 1)$ DF, $q \equiv 1 \pmod{30}$	Chen, Zhu, 1998
	except possibly $q = 61$	
$(q^n, \frac{q(q-1)}{2}, \frac{q^2-q-2}{2})$	$(q, \frac{q-1}{2}, \frac{q-3}{4})$ DS, $q \equiv 3 \pmod{4}$	Paley difference set
$(q^n, kq, kq - 1)$	$(q,k,k-1)$ DF, $q \equiv 1 \pmod{k}$	Wilson, 1972
$(q^n, kq, \frac{kq-1}{2})$	$(q,k,rac{k-1}{2})$ DF, $q \equiv 1 \pmod{k}$, q,k odd	Wilson, 1972
$\left(q^n, kq, \frac{k(kq-1)}{k-1}\right)$	(q,k,k) DF, $q \equiv 1 \pmod{k-1}$	Wilson, 1972
$\left(q^n, kq, \frac{k(kq-1)}{2(k-1)}\right)$	$(q,k,rac{k}{2})$ DF, $q\equiv 1 \pmod{k-1}$	Wilson, 1972

The group is always \mathbb{F}_{q^n} .

Additivity of symmetric designs and $\mathsf{PG}_d(n,q)$

Definition

 (V, \mathcal{B}) is additive under an abelian group G if $V \subseteq G$ and $\sum_{x \in B} x = 0, \forall B \in \mathcal{B}$.

- ▶ strongly additive under G if $\mathcal{B} = \{B \in \binom{G}{k} \mid \sum_{x \in B} x = 0\}$
- **strictly** additive under G if V = G
- almost strictly additive under G if $V = G \setminus \{0\}$

Parameters	Group	Strongly	Strictly	Almost str.	Description
$(p^{mn}, p^m, 1)$	\mathbb{Z}_p^{mn}		\checkmark		$AG_1(n,p^m)$
$(2^n - 1, 3, 1)$	\mathbb{Z}_2^n	\checkmark		\checkmark	$PG_1(n-1, 2)$
$(2^v - 1, 2^k - 1, \lambda)$	\mathbb{Z}_2^v			\checkmark	(v,k,λ) design over \mathbb{F}_2
(q^n, kq, μ)	\mathbb{F}_{q^n}		\checkmark		k-parallel

Theorem (Buratti, A.N., 202?)

• Every design $PG_d(n,q)$ is additive under \mathbb{F}_q^{n+1} .

• Every design $PG_d(n,q)$ is strongly additive under $\mathbb{Z}_{d^d}^{[n+1]_q}$.

Theorem (Buratti, A.N., 202?)

• A symmetric (v, k, λ) design is strongly additive under $\mathbb{Z}_{k-\lambda}^{v}$.

• Let \mathcal{D} be a cyclic symmetric (v, k, λ) design and let p be a prime dividing $k - \lambda$ but not v. Then \mathcal{D} is additive under \mathbb{Z}_p^t with $t = ord_v(p)$.

[Caggegi, Falcone, Pavone, 2017]

Parameters	Group	Strongly	Strictly	Al. str.	Description
$(2^n - 1, 3, 1)$	\mathbb{Z}_2^n	\checkmark		\checkmark	$PG_1(n-1, 2)$
$([2]_q, q+1, 1)$	$\mathbb{Z}_p^{\frac{p(p-1)}{2}}$	\checkmark			$PG_1(2,q)$
(v, k, λ)	G	\checkmark			symmetric design
(v,k,λ)	$\mathbb{Z}_k \times \mathbb{Z}_{k-\lambda}^{\frac{v-1}{2}}$	\checkmark			symmetric design, $k-\lambda \not\mid k$, prime

[Buratti, A.N, 202+]

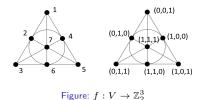
Parameters	Group	Strongly	Strictly	Al. str.	Description
$\boxed{([n+1]_q, [d+1]_q, \lambda)}$	\mathbb{F}_q^{n+1}				$PG_d(n,q)$
$([n+1]_q, [d+1]_q, \lambda)$	$\mathbb{Z}_{q^d}^{[n+1]q}$	\checkmark			$PG_d(n,q)$
(v,k,λ)	$\mathbb{Z}_{k-\lambda}^v$	\checkmark			symmetric design
(v,k,λ)	\mathbb{Z}_p^t				cyclic symmetric design, p a prime dividing $k - \lambda$ but not $v, t = ord_v(p)$.

Definition (Caggagi, Falcone, Pavone, 2017)

A design (V,\mathcal{B}) is additive under an abelian group G if there exists an injective map

 $f:V\to G$

such that f(B) is zero-sum for every block $B \in \mathcal{B}$.



Every cyclic symmetric (v, k, λ) design is of the form $(\mathbb{Z}_v, \{D + i \mid 0 \leq i \leq v - 1\})$ where D is a cyclic (v, k, λ) difference set.

An incidences structure (V, \mathcal{B}) is *cyclic* if there exists a cyclic permutation on V leaving \mathcal{B} invariant.

 $21 \, / \, 41$

Theorem (Buratti, A.N., 202?)

Let \mathcal{D} be a cyclic symmetric (v, k, λ) design and let p be a prime dividing $k - \lambda$ but not v. Then \mathcal{D} is additive under \mathbb{Z}_p^t with $t = ord_v(p)$.

Proof:

Let g be a generator of the subgroup of F^{*}_{pt} of order v and consider the injective maps f₁ and f₋₁ defined as follows:

$$f_1: x \in \mathbb{Z}_v \longrightarrow g^x \in \mathbb{F}_{p^t}, \qquad f_{-1}: x \in \mathbb{Z}_v \longrightarrow g^{-x} \in \mathbb{F}_{p^t}.$$

Consider the two sums

$$\sigma_1 := \sum_{d \in D} f_1(d) = \sum_{d \in D} g^d, \qquad \sigma_{-1} := \sum_{d \in D} f_{-1}(d) = \sum_{d \in D} g^{-d}$$

• Calculate their product $\sigma_1 \cdot \sigma_{-1} = (k - \lambda) + \lambda \frac{g^v - 1}{g - 1} = 0$

Therefore

$$\sigma_1 = 0, \quad \text{ or } \quad \sigma_{-1} = 0$$

Since

$$\sum_{b \in B} f_1(b) = \sum_{d \in D} g^{d+i} = \sigma_1 \cdot g^i \quad \text{and} \quad \sum_{b \in B} f_{-1}(b) = \sum_{d \in D} g^{-(d+i)} = \sigma_{-1} \cdot g^{-i}$$

• Either f_1 or f_{-1} is the map we are looking for

22 / 41

Example

PG(2,3), the projective plane of order 3, is additive under \mathbb{Z}_3^3 .

Singer (13, 4, 1) difference set $D = \{0, 1, 3, 9\}$ $(\mathbb{Z}_{13}, \mathcal{B})$ is cyclic symmetric design with parameters (13, 4, 1)

$$\{D+i \mid 0 \le i \le 12\}$$

- Let r be a root of the primitive polynomial $x^3 + 2x^2 + 1$ over \mathbb{F}_3
- ▶ Taking r as primitive element of \mathbb{F}_{3^3} , a generator of the subgroup of $\mathbb{F}_{3^3}^*$ of order 13 is $g=r^2$
- We check

$$\sigma_1 = \sum_{d \in D} f_1(d) = \sum_{d \in D} g^d = g^0 + g^1 + g^3 + g^9 = r^0 + r^2 + r^6 + r^{18} =$$
$$= (0, 0, 1) + (1, 0, 0) + (2, 2, 0) + (0, 1, 1) = (0, 0, 2)$$

and

$$\sigma_{-1} = \sum_{d \in D} f_{-1}(d) = \sum_{d \in D} g^{-d} = g^0 + g^{-1} + g^{-3} + g^{-9} = r^0 + r^{-2} + r^{-6} + r^{-18} =$$
$$= (0, 0, 1) + (0, 2, 1) + (2, 0, 2) + (1, 1, 2) = (0, 0, 0)$$

$$\blacktriangleright \ f_{-1}: x \in \mathbb{Z}_{13} \longrightarrow g^{-x} \in \mathbb{F}_{3^3}$$

Additivity of cyclic symmetric designs

The point-hyperplane design of PG(2,3) is additive under \mathbb{Z}_3^3 .

▶ In other words, PG(2,3) can be seen as the design (V, B) where

 $V = \{001, 100, 122, 220, 112, 121, 120, 020, 201, 011, 202, 111, 021\}$

 \blacktriangleright and where ${\cal B}$ consists of the following zero-sum blocks

$\{001, 021, 202, 112\},\$	$\{021, 111, 011, 220\},\$	$\{111, 202, 201, 122\},\$
$\{202,011,020,100\},$	$\{011, 201, 120, 001\},$	$\{201, 020, 121, 021\},$
$\{020, 120, 112, 111\},\$	$\{120, 121, 220, 202\},$	$\{121, 112, 122, 011\},$
$\{112, 220, 100, 201\},$	$\{220, 122, 001, 020\},$	$\{122, 100, 021, 120\},$
	$\{100, 001, 111, 121\}$	

Additivity of cyclic symmetric designs

- There is a (143, 71, 35) difference set \Rightarrow cyclic symmetric (143, 71, 35) design
- The prime divisor of the order $k \lambda = 71 35 = 36 = 2^2 \cdot 3^2$ are 2 and 3
- $ord_{143}(2) = 60$

• $ord_{143}(3) = 15$

Example

The cyclic symmetric (143,71,35) design is additive under \mathbb{Z}_2^{60} and under \mathbb{Z}_3^{15} at the same time.

[Caggegi, Falcone, Pavone, 2017]

Parameters	Group	Strongly	Strictly	Almost str.	Description
(v,k,λ)	G	\checkmark			symmetric design
(v,k,λ)	$\mathbb{Z}_k \times \mathbb{Z}_{k-\lambda}^{\frac{v-1}{2}}$	\checkmark			symmetric design, $k - \lambda ightarrow k$, prime

Theorem (Buratti, A.N., 202?) Every design $PG_d(n,q)$ is strongly additive under $\mathbb{Z}_{q^d}^{[n+1]q}$.

Proof:

- set $v = [n+1]_q$ and $k = [d+1]_q$
- ▶ let $\mathcal{P} = \{x_1, \dots, x_v\}$ be an ordering of the points of $\mathsf{PG}(n,q)$
- let $\mathcal{H} = \{\pi_1, \dots, \pi_v\}$ be an ordering of its hyperplanes
- consider the $v \times v$ matrix $M = (m_{i,j})$ with entries in \mathbb{Z}_{q^d} defined by

$$m_{i,j} = \begin{cases} 0 & \text{if } x_i \in \pi_j \\ 1 & \text{if } x_i \notin \pi_j \end{cases}$$

- let M_i denote the *i*-th row of M
- consider the injective map

$$f: x_i \in \mathcal{P} \longrightarrow M_i \in \mathbb{Z}_{q^d}^v$$

to prove the assertion, we prove that the following equivalence holds

 $S \text{ is a } d\text{-subspace of } \mathsf{PG}(n,q) \quad \Longleftrightarrow \quad S \in {\mathcal{P} \choose k} \text{ and } f(S) \text{ is zero-sum.}$

ク Q (? 26 / 41

イロト イヨト イヨト イヨト 三日

Additivity of Steiner 2-designs

Known inifinite families of additive Steiner designs [Caggegi, Falcone, Pavone, 2017]

Parameters	Group	Strongly	Strictly	Almost str.	Description
$(p^{mn}, p^m, 1)$	\mathbb{Z}_p^{mn}		\checkmark		$AG_1(n,p^m)$
$(2^n - 1, 3, 1)$	\mathbb{Z}_2^n	\checkmark		\checkmark	$PG_1(n-1, 2)$
$([2]_q, q+1, 1)$	$\mathbb{Z}_p^{\frac{p(p-1)}{2}}$	\checkmark			$PG_1(2,q)$

All these examples have $k = p^m$ or $k = p^m + 1$

Definition

 (V, \mathcal{B}) is additive under an abelian group G if $V \subseteq G$ and $\sum_{x \in B} x = 0, \forall B \in \mathcal{B}$.

• strictly additive under G if V = G

Proposition

A strictly additive (v, k, 1) design with $v \equiv 2 \pmod{4}$ does not exist.

Main ingredient of the proof:

- ▶ Group *G* must be zero-sum!
- if G is an abelian group of order v, then

$$\sum_{g \in G} g = \begin{cases} \text{the involution of } G & \text{ if } G \text{ is binary (has only one involution)} \\ 0 & \text{ otherwise} \end{cases}$$

▶ a group G of order $v \equiv 2 \pmod{4}$ is necessarily binary

Proposition

A strictly additive (v, k, 1) design with $v \equiv 2 \pmod{4}$ does not exist.

Corollary

Strictly additive (v, 6, 1) designs with values v = 60n + 6 and v = 60n + 46 do not exist.

One more necessary condition...

Proposition

If a strictly additive (v, k, 1) design exists, then every prime factor of v must be a divisor of k.

Smallest open problems

- Unknown existence of a (81, 6, 1) strictly additive design
- Unknown existence of a (256, 6, 1) strictly additive design

First try:

Let
$$\mathcal{F} = \{D_1, \ldots, D_t\}$$
 be a $(v, k, 1)$ -DF in G .

The set of all the translates of the base blocks of ${\mathcal F}$ form the block-set of a G-regular (v,k,1) design

$$\mathcal{B} = \{ B_i = D_i + g : 1 \le i \le t, \quad g \in G \}$$

A DF in G is additive if all its members are zero-sum.

▶ Possible idea: Choose blocks D_1, \ldots, D_t such that $\sum_{x \in D_i} x = 0$

• But for $B_i = D_i + g$ we have

$$\sum_{x\in B_i} x = \left(\sum_{x\in D_i} x\right) + kg = kg \qquad \forall g\in G$$

Hence

$$\sum_{x \in B_i} x \neq 0 \quad \text{unless} \quad kg = 0$$

• This is why we need that $o(g) \mid k \quad \forall g \in G$

$\Rightarrow \leftarrow v$ and k are coprime

Definition

Let G be a group of order v, and let H be a subgroup of G of order h. Let $\mathcal{F} = \{D_1, \ldots, D_t\}$ be a set of k-sets on G.

- \mathcal{F} is a (v, k, 1) (ordinary) difference family in G if $\Delta \mathcal{F} = G \setminus \{0\}$.
- \mathcal{F} is a (v, k, 1) strong difference family in G if $\Delta \mathcal{F} = G$.
- \mathcal{F} is a (v, k, h, 1) difference family in G relative to H if $\Delta \mathcal{F} = G \setminus H$.

Lemma

Let G be a zero-sum group of order k and let $q \equiv 1 \pmod{k-1}$ be a power of a prime divisor p of k.

If there exists an additive $(G \times \mathbb{F}_q, G \times \{0\}, k, 1)$ -DF, then there exists a strictly additive $(kq^n, k, 1)$ design under $G \times \mathbb{F}_{q^n}$ for every $n \ge 1$.

Blocks of the constructed G-regular design are are all the translates of the base blocks of \mathcal{F} together with all the right cosets of all the members of $G \times \{0\}$

$$\mathcal{B} = \{D_i + g\} \bigcup \{G \times \{y\}\}$$

• construct strictly additive (125, 5, 1) under $\mathbb{Z}_5 \times \mathbb{F}_{25}$

design can be realized by means of an additive

 $(\mathbb{Z}_5 \times \mathbb{F}_{25}, \mathbb{Z}_5 \times \{0\}, 5, 1)$ -DF.

▶ the base the blocks of \mathcal{F} written in additive notation of \mathbb{Z}_5^3 , are the following:

$$\begin{split} D_1 &= \{(0,0,0),(1,0,1),(1,0,4),(4,1,0),(4,4,0)\}\\ D_2 &= \{(0,0,0),(1,4,3),(1,1,2),(4,4,2),(4,1,3)\}\\ D_3 &= \{(0,0,0),(1,3,2),(1,2,3),(4,4,4),(4,1,1)\}\\ D_4 &= \{(0,0,0),(1,0,2),(1,0,3),(4,2,0),(4,3,0)\}\\ D_5 &= \{(0,0,0),(1,3,1),(1,2,4),(4,3,4),(4,2,1)\}\\ D_6 &= \{(0,0,0),(1,1,4),(1,4,1),(4,3,3),(4,2,2)\} \end{split}$$

• \mathcal{F} gives rise to a strictly additive (125, 5, 1) design under $\mathbb{Z}_5 \times \mathbb{F}_{25}$

▶ Note: this design is not the design AG₁(3,5)

Definition

A Steiner 2-design is G-super-regular if it is

- \blacktriangleright is strictly additive under an abelian group G (the point set is exactly G) and
- G-regular (any translate of any block is a block as well)

Parameters	Group	Strongly	Strictly	Almost str.	Description
$(5^3, 5, 1)$	\mathbb{F}_{53}		\checkmark		not isomorphic to $AG_1(3,5)$
$(7^3, 7, 1)$	\mathbb{F}_{7^3}		\checkmark		not isomorphic to $AG_1(3,7)$
$(p^n, p, 1)$	\mathbb{F}_{p^n}		\checkmark		$p \in \{5,7\}, n \ge 3$, not isomorphic to AG ₁ (n, p)

New examples [Buratti, A.N., 2023]

[Caggegi, Falcone, Pavone, 2017]

Parameters	Group	Strongly	Strictly	Almost str.	Description
$(p^{mn}, p^m, 1)$	\mathbb{Z}_p^{mn}		\checkmark		$AG_1(n,p^m)$
$(2^n - 1, 3, 1)$	\mathbb{Z}_2^n	\checkmark		\checkmark	$PG_1(n-1, 2)$
$([2]_q, q+1, 1)$	$\mathbb{Z}_p^{\frac{p(p-1)}{2}}$	\checkmark			$PG_1(2,q)$

Theorem (Buratti, A.N., 2023)

Let $k \ge 3$, $k \ne 2 \pmod{4}$ and $k \ne 2^n \cdot 3 \ge 12$. There are infinitely many values of v for which there exists a super-regular (v, k, 1) design.

- the group is G × Fq, where G is a zero-sum group of order k and q a power of a prime divisor of k
- $(kq^n, k, 1)$ design for every $n \ge 1$

Few ideas from the proof (1).

- ▶ $[k \not\equiv 2 \pmod{4}]$ G abelian group od order k such that $\sum_{x \in G} = 0$
- ▶ If you can construct $(kp^n, k, k, 1)$ -DF in $G \times \mathbb{F}_{p^n}$ relative to $G \times \{0\}$, p a prime divisor of k:

$$\Delta D_1 \cup \dots \cup \Delta D_t = G \times \mathbb{F}_{q^n} \setminus G \times \{0\}$$

such that

$$\sum_{x\in D_i} x = 0$$

▶ then we get a Steiner design with $\mathcal{B} = \{D_i + g\} \bigcup \{G \ltimes \{y\}\}$ (=) (=) (=) ()

Theorem (Buratti, A.N., 2023)

Let $k \ge 3$, $k \ne 2 \pmod{4}$ and $k \ne 2^n \cdot 3 \ge 12$. There are infinitely many values of v for which there exists a super-regular (v, k, 1) design.

Few ideas from the proof (2).

Does such DF exists?

▶ $[k \neq 2^n \cdot 3]$ It can be constructed from (k, k, λ) strong DF in G such that $\Delta C_1 \cup \cdots \cup \Delta C_s = \lambda G$ and $\sum_{x \in C_i} x = 0$

• $v = k \cdot p^n$, is huge, p prime divisor of k

Theorem (Buratti, A.N., 2023)

Let $k \ge 3$, $k \ne 2 \pmod{4}$ and $k \ne 2^n \cdot 3 \ge 12$. There are infinitely many values of v for which there exists a super-regular (v, k, 1) design.

Constructing examples is computationally hard!

k	3	4	5
	$AG_1(n,3)$	$AG_1(n,4)$	$AG_1(n,5)$

k	6	7	8	9	10
	$2^{1} \cdot 3$	$AG_1(n,7)$	$AG_1(n,8)$	$AG_1(n,9)$	$2 \pmod{4}$

ſ	k	11	12	13	14	
						15
ľ		$AG_1(n, 11)$	$2^{2} \cdot 3$	$AG_1(n, 13)$	$2 \pmod{4}$	
				- 1 ()		?

▶
$$v = 15 \cdot 5^n, n \ge 10^7$$

Parameters	Group	Strongly	Strictly	Al. str.	Description
$(p^{mn}, p^m, 1)$	\mathbb{Z}_p^{mn}		\checkmark		$AG_1(n,p^m)$
$(2^n - 1, 3, 1)$	\mathbb{Z}_2^n	\checkmark		\checkmark	$PG_1(n-1, 2)$
$([2]_q, q+1, 1)$	$\mathbb{Z}_p^{\frac{p(p-1)}{2}}$	\checkmark			$PG_1(2,q)$

[Caggegi, Falcone, Pavone, 2017]

New examples [Buratti, A.N., 2023, 202?]

Parameters	Group	Strongly	Strictly	Al. str.	Description
$(5^3, 5, 1)$	\mathbb{F}_{5^3}		\checkmark		not isomorphic to $AG_1(3,5)$
$(7^3, 7, 1)$	\mathbb{F}_{7^3}		\checkmark		not isomorphic to $AG_1(3,7)$
$(p^n, p, 1)$	\mathbb{F}_{p^n}		\checkmark		$p \in \{5,7\}, n \geq 3$, not isomorphic to AG ₁ (n,p)
$([n+1]_q, [2]_q, 1)$	$\mathbb{Z}_q^{[n+1]q}$	\checkmark			$PG_1(n,q)$
$([n+1]_q, [2]_q, 1)$	\mathbb{F}_q^{n+1}				$PG_1(n,q)$
$(kq^n, k, 1)$	$G \times \mathbb{F}_q$		\checkmark		$k \not\equiv 2 \pmod{4}, \ k \neq 2^3 \ge 12$
(124, 4, 1)	\mathbb{Z}_{124}		\checkmark		sporadic

[Buratti, A.N., 2023, 202?]

Parameters	Group	Strongly	Strictly	Al. str.	Description
(q^n, kq, μ)	\mathbb{F}_{q^n}		\checkmark		k-parallel designs
$(p^n, p, 1)$	$\mathbb{F}_{p^{n}}$		\checkmark		$p \in \{5,7\}$, $n \ge 3$, not isomorphic to AG ₁ (n,p)
$(kq^n, k, 1)$	$G \times \mathbb{F}_q$		\checkmark		$\begin{array}{l} k \not\equiv 2 \pmod{4}, \\ k \neq 2^3 \ge 12 \end{array}$
$([n+1]_q, [d+1]_q, \lambda)$	$\mathbb{Z}_{q^d}^{[n+1]_q}$	\checkmark			$PG_d(n,q)$
$([n+1]_q, [d+1]_q, \lambda)$	\mathbb{F}_q^{n+1}				$PG_d(n,q)$
(v,k,λ)	$\mathbb{Z}_{k-\lambda}^v$	\checkmark			symmetric design
(v,k,λ)	\mathbb{Z}_p^t				cyclic symmetric design, p a prime dividing $k - \lambda$ but not v , $t = ord_v(p)$.
$(4\lambda + 3, 2\lambda + 1, \lambda)$	\mathbb{Z}_p^t				Paley design, $v = 4\lambda + 3$ prime, p prime divisor of $\lambda + 1$, $t = ord_v(p)$
$(4\lambda + 3, 2\lambda + 1, \lambda)$	\mathbb{Z}_2^t			\checkmark	$v = 2^t - 1$ is a Mersenne prime
(124, 4, 1)	\mathbb{Z}_{124}		\checkmark		sporadic

<ロ> <回> <回> < 回> < 回> < 回> < 回> < 回</p>

Thank you for your attention!

- A.N. The first example of a simple 2-(81, 6, 2) design. Examples and Counterexamples, 1 (2021)
- A.N., M. Buratti, Super-regular Steiner 2-designs. Finite Fields and Their Applications Volume 85, 102116 (2023)
- A.N., M. Buratti, Additivity of symmetric and subspace designs, arXiv:2307.08134