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2-designs

Definition
A 2-(v, k, λ) design is a pair (V,B) such that

I V is a set of v points;

I B is a collection of k-subsets of V (called blocks);

I each 2-subset of V is contained in λ blocks.

Figure: The Fano plane. 2-(7, 3, 1) design.

I A 2-design is symmetric if |V | = |B|.

I A Steiner system is a design with λ = 1.
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Additive 2-designs

Definition (Caggegi, Falcone, Pavone, 2017)
A design (V,B) is additive under an abelian group G if

I V ⊆ G and

I
∑
x∈B

x = 0, ∀B ∈ B.

Figure: The Fano plane is additive under Z3
2.

I check for one one line: (0, 0, 1) + (0, 1, 0) + (0, 1, 1) = (0, 0, 0)
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Additive 2-designs

Definition (Caggegi, Falcone, Pavone, 2017)
A design (V,B) is additive under an abelian group G if

I V ⊆ G and

I
∑
x∈B

x = 0, ∀B ∈ B.

Examples:

Parameters Group Description

(pmn, pm, 1) Zmnp AG1(n, pm), points-lines design of AG(n, pm)

([n+ 1]2, 3, 1) Zn2 PG1(n, 2), points-lines design of PG(n, 2)

The number of points of PG(n, q) is denoted by [n+ 1]q = qn+1−1
q−1
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Designs over Finite Fields ⇒ Additive Designs

Definition (Cameron, 1974. Delsarte, 1976.)
A 2-(v, k, λ) design over Fq is a pair (V,B) such that

I V is the set of points of PG(v − 1, q)

I B is a collection of (k − 1)-dimensional subspaces PG(v − 1, q) (blocks)

I each line is contained in λ blocks.

Properties:

I The Fano plane is (3, 2, 1) design over F2

I (v, k, λ) design over Fq is a classical ([v]q , [k]q , λ) design

I (v, k, λ) design over F2 is additive under Zv2

Parameters Description Reference

([v]2, 7, 7) (v, 3, 7) design over F2 for
all v odd

Thomas, 1987 + Buratti, A.N., 2019

(8191, 7, 1) (13, 3, 1) design over F2 Braun, Etzion, Ostergaard, Vardy,
Wassermann, 2017
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Overview

Additivity of...

I k-parallel designs

I PGd(n, q)

I (cyclic) symmetric designs

I Steiner 2-designs

I A.N. The first example of a simple 2-(81, 6, 2) design. Examples and
Counterexamples, 1 (2021)

I A.N., M. Buratti, Super-regular Steiner 2-designs. Finite Fields and Their
Applications Volume 85, 102116 (2023)

I A.N., M. Buratti, Additivity of symmetric and subspace designs, arXiv:2307.08134
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Additivity of k-parallel designs
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Simple (81, 6, 2) design

I construct a simple additive (81, 6, 2) design

I the only known (81, 6, 2) design has repeated blocks (Hanani, 1975)

I we note: every union of two parallel lines of AG(4, 3) is a zero-sum 6-subset of Z4
3
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Simple (81, 6, 2) design

I 432 blocks are obtained from 16 orbits of Z4
3 of size 27 (representatives bellow)

I it is additive!
I it is simple
I the only known (81, 6, 2) design has repeated blocks (Hanani, 1975)

{(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 0, 2), (0, 1, 0, 0), (0, 1, 0, 1), (0, 1, 0, 2)}
{(0, 0, 0, 0), (0, 0, 1, 1), (0, 0, 2, 2), (2, 1, 0, 0), (2, 1, 1, 1), (2, 1, 2, 2)}
{(0, 0, 0, 0), (0, 1, 1, 1), (0, 2, 2, 2), (0, 0, 1, 0), (0, 1, 2, 1), (0, 2, 0, 2)}
{(0, 0, 0, 0), (0, 1, 2, 0), (0, 2, 1, 0), (2, 0, 2, 1), (2, 1, 1, 1), (2, 2, 0, 1)}
{(0, 0, 0, 0), (1, 0, 0, 0), (2, 0, 0, 0), (0, 2, 2, 1), (1, 2, 2, 1), (2, 2, 2, 1)}
{(0, 0, 0, 0), (1, 0, 1, 0), (2, 0, 2, 0), (0, 1, 0, 0), (1, 1, 1, 0), (2, 1, 2, 0)}
{(0, 0, 0, 0), (1, 0, 1, 1), (2, 0, 2, 2), (0, 0, 2, 0), (1, 0, 0, 1), (2, 0, 1, 2)}
{(0, 0, 0, 0), (1, 0, 2, 0), (2, 0, 1, 0), (0, 2, 1, 1), (1, 2, 0, 1), (2, 2, 2, 1)}
{(0, 0, 0, 0), (1, 0, 2, 2), (2, 0, 1, 1), (0, 1, 2, 1), (1, 1, 1, 0), (2, 1, 0, 2)}
{(0, 0, 0, 0), (1, 1, 0, 0), (2, 2, 0, 0), (0, 2, 0, 1), (1, 0, 0, 1), (2, 1, 0, 1)}
{(0, 0, 0, 0), (1, 1, 0, 1), (2, 2, 0, 2), (0, 2, 2, 0), (1, 0, 2, 1), (2, 1, 2, 2)}
{(0, 0, 0, 0), (1, 1, 2, 0), (2, 2, 1, 0), (0, 0, 2, 1), (1, 1, 1, 1), (2, 2, 0, 1)}
{(0, 0, 0, 0), (1, 1, 2, 1), (2, 2, 1, 2), (0, 2, 1, 1), (1, 0, 0, 2), (2, 1, 2, 0)}
{(0, 0, 0, 0), (1, 1, 2, 2), (2, 2, 1, 1), (0, 2, 2, 0), (1, 0, 1, 2), (2, 1, 0, 1)}
{(0, 0, 0, 0), (1, 2, 1, 2), (2, 1, 2, 1), (0, 0, 2, 1), (1, 2, 0, 0), (2, 1, 1, 2)}
{(0, 0, 0, 0), (1, 2, 2, 0), (2, 1, 1, 0), (0, 2, 2, 1), (1, 1, 1, 1), (2, 0, 0, 1)}
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Simple (81, 6, 2) design

I 432 blocks are obtained from 16 orbits of Z4
3 of size 27 (representatives bellow)

I it is additive!

I it is simple

I the only known (81, 6, 2) design has repeated blocks (Hanani, 1975)

[A.N., Examples and Counterexamples, 2021]

Parameters Group Description

(81, 6, 2) Z4
3 each block is a union of two parallel lines of

AG(4, 3)
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k-parallel designs

Definition (k-parallel design)
A (qn, kq, λ) design (V,B) is k-parallel if

I V is the set of points of AG(n, q),

I each block B ∈ B is union of k parallel lines of AG(n, q).

Every k-parallel design is additive under Fqn .

Theorem
Let G be a t-transitive group acting on the set X, |X| = v, and let B be a subset X,
|B| = k.
Then the pair (X,B), where B is the orbit of B under G

B = {α(B) | α ∈ G}

is a t-(v, k, λ) designs for λ =
|G|

|StabG(B)| ·
k(k−1)
v(v−1)

.

Natural choice of G to obtain k-parallel designs if the group G of affinities of Fq which
acts sharply 2-transitively on Fq

G = {αmt : Fq → Fq , αmt(x) = mx+ t | m ∈ Fq \ {0}, t ∈ Fq}
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k-parallel (27, 6, λ) designs

I The group G of affinities of F27 is sharply 2-transitive on F27

I The following 6-subset B of F27 is a union of 2 parallel lines of AG(3, 3)

B = {0, 1, 2, x, x+ 1, x+ 2}, x ∈ F27 \ {0, 1, 2}

I The stablizer of B in G has order 6

StabG(B) = 〈α11, α−1,x〉

I Compute the parameter λ:

λ =
|G|

|StabG(B)|
·
k(k − 1)

v(v − 1)
=

27 · 26

6
·

6 · 5
27 · 26

= 5

I Choices for x: F27 \ {0, 1, 2}
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2-parallel (27, 6, 5) designs

I We obtain two non isomorphic 2-parallel (27, 6, 5) designs

D1 D2 Abel Hanani
|Aut(D)| 2106 702 78 78
|Bi ∩Bj | = 0 1404 1404 1040 702
|Bi ∩Bj | = 1 2106 2106 3198 3900
|Bi ∩Bj | = 2 3159 3159 2067 1911
|Bi ∩Bj | = 3 117 117 481 117
|Bi ∩Bj | = 4 0 0 0 78
|Bi ∩Bj | = 5 0 0 0 78

Parameters Group Description

(81, 6, 2) F34 each block is a union of two parallel lines of
AG(4, 3)

(27, 6, 5) F33 each block is a union of two parallel lines of
AG(3, 3)
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Difference families

Definition (Difference set and difference family)
Let G be an additive group.
A k-subset D of G is a (G, k, λ) difference set if the list of differences of D covers
each non-zero element of G λ times:

∆D = {x− y : x 6= y, x, y ∈ D} = λ (G \ {0})

A collection of k-subsets F = {D1, . . . , Dt} of G is a (G, k, λ) difference family if the

list of differences of the blocks covers each non-zero element of G λ times:

∆F = ]∆Di = λ (G \ {0})

I Let G = Z7 and let D = {0, 1, 3} ⊂ G
I Difference table of D:

0 1 3

0 • 6 4
1 1 • 5
3 3 2 •

I ⇒ {D} is a (Z7, 3, 1)-DF.
I The translates of D form the block-set of a G-regular (7, 3, 1) design (Fano plane)

{0, 1, 3}, {1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {4, 5, 0}, {5, 6, 1}, {6, 0, 2}
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k-parallel designs from difference families

Theorem (Buratti, A.N., 202?)
If there exists a (q, k, λ) difference family in Fq then there exists a k-parallel
(qn, kq, µ) design with

µ =
λ(kq − 1)

k − 1
,

for every n ≥ 2.

An example.
I consider the difference set D = {0, 1, 3} with parameters (7, 3, 1)
I applying the theorem with n = 2, we obtain a 3-parallel (72, 7 · 3, 10) design
I not isomorphic to the design of Abel, 1996

Parameters Group Description

(81, 6, 2) F34 each block is a union of two parallel lines of
AG(4, 3)

(27, 6, 5) F33 each block is a union of two parallel lines of
AG(3, 3)

(49, 21, 10) F72 each block is a union of three parallel lines of
AG(2, 7)

(qn, kq, µ) Fqn k-parallel designs from difference families
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Infinite families of additive designs

Corollary [Buratti, A.N., 202?]

Parameters Description Reference

(qn, 2q, 2q − 1) (q, 2, 1) DF, q odd patterned starter

(qn, 3q, 3q−1
2

) (q, 3, 1) DF, q ≡ 1 (mod 6) Peltesohn, 1938

(qn, 4q, 4q−1
3

) (q, 4, 1) DF, q ≡ 1 (mod 12) Chen, Zhu, 1999

(qn, 5q, 5q−1
4

) (q, 5, 1) DF, q ≡ 1 (mod 20) Chen, Zhu, 1999

(qn, 6q, 6q−1
5

) (q, 6, 1) DF, q ≡ 1 (mod 30)
except possibly q = 61

Chen, Zhu, 1998

(qn,
q(q−1)

2
, q

2−q−2
2

) (q, q−1
2
, q−3

4
) DS, q ≡ 3 (mod 4) Paley difference set

(qn, kq, kq − 1) (q, k, k − 1) DF, q ≡ 1 (mod k) Wilson, 1972

(qn, kq, kq−1
2

) (q, k, k−1
2

) DF, q ≡ 1 (mod k), q, k odd Wilson, 1972

(qn, kq,
k(kq−1)
k−1

) (q, k, k) DF, q ≡ 1 (mod k − 1) Wilson, 1972

(qn, kq,
k(kq−1)
2(k−1)

) (q, k, k
2

) DF, q ≡ 1 (mod k − 1) Wilson, 1972

The group is always Fqn .
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Additivity of symmetric designs and
PGd(n, q)
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Strongly and Strictly Additive 2-designs

Definition
(V,B) is additive under an abelian group G if V ⊆ G and

∑
x∈B x = 0, ∀B ∈ B.

I strongly additive under G if B = {B ∈
(G
k

)
|
∑
x∈B x = 0}

I strictly additive under G if V = G

I almost strictly additive under G if V = G \ {0}

Parameters Group Strongly Strictly Almost str. Description

(pmn, pm, 1) Zmnp X AG1(n, p
m)

(2n − 1, 3, 1) Zn2 X X PG1(n− 1, 2)

(2v−1, 2k−1, λ) Zv2 X (v, k, λ) design over F2

(qn, kq, µ) Fqn X k-parallel
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New results on additive designs

Theorem (Buratti, A.N., 202?)
I Every design PGd(n, q) is additive under Fn+1

q .

I Every design PGd(n, q) is strongly additive under Z[n+1]q

qd
.

Theorem (Buratti, A.N., 202?)
I A symmetric (v, k, λ) design is strongly additive under Zvk−λ.

I Let D be a cyclic symmetric (v, k, λ) design and let p be a prime dividing k − λ
but not v. Then D is additive under Ztp with t = ordv(p).

19 / 41



New results on additive designs

[Caggegi, Falcone, Pavone, 2017]

Parameters Group Strongly Strictly Al. str. Description

(2n − 1, 3, 1) Zn2 X X PG1(n− 1, 2)

([2]q, q + 1, 1) Z
p(p−1)

2
p X PG1(2, q)

(v, k, λ) G X symmetric design

(v, k, λ) Zk × Z
v−1
2

k−λ X symmetric design,
k − λ 6 | k, prime

[Buratti, A.N, 202+]

Parameters Group Strongly Strictly Al. str. Description

([n+ 1]q, [d+ 1]q, λ) Fn+1
q PGd(n, q)

([n+ 1]q, [d+ 1]q, λ) Z[n+1]q

qd
X PGd(n, q)

(v, k, λ) Zvk−λ X symmetric design

cyclic symmetric design,
(v, k, λ) Ztp p a prime dividing k − λ

but not v, t = ordv(p).
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Additivity of cyclic symmetric designs

Definition (Caggagi, Falcone, Pavone, 2017)
A design (V,B) is additive under an abelian group G if there exists an injective map

f : V → G

such that f(B) is zero-sum for every block B ∈ B.

Figure: f : V → Z3
2

Every cyclic symmetric (v, k, λ) design is of the form (Zv , {D + i | 0 ≤ i ≤ v − 1})
where D is a cyclic (v, k, λ) difference set.

An incidences structure (V,B) is cyclic if there exists a cyclic permutation on V
leaving B invariant.
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Additivity of cyclic symmetric designs

Theorem (Buratti, A.N., 202?)
Let D be a cyclic symmetric (v, k, λ) design and let p be a prime dividing k − λ but
not v. Then D is additive under Ztp with t = ordv(p).

Proof:

I Let g be a generator of the subgroup of F∗
pt

of order v and consider the injective

maps f1 and f−1 defined as follows:

f1 : x ∈ Zv −→ gx ∈ Fpt , f−1 : x ∈ Zv −→ g−x ∈ Fpt .

I Consider the two sums

σ1 :=
∑
d∈D

f1(d) =
∑
d∈D

gd, σ−1 :=
∑
d∈D

f−1(d) =
∑
d∈D

g−d

I Calculate their product σ1 · σ−1 = (k − λ) + λ g
v−1
g−1

= 0

I Therefore
σ1 = 0, or σ−1 = 0

I Since∑
b∈B

f1(b) =
∑
d∈D

gd+i = σ1 · gi and
∑
b∈B

f−1(b) =
∑
d∈D

g−(d+i) = σ−1 · g−i

I Either f1 or f−1 is the map we are looking for
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Additivity of cyclic symmetric designs

Example
PG(2, 3), the projective plane of order 3, is additive under Z3

3.

I Singer (13, 4, 1) difference set D = {0, 1, 3, 9}
I (Z13,B) is cyclic symmetric design with parameters (13, 4, 1)

{D + i | 0 ≤ i ≤ 12}
I Let r be a root of the primitive polynomial x3 + 2x2 + 1 over F3
I Taking r as primitive element of F33 , a generator of the subgroup of F∗

33
of order

13 is g = r2

I We check

σ1 =
∑
d∈D

f1(d) =
∑
d∈D

gd = g0 + g1 + g3 + g9 = r0 + r2 + r6 + r18 =

= (0, 0, 1) + (1, 0, 0) + (2, 2, 0) + (0, 1, 1) = (0, 0, 2)

I and

σ−1 =
∑
d∈D

f−1(d) =
∑
d∈D

g−d = g0+g−1+g−3+g−9 = r0+r−2+r−6+r−18 =

= (0, 0, 1) + (0, 2, 1) + (2, 0, 2) + (1, 1, 2) = (0, 0, 0)

I f−1 : x ∈ Z13 −→ g−x ∈ F33
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Additivity of cyclic symmetric designs

The point-hyperplane design of PG(2, 3) is additive under Z3
3.

I In other words, PG(2, 3) can be seen as the design (V,B) where

V = {001, 100, 122, 220, 112, 121, 120, 020, 201, 011, 202, 111, 021}

I and where B consists of the following zero-sum blocks

{001, 021, 202, 112}, {021, 111, 011, 220}, {111, 202, 201, 122},

{202, 011, 020, 100}, {011, 201, 120, 001}, {201, 020, 121, 021},

{020, 120, 112, 111}, {120, 121, 220, 202}, {121, 112, 122, 011},

{112, 220, 100, 201}, {220, 122, 001, 020}, {122, 100, 021, 120},

{100, 001, 111, 121}
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Additivity of cyclic symmetric designs

I There is a (143, 71, 35) difference set ⇒ cyclic symmetric (143, 71, 35) design

I The prime divisor of the order k − λ = 71− 35 = 36 = 22 · 32 are 2 and 3

I ord143(2) = 60

I ord143(3) = 15

Example
The cyclic symmetric (143, 71, 35) design is additive under Z60

2 and under Z15
3 at the

same time.

[Caggegi, Falcone, Pavone, 2017]

Parameters Group Strongly Strictly Almost str. Description

(v, k, λ) G X symmetric design

(v, k, λ) Zk × Z
v−1
2

k−λ X symmetric design,
k − λ 6 | k, prime
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Strong additivity of projective designs

Theorem (Buratti, A.N., 202?)
Every design PGd(n, q) is strongly additive under Z[n+1]q

qd
.

Proof:

I set v = [n+ 1]q and k = [d+ 1]q
I let P = {x1, . . . , xv} be an ordering of the points of PG(n, q)

I let H = {π1, . . . , πv} be an ordering of its hyperplanes

I consider the v × v matrix M = (mi,j) with entries in Zqd defined by

mi,j =

{
0 if xi ∈ πj
1 if xi 6∈ πj

I let Mi denote the i-th row of M

I consider the injective map

f : xi ∈ P −→Mi ∈ Zv
qd

I to prove the assertion, we prove that the following equivalence holds

S is a d-subspace of PG(n, q) ⇐⇒ S ∈
(P
k

)
and f(S) is zero-sum.

I
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Additivity of Steiner 2-designs
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Additive Steiner 2-Designs

Known inifinite families of additive Steiner designs [Caggegi, Falcone, Pavone, 2017]

Parameters Group Strongly Strictly Almost str. Description

(pmn, pm, 1) Zmnp X AG1(n, p
m)

(2n − 1, 3, 1) Zn2 X X PG1(n− 1, 2)

([2]q, q + 1, 1) Z
p(p−1)

2
p X PG1(2, q)

All these examples have k = pm or k = pm + 1
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Strictly additive Steiner 2-designs

Definition
(V,B) is additive under an abelian group G if V ⊆ G and

∑
x∈B x = 0, ∀B ∈ B.

I strictly additive under G if V = G

Proposition
A strictly additive (v, k, 1) design with v ≡ 2 (mod 4) does not exist.

Main ingredient of the proof:

I Group G must be zero-sum!

I if G is an abelian group of order v, then

∑
g∈G

g =

{
the involution of G if G is binary (has only one involution)

0 otherwise

I a group G of order v ≡ 2 (mod 4) is necessarily binary
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Strictly additive Steiner 2-designs

Proposition
A strictly additive (v, k, 1) design with v ≡ 2 (mod 4) does not exist.

Corollary
Strictly additive (v, 6, 1) designs with values v = 60n+ 6 and v = 60n+ 46 do not
exist.

One more necessary condition...

Proposition

If a strictly additive (v, k, 1) design exists, then every prime factor of v must be a
divisor of k.

Smallest open problems

I Unknown existence of a (81, 6, 1) strictly additive design

I Unknown existence of a (256, 6, 1) strictly additive design
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Strictly Additive Steiner 2-Designs from difference families

First try:

Let F = {D1, . . . , Dt} be a (v, k, 1)-DF in G.

The set of all the translates of the base blocks of F form the block-set of a G-regular
(v, k, 1) design

B = {Bi = Di + g : 1 ≤ i ≤ t, g ∈ G}

A DF in G is additive if all its members are zero-sum.

I Possible idea: Choose blocks D1, . . . , Dt such that
∑
x∈Di x = 0

I But for Bi = Di + g we have

∑
x∈Bi

x =

 ∑
x∈Di

x

+ kg = kg ∀g ∈ G

I Hence ∑
x∈Bi

x 6= 0 unless kg = 0

I This is why we need that o(g) | k ∀g ∈ G

⇒⇐ v and k are coprime
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Strictly additive Steiner 2-designs from difference families

Definition
Let G be a group of order v, and let H be a subgroup of G of order h.
Let F = {D1, . . . , Dt} be a set of k-sets on G.

I F is a (v, k, 1) (ordinary) difference family in G if ∆F = G \ {0}.
I F is a (v, k, 1) strong difference family in G if ∆F = G.

I F is a (v, k, h, 1) difference family in G relative to H if ∆F = G \H.

Lemma
Let G be a zero-sum group of order k and let q ≡ 1 (mod k − 1) be a power of a
prime divisor p of k.

If there exists an additive (G× Fq , G× {0}, k, 1)-DF, then there exists a
strictly additive (kqn, k, 1) design under G× Fqn for every n ≥ 1.

Blocks of the constructed G-regular design are are all the translates of the base blocks
of F together with all the right cosets of all the members of G× {0}

B = {Di + g}
⋃
{G× {y}}
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Strictly additive Steiner 2-designs

I construct strictly additive (125, 5, 1) under Z5 × F25

I design can be realized by means of an additive

(Z5 × F25,Z5 × {0}, 5, 1)-DF.

I the base the blocks of F written in additive notation of Z3
5, are the following:

D1 = {(0, 0, 0), (1, 0, 1), (1, 0, 4), (4, 1, 0), (4, 4, 0)}
D2 = {(0, 0, 0), (1, 4, 3), (1, 1, 2), (4, 4, 2), (4, 1, 3)}
D3 = {(0, 0, 0), (1, 3, 2), (1, 2, 3), (4, 4, 4), (4, 1, 1)}
D4 = {(0, 0, 0), (1, 0, 2), (1, 0, 3), (4, 2, 0), (4, 3, 0)}
D5 = {(0, 0, 0), (1, 3, 1), (1, 2, 4), (4, 3, 4), (4, 2, 1)}
D6 = {(0, 0, 0), (1, 1, 4), (1, 4, 1), (4, 3, 3), (4, 2, 2)}

I F gives rise to a strictly additive (125, 5, 1) design under Z5 × F25

I Note: this design is not the design AG1(3, 5)

Definition
A Steiner 2-design is G-super-regular if it is
I is strictly additive under an abelian group G (the point set is exactly G) and

I G-regular (any translate of any block is a block as well)
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Strictly additive Steiner 2-designs

New examples [Buratti, A.N., 2023]

Parameters Group Strongly Strictly Almost str. Description

(53, 5, 1) F53 X not isomorphic to AG1(3, 5)

(73, 7, 1) F73 X not isomorphic to AG1(3, 7)

(pn, p, 1) Fpn X p ∈ {5, 7}, n ≥ 3, not iso-
morphic to AG1(n, p)

[Caggegi, Falcone, Pavone, 2017]

Parameters Group Strongly Strictly Almost str. Description

(pmn, pm, 1) Zmnp X AG1(n, p
m)

(2n − 1, 3, 1) Zn2 X X PG1(n− 1, 2)

([2]q, q + 1, 1) Z
p(p−1)

2
p X PG1(2, q)
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Steiner G-super-regular 2-Designs

Theorem (Buratti, A.N., 2023)
Let k ≥ 3, k 6≡ 2 (mod 4) and k 6= 2n · 3 ≥ 12.
There are infinitely many values of v for which there exists a super-regular (v, k, 1)
design.

I the group is G× Fq , where G is a zero-sum group of order k and q a power of a
prime divisor of k

I (kqn, k, 1) design for every n ≥ 1

Few ideas from the proof (1).

I [k 6≡ 2 (mod 4)] G abelian group od order k such that
∑
x∈G = 0

I If you can construct (kpn, k, k, 1)-DF in G× Fpn relative to G× {0}, p a prime
divisor of k:

∆D1 ∪ · · · ∪∆Dt = G× Fqn \G× {0}
I such that ∑

x∈Di

x = 0

I then we get a Steiner design with B = {Di + g}
⋃
{G× {y}}
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Steiner G-super-regular 2-Designs

Theorem (Buratti, A.N., 2023)
Let k ≥ 3, k 6≡ 2 (mod 4) and k 6= 2n · 3 ≥ 12.
There are infinitely many values of v for which there exists a super-regular (v, k, 1)
design.

Few ideas from the proof (2).

I Does such DF exists?

I [k 6= 2n · 3] It can be constructed from (k, k, λ) strong DF in G such that

∆C1 ∪ · · · ∪∆Cs = λG and
∑
x∈Ci

x = 0

I v = k · pn, is huge, p prime divisor of k
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Steiner G-super-regular 2-Designs

Theorem (Buratti, A.N., 2023)
Let k ≥ 3, k 6≡ 2 (mod 4) and k 6= 2n · 3 ≥ 12.
There are infinitely many values of v for which there exists a super-regular (v, k, 1)
design.

Constructing examples is computationally hard!

k 3 4 5
AG1(n, 3) AG1(n, 4) AG1(n, 5)

k 6 7 8 9 10
21 · 3 AG1(n, 7) AG1(n, 8) AG1(n, 9) 2 (mod 4)

k 11 12 13 14
15

AG1(n, 11) 22 · 3 AG1(n, 13) 2 (mod 4)
?

I v = 15 · 5n, n ≥ 107
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Additive Steiner 2-Designs

[Caggegi, Falcone, Pavone, 2017]

Parameters Group Strongly Strictly Al. str. Description

(pmn, pm, 1) Zmnp X AG1(n, p
m)

(2n − 1, 3, 1) Zn2 X X PG1(n− 1, 2)

([2]q, q + 1, 1) Z
p(p−1)

2
p X PG1(2, q)

New examples [Buratti, A.N., 2023, 202?]

Parameters Group Strongly Strictly Al. str. Description

(53, 5, 1) F53 X not isomorphic to AG1(3, 5)

(73, 7, 1) F73 X not isomorphic to AG1(3, 7)

(pn, p, 1) Fpn X p ∈ {5, 7}, n ≥ 3, not iso-
morphic to AG1(n, p)

([n+ 1]q, [2]q, 1) Z[n+1]q
q X PG1(n, q)

([n+ 1]q, [2]q, 1) Fn+1
q PG1(n, q)

(kqn, k, 1) G× Fq X k 6≡ 2 (mod 4), k 6= 23 ≥
12

(124, 4, 1) Z124 X sporadic
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New results on additive designs

[Buratti, A.N., 2023, 202?]
Parameters Group Strongly Strictly Al. str. Description

(qn, kq, µ) Fqn X k-parallel designs

(pn, p, 1) Fpn X p ∈ {5, 7}, n ≥ 3, not iso-
morphic to AG1(n, p)

(kqn, k, 1) G× Fq X k 6≡ 2 (mod 4),
k 6= 23 ≥ 12

([n+ 1]q, [d+ 1]q, λ) Z[n+1]q

qd
X PGd(n, q)

([n+ 1]q, [d+ 1]q, λ) Fn+1
q PGd(n, q)

(v, k, λ) Zvk−λ X symmetric design

cyclic symmetric design,
(v, k, λ) Ztp p a prime dividing k−λ but

not v, t = ordv(p).
Paley design,

(4λ+ 3, 2λ+ 1, λ) Ztp v = 4λ+ 3 prime, p prime
divisor of λ+ 1,
t = ordv(p)

(4λ+ 3, 2λ+ 1, λ) Zt2 X v = 2t − 1 is a Mersenne
prime

(124, 4, 1) Z124 X sporadic
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Thank you for your attention!
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