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Positive Definite Matrices

Proposition
The following are equivalent for an invertible n × n matrix G.

G = M∗M for invertible matrix M.

There exist lin. ind. vectors m1, . . . ,mn in the inner product space
Cn such that Gi,j = ⟨mi ,mj⟩.
G is (Hermitian) positive definite.

We always use the standard inner product in this talk.
The geometric interpretation allows us to e.g. invoke the
Cauchy-Schwarz Inequality for linearly independent vectors:

⟨mi ,mj⟩2 < ⟨mi ,mi⟩⟨mj ,mj⟩ → gi,igj,j − gi,jgj,i > 0 .

So all principal 2 × 2 minors of a positive definite matrix are
positive.
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Sylvester’s Criterion

Theorem
A matrix G is Hermitian positive definite if and only if all leading minors
are positive.

Since positive definiteness is a property invariant under
simultaneous permutation of rows/columns, all principal minors
are positive.
This is a higher-dimensional analogue of Cauchy-Schwarz.
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Corollary
Suppose that Gk is (Hermitian) positive definite. Then

det(Gk ) ≤ gk ,k det(Gk−1) .

where Gk−1 is the leading minor of size k − 1.

det



g1,1 . . . g1,k−1 g1,k
g2,1 . . . g2,k−1 g2,k

.

.

.
.
.
.

.

.

.
.
.
.

gk−1,1 . . . gk−1,k−1 gk−1,k
gk,1 . . . gk,k−1 gk,k

 = det



g1,1 . . . g1,k−1 g1,k
g2,1 . . . g2,k−1 g2,k

.

.

.
.
.
.

.

.

.
.
.
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gk−1,1 . . . gk−1,k−1 gk−1,k
0 . . . 0 gk,k

+det



g1,1 . . . g1,k−1 g1,k
g2,1 . . . g2,k−1 g2,k

.

.

.
.
.
.
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.
.
.
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gk−1,1 . . . gk−1,k−1 gk−1,k
gk,1 . . . gk,k−1 0

.

The first term has determinant gk ,k det(Gk−1). The second term has a
2 × 2 minor

det

(
gk−1,k−1 gk−1,k
gk ,k−1 0

)
= −gk−1,kg∗

k−1,k < 0 .
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Fischer’s Inequality

Theorem

For an n × n Hermitian positive definite matrix G =

(
A B
B∗ D

)
the

inequality det(G) ≤ det(A) det(D) holds.

Suppose that A is k × k , and define the k th adjugate of M to be
the

(n
k

)
×

(n
k

)
matrix which has as entries the minors of order k .

G(k) =

(
F f
f ∗ det(A)

)
.

Omitting some ‘well-known’ facts about compound matrices,
det(F ) = det(G)(

n−1
k−1)−1 det(D) and det(G(k)) = det(G)(

n−1
k−1),

det(G(k)) = det(G)(
n−1
k−1) ≤ det(G)(

n−1
k−1)−1 det(D) det(A) .

Cancel common factors.
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Hadamard’s inequality

Theorem

For an n × n positive definite matrix G the inequality det(G) ≤
∏n

i=1 gi,i
holds.

Partition G into complementary principal minors, apply Fischer’s
Inequality and continue recursively.
If the entries of n × n matrix M are bounded by 1, then
⟨mi ,mi⟩ ≤ n for 1 ≤ i ≤ n. So all diagonal entries of Hermitian
positive definite G = M∗M are bounded by n.
det(G) = det(M)∗ det(M) ≤ nn. So

∥det(M)∥ ≤ nn/2 .

This is Hadamard’s inequality.
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Hadamard’s maximal determinant problem

It is not hard to check that Hadamard’s bound is attained if and
only if there exist n mutually orthogonal vectors with entries of
norm 1 in dimension n.

In the real field, entries are in {±1} and the dimension is 1,2 or 4k
for k ∈ N.
Over a field containing k th roots of unity, character tables of
abelian groups of exponent k give solutions to the maximal
determinant problem. But there are others.
For a set of entries E ⊂ C of norm ≤ 1, write dn,E for the maximal
determinant of an n × n matrix with entries in E .
Question (Hadamard conjectures): When is |dn,E | = nn/2?
Question (Hadamard bounds): Do there exist polynomial
functions c(n),C(n) depending on E such that

1
c(n)

nn ≤ |dn,E | ≤
1

C(n)
nn?
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Asymptotic Existence of real matrices

Theorem (Craigen-Livinskyi, 2012)

For any odd integer n there exists t = ⌈α log2(n) + β⌉ such that there
exists a (real) Hadamard matrix of order 2tn. One can take α = 1/5
and β = 13.

Corollary (Craigen-Livinskyi)

The gap between orders of Hadamard matrices of size n is bounded
by O(n1/6).

Proof is via signed group weighing matrices and zero-correlation
sequences.
Corollary comes from estimating the difference between the
orders of matrices constructed for n and n + 2.
Independent of existence of primes close to n.
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Proposition

Suppose that n ≡ 2 mod 4 and that E = {±1}. Then
dn,E ≤

√
2n − 2(n − 2)n−2/2.

When n ≡ 2 mod 4 there do not exist three mutually orthogonal
{±1}-vectors. Non-zero inner products can be chosen to be
congruent to n mod 4.
The graph in which vertices are connected if rows are orthogonal
is triangle free. By Turán’s theorem, the densest triangle free
graphs are complete bipartite.
The largest determinant of a Gram matrix satisfying these
conditions is (

(n − 2)I + 2J 0
0 (n − 2)I + 2J

)
.

Bound attained if there exist circulant A,B satisfying
AA⊤ + BB⊤ = (n − 2)I + 2J.
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Upper bounds, real case

If n ≡ 0 mod 4 then it is conjectured that the dn = nn/2.

If n ≡ 1 mod 4 then the optimal Gram matrix is (n − 1)In + Jn with
determinant

√
2n − 1(n − 1)n−1/2 ∼ 0.8578nn/2. This bound is

attained only if 2n − 1 is a square. The bound is attained when
n = (q + 1)2 + q2 for odd prime power q (Brouwer).
If n ≡ 2 mod 4 then the optimal Gram matrix is(
(n − 2)In/2 + 2Jn/2

)
⊗ I2 with determinant

(2n − 2)(n − 2)n−2/2n ∼ 0.7358nn/2. This bound is attained only if
2n − 2 is a sum of two squares. The bound is attained when
n = 4q2 + 4q + 2 (Brouwer) or n = 2q2 + 2q + 2 (Spence).
If n ≡ 3 mod 4 the optimal Gram matrices are not known, but the
determinant is bounded above by 0.6545nn/2. The bound is not
known to ever be sharp. An infinite family attaining ∼ 0.48 of the
bound exists when n = 2q2 + 2q + 3 for odd prime power q.
Survey: Browne, Egan Hegarty & Ó C. The Hadamard Maximal
Determinant Problem, EJC, 2021.
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n = (q + 1)2 + q2 for odd prime power q (Brouwer).

If n ≡ 2 mod 4 then the optimal Gram matrix is(
(n − 2)In/2 + 2Jn/2

)
⊗ I2 with determinant

(2n − 2)(n − 2)n−2/2n ∼ 0.7358nn/2. This bound is attained only if
2n − 2 is a sum of two squares. The bound is attained when
n = 4q2 + 4q + 2 (Brouwer) or n = 2q2 + 2q + 2 (Spence).
If n ≡ 3 mod 4 the optimal Gram matrices are not known, but the
determinant is bounded above by 0.6545nn/2. The bound is not
known to ever be sharp. An infinite family attaining ∼ 0.48 of the
bound exists when n = 2q2 + 2q + 3 for odd prime power q.
Survey: Browne, Egan Hegarty & Ó C. The Hadamard Maximal
Determinant Problem, EJC, 2021.
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Upper bounds, real case, overview

0 1 2 3
Upper Bound ×nn/2 1 0.857 0.735 0.654
Best Family 1 0.857 0.735 0.314
Gap size O(n1/6) O(n1/2+ϵ) O(n1/2+ϵ) -

Gap size is an upper bound on the distance between matrices
achieving the bound, where n is the matrix size.
The constant ϵ measures the distance between primes of size
O(

√
n). Unconditionally, this can be taken as 1

80 . Conditional on
plausible conjectures in number theory, ϵ = 0 is permitted.

Corollary
For every congruence class mod 4, the Hadamard bound is tight
(infinitely often) up to a constant factor C ≥ 0.314.
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Lower bounds from the probabilistic method

Let M be a matrix with entries in {±1} chosen uniformly at
random. Recall the Laplace expansion of the determinant:∑

σ∈Sn
χ(σ)

∏
Mi,iσ where χ is the alternating character.

Estimate det(MM⊤). By linearity of expectation,
χ(σ)χ(τ)

∏
Mi,iσ

∏
Mi,iτ = 0 unless σ = τ , in which case it is 1.

Turán: The expected value of det(MM⊤) = n!.
By Stirling’s approximation, log(n!) ∼ n log n − n −Θ(log n) while
log(nn) = n log n. So a random Gram determinant is (only) a factor
e−n smaller than the Hadamard bound.
This beats Cohn: |dn| ≥ nn/2e−0.5n vs |dn| ≥ nn/2e−0.62n.
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Lower bounds from neighbouring Hadamard matrices

Proposition
Let H be a Hadamard matrix of order n − 1. Then
det(M) = det(H)(1 + n−1 ∑

i,j hij), where

M =

(
H 1

−1⊤ 1

)
.

Schur complement: For any block matrix in which A is invertible,(
I 0

−CA−1 I

)(
A B
C D

)(
I −A−1B
0 I

)
=

(
A 0
0 D − CA−1B

)
.

Apply this result to M, observing that 1⊤H1 =
∑

i,j hij . The
maximal excess of a Hadamard matrix of order n is n

√
n with

equality when all row-sums are equal.
1/

√
2 of the Barba bound, or 0.61 of the Hadamard bound.
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Lower bounds from neighbouring Hadamard matrices

Theorem (Brent-Osborn-Smith)

Let H be a Hadamard matrix of order n − d. Then M =

(
H R
D S

)
satisfies det(M) ≥ nn/2 ( 2

πe

)d/2
(

1 − d2
√

π(2n − 2d)−1
)

.

R is Random, D is deterministic, S is Small (and replaced by Id for
computations).

det(M) = det(H) det(S − DH−1R) ∼ det(H) det(Id − n−1DH⊤R).
Entries of D chosen to maximise

∑
j dijxji , where H⊤R = [xij ]i,j .

Via the probabilistic method, DH⊤R has all eigenvalues of
magnitude

√
n − d with high probability, and the result follows by

carefully bounding probabilities of tail events.
If the Hadamard conjecture holds, then the maximal determinant
at order n is at least 0.11nn/2 for all n.
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Lower bounds, real case, overview

Cohn’s bound: dn ≥ e−0.62nnn/2 for all n.

Brent-Osborn-Smith: dh+t ≥ 1
2(0.234)tnn/2 when t < h1/4.

Conditional on the Hadamard conjecture, lower bound of 0.11nn/2.
Upper bounds are within a constant of best possible. Lower
bounds are (conjecturally) exponentially bad.
With the strongest possible number theoretic conjectures, lower
bounds are still (conjecturally) super-polynomially bad.
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Questions

Do the probabilistic methods of Brent-Osborn-Smith generalise to:

Maximal determinant matrices rather than Hadamard matrices?
Complex Hadamard matrices, say over k th roots?

Can the asymptotic existence methods of Seberry, Craigen and
collaborators (orthogonal designs, signed groups) be generalised
to give existence results for complex max. det. matrices with
better constants than occur in the real case?
What is the expected absolute value of the determinant of a group
invariant matrix? For cyclic groups, it seems appreciably larger
than for an unstructured matrix.
Question: Do there exist families of near-optimal matrices at odd
orders?
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Go raibh maith agaibh!
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