Trade-Based LDPC Codes

Daniel Panario
School of Mathematics and Statistics
Carleton University
daniel@math.carleton.ca

Joint work with Farzane Amirzade and Mohammad-Reza Sadeghi

$$
\text { RICCOTA - July 3-7, } 2023
$$

Directed Group Divisible Designs

Let $k \leq v$. A (k, λ) directed group divisible design (DGDD) of type g^{u} with $g u=v$, is a triple $(V, \mathcal{G}, \mathcal{B})$, where V is a v-set, \mathcal{G} is a collection of subsets (groups), each of cardinality g, which partition V into u groups of size g and \mathcal{B} is a collection of ordered k-subsets of V and any pair of distinct elements of V appears in precisely λ blocks or one group but not in both. If $\lambda=1$, then $(k, 1)$-DGDD is denoted by k-DGDD.

Example

A super-simple 4-DGDD of type 2^{4} can be obtained by the groups $\{0,1\},\{2,3\},\{4,5\},\{6,7\}$ and the blocks

$$
\begin{aligned}
& \mathcal{B}=\quad\{(3,0,5,6),(7,5,0,2),(5,7,1,3),(6,4,3,1), \\
&(4,6,2,0),(1,2,6,5),(0,3,4,7),(2,1,7,4)\}
\end{aligned}
$$

Trades

A $(v, k, 2)$ directed trade of volume s consists of two disjoint collections T_{1} and T_{2}, each of s blocks, such that every pair of distinct elements of V is covered by precisely the same number of blocks of T_{1} as of T_{2}.

Example

Super-simple 4-DGDD of type 2^{4} with groups $\{0,1\},\{2,3\},\{4,5\},\{6,7\}$ and the blocks $(3,0,5,6),(7,5,0,2),(5,7,1,3),(6,4,3,1),(4,6,2,0)$, $(1,2,6,5),(0,3,4,7),(2,1,7,4)$ contains four $(8,4,2)$ trades of volume 2.

T_{1}	T_{2}		T_{1}
	$(3,0,5,6)$	$(3,5,0,6)$	
	$(5,7,1,3)$	$(5,7,3,1)$	
$(7,5,0,2)$	$(7,0,5,2)$		$(6,4,3,1)$
T_{1}	T_{2}	$(6,4,1,3)$	
$(4,6,2,0)$	$(4,2,6,0)$		T_{1}
$(1,2,3,4,7)$	T_{2}		
$1,2,3,7,4)$	$(1,6,2,5)$		$(2,1,7,4)$

Cyclical Trade

A set of s blocks $\left\{B_{1}, \ldots, B_{s}\right\}$ forms a cyclical trade of volume s if each pair of consecutive blocks B_{i}, B_{i+1} for $1 \leq i \leq s-1$, as well as B_{1}, B_{s}, form s trades of volume 2. We denote a cyclical trade of volume s by $C T_{s}$.

Example

A super-simple 4-DGDD of type 2^{4} with groups $\{0,1\},\{2,3\},\{4,5\},\{6,7\}$ and the blocks $(3,0,5,6),(7,5,0,2),(5,7,1,3),(6,4,3,1),(4,6,2,0)$, $(1,2,6,5),(0,3,4,7),(2,1,7,4)$ has a cyclical trade of volume 4
$C T_{4}=\{(3,0,5,6),(7,5,0,2),(4,6,2,0),(1,2,6,5)\}$,
and a cyclical trade of volume 5
$C T_{5}=\{(3,0,5,6),(7,5,0,2),(5,7,1,3),(2,1,7,4),(1,2,5,6)\}$.

Protograph-Based QC-LDPC Codes

Quasi-cyclic low-density parity-check codes (QC-LDPC codes) is an important category of LDPC codes. These codes are practical and have simple implementation.

Two approaches to construct QC-LDPC codes are algebraic-based and protograph-based. Protograph-based QC-LDPC codes are allocated with two matrices, a base matrix W and an exponent matrix B.

Suppose W is an $m \times n$ base matrix. If all elements of W are 0 and 1 , then we obtain a single-edge QC-LDPC code. If W contain elements bigger than 1, then we obtain a multi-edge QC-LDPC code.

Multi-Edge QC-LDPC Codes

Let N be an integer number; $B=\left[\vec{B}_{i j}\right]$ is an exponent matrix, where $B_{i j}$ is (∞), or $\left|\vec{B}_{i j}\right|=W_{i j}, \vec{B}_{i j}=\left(b_{i j}^{1}, b_{i j}^{2}, \ldots, b_{i j}^{\prime}\right), b_{i j}^{r} \in\{0,1, \ldots, N-1\}$ and $b_{i j}^{r} \neq b_{i j}^{r^{\prime}}$ for $1 \leq r<r^{\prime} \leq I, I \in \mathbb{N}$,

$$
B=\left[\begin{array}{cccc}
\vec{B}_{00} & \vec{B}_{01} & \cdots & \vec{B}_{0(n-1)} \tag{1}\\
\vec{B}_{10} & \vec{B}_{11} & \cdots & \vec{B}_{1(n-1)} \\
\vdots & \vdots & \ddots & \vdots \\
\vec{B}_{(m-1) 0} & \vec{B}_{(m-1) 1} & \cdots & \vec{B}_{(m-1)(n-1)}
\end{array}\right] .
$$

If $B_{i j}$ is (∞), then it is replaced by an $N \times N$ zero matrix. If $B_{i j}$ is a vector, then it is substituted by an $N \times N$ matrix $H_{i j}$:

$$
H_{i j}=I^{b_{i j}^{1}}+I^{b_{i j}^{2}}+\cdots+I^{b_{i j}^{\prime}}
$$

where $I_{i j}^{b_{i j}^{r}}$ is a circulant permutation matrix (CPM) with 1 in the $b_{i j}^{r}$-th position of the top row and other rows are cyclic shifts of the first row. The null space of this parity-check matrix gives a QC-LDPC code.

Example

Given base and an exponent matrices of a QC-LDPC code with $N=5$

$$
W=\left[\begin{array}{llll}
3 & 1 & 2 & 0 \\
0 & 2 & 1 & 3
\end{array}\right], B=\left[\begin{array}{cccc}
(0,1,3) & (0) & (0,4) & (\infty) \\
(\infty) & (2,4) & (3) & (1,2,3)
\end{array}\right],
$$

the parity-check matrix of the QC-LDPC code is:

$$
H=\left[\begin{array}{c|c|c|c}
11.1 . & 1 \ldots . & 1 \ldots 1 & \ldots . . \\
.11 .1 & .1 \ldots & 11 \ldots & \ldots . . \\
1.11 . & . .1 . . & .11 . . & \ldots \ldots \\
.1 .11 & \ldots 1 . & . .11 . & \ldots . . \\
1.1 .1 & \ldots .1 & \ldots .11 & \ldots . . \\
\hline \ldots . & \ldots .1 .1 & \ldots .1 . & .111 . \\
\ldots . . & 1 . .1 . & \ldots .1 & .111 \\
\ldots . . & .1 . .1 & 1 \ldots . & 1 . .11 \\
\ldots . . & 1.1 . . & .1 \ldots & 11 . .1 \\
\ldots . . & .1 .1 . & .1 . . & 111 . .
\end{array}\right] .
$$

Our Results

First, we provide a new approach to construct parity-check matrices of LDPC codes of girth at least 6 based on trades of super-simple directed designs. We call these trade-based LDPC codes.

Then, we use those trade-based matrices to define base matrices of multi-edge protographs for which the construction of exponent matrices has less complexity compared to the existing base matrices in the literature.

We use a trade-based matrix to obtain parity-check matrices of time-varying spatially-coupled (SC-LDPC) codes in which each row shift of the trade-based matrix yields syndrome matrices of a certain time.

Finally, we give simulations, experimentally showing the advantage of trade-based LDPC codes.

Construction of Trade-Based LDPC Codes

Let $V=\{0,1, \ldots, v-1\}$ be the v-set and $|\mathcal{B}|=n$.
Construct a $\binom{v}{2} \times n$ binary matrix A as follows:

- Row indices are pairs $\left(x_{i}, x_{j}\right) \mathrm{s}$, where $x_{i}<x_{j} \in\{0,1, \ldots, v-1\}$;
- Column indices are B_{1}, \ldots, B_{n};
- $A_{\left(x_{i}, x_{j}\right) \ell}= \begin{cases}1 & \text { if }\left(x_{i}, x_{j}\right) \text { or }\left(x_{j}, x_{i}\right) \text { belongs to } B_{\ell} \text { and appears in a trade; } \\ 0 & \text { otherwise. }\end{cases}$

Then, remove all-zero columns and all-zero rows of A obtaining a binary matrix denoted by C.

The parity-check matrix of trade-based LDPC code is:

- C if the number of rows of C is less than the number of columns.
- C^{T} if the number of rows of C is more than the number of columns.

Example

Consider the super-simple design with blocks

$$
\begin{aligned}
\mathcal{B}=\{ & (7,5,0,2),(5,7,1,3),(3,0,5,6),(1,2,6,5), \\
& (0,3,4,7),(2,1,7,4),(6,4,3,1),(4,6,2,0)\} .
\end{aligned}
$$

Taking all trades, we construct the trade-based matrix A which is a matrix of size 12×8 without any zero rows or zero columns.

Thus, the matrix C equals A and the following C^{T} yields the parity-check matrix of a $(2,3)$-regular LDPC code:

	02	03	12	13	05	17	26	34	46	47	56	57	
	[1	.	.	.	1	17	$(7,5,0,2)$
	.			1	.	1	-	1	$(5,7,1,3)$
	.	1		.	1	1	.	$(3,0,5,6)$
C^{T}	.		1	.	.	.	1	.	.	.	1	.	$(1,2,6,5)$
	.	1						1		1	.	.	$(0,3,4,7)$
	.		1	-	.	1	.	.	.	1	.	.	$(2,1,7,4)$
	.		.	1	.	.	-	1	1	.	.	-	$(6,4,3,1)$
	1	1	.	1	.	.		$(4,6,2,0)$

Trade-Based Multiple-Edge QC-LDPC Codes

A base matrix of a trade-based multi-edge protograph is defined as follows:
(1) Call the matrix C or C^{T} as C_{1}.
(2) Displace the rows of C_{1} to obtain other matrix named as C_{2} such that [$C_{1} \mid C_{2}$] does not cause a 2×2 all-one submatrix.
(3) Continue this process to find other $C_{i} \mathrm{~s}$ and the matrix $P=\left[C_{1}\left|C_{2}\right| \cdots \mid C_{r}\right]$ of the maximum size.
(9) Convert all 1 s of C_{1} to integers $I \geq 1$ to obtain a base matrix W_{1}.
(5) Define $W=\left[W_{1}|\cdots| W_{r}\right]$ such that each W_{i} is the row displacement of W_{1} exactly as C_{i} is the row displacement of C_{1}.

An exponent matrix of a trade-based multi-edge protograph is $B=\left[B_{1}|\cdots| B_{r}\right]$ such that each B_{i} is the row displacement of B_{1} exactly as W_{i} is the row displacement of W_{1}.

Example

Consider a super-simple design with $V=\{0,1, \ldots, 7\}$, blocks

$$
\begin{aligned}
\mathcal{B}=\quad & \{(0,3,6,5),(7,5,0,2),(5,7,3,1),(6,1,4,3) \\
& (4,6,2,0),(1,2,5,6),(3,0,7,4),(2,4,1,7)\}
\end{aligned}
$$

and matrix C

$(0,3,6,5)$	(7, 5, 0, 2)	(5, 7, 1, 3)	(2, 4, 1, 7)	$(4,6,2,0)$	(1, 2, 5, 6)	(3, 0, 7, 4)	(6, 1, 4, 3)	
	1	.	.	1	.		. $]$	02
			.	.	.	1		03
		.	1	.	,	.	1	14
1.	1	1	.	.	1	-	. $]$	56 57

Taking C as C_{1}, we construct $W=\left[W_{1}|\cdots| W_{5}\right]$ of the maximum size free of a 2×2 submatrix of nonzero entries. This is a base matrix of a $(3,24)$-regular multi-edge QC-LDPC code:
$W=\left[\begin{array}{c|c|c|c|c}01003000 & 02300000 & 20000300 & 00030003 & 10000030 \\ 10000030 & 01003000 & 02300000 & 20000300 & 00030003 \\ 00030003 & 10000030 & 01003000 & 0230000 & 20000300 \\ 20000300 & 00030003 & 1000030 & 01003000 & 02300000 \\ 02300000 & 20000300 & 00030003 & 10000030 & 01003000\end{array}\right]$

Example (cont.)

To define $B=\left[B_{1}|\cdots| B_{5}\right]$, first, we identify the entries of B_{1} with $N=41$:

$$
B_{\mathbf{1}}=\left[\begin{array}{cccccccc}
(\infty) & (0) & (\infty) & (\infty) & (0,1,3) & (\infty) & (\infty) & (\infty) \\
(0) & (\infty) & (\infty) & (\infty) & (\infty) & (\infty) & (0,4,9) & (\infty) \\
(\infty) & (\infty) & (\infty) & (0,6,13) & (\infty) & (\infty) & (\infty) & (0,8,22) \\
(7,27) & (\infty) & (\infty) & (\infty) & (\infty) & (0,10,25) & (\infty) & (\infty) \\
(\infty) & (19,36) & (6,24,36) & (\infty) & (\infty) & (\infty) & (\infty) & (\infty)
\end{array}\right]
$$

Next, we take $B=\left[B_{1}|\cdots| B_{5}\right]$ such that each B_{i} is a row displacement of B_{1} and is associated to W_{i}.

Computational complexity of our method

- The size of the search space to obtain the entries of B is reduced from N^{120} to N^{24}. The matrix B containes 120 entries. Using our method, defining only 24 entries we can construct the exponent matrix.

Merits of Our Method

- Low dense protographs. Both base and exponent matrices are low-dense. The cycle distributions in the Tanner graph has less density compared with other multi-edge protographs.
- Smaller computational complexity to define the exponent matrix. We only define the entries of B_{1}. If $B=\left[B_{1}|\cdots| B_{r}\right]$ and B_{1} contains s entries, then the number of integers of B is $r s$. Thus, the computational complexity to construct B reduces from $N^{r s}$ to N^{s}.
- Smaller lower bound on the lifting degree. The minimum lifting degree is smaller than other multi-edge protographs.

Properties of a Trade-Based LDPC Code

Theorem

Consider a trade-based LDPC code from a super-simple directed design \mathcal{D}. The Tanner graph of the trade-based LDPC code has $2 s$-cycles if and only if \mathcal{D} has a cyclical trade of volume s.

Corollary

- The Tanner graph of a trade-based LDPC code is free of 4-cycles.
- The existence of cyclical trades of volume 3 results in 6-cycles in the Tanner graph of a trade-based LDPC code.

Minimum Distance of Trade-Based LDPC Codes

A path in a Tanner graph is independent if the first and last vertices are only connected to vertices in the path.

Theorem

Consider a trade-based LDPC code from a super-simple directed design with $\lambda=1$. The minimum distance of the code is equal to the smallest volume of a cyclical trade or the smallest length of an independent path.

Example

The minimum distance of the trade-based LDPC code with the following blocks is 4 since the smallest cyclical trade of this design is 4 and it has no independent paths:

$$
\begin{aligned}
\mathcal{B}=\{ & (7,5,0,2),(5,7,1,3),(3,0,5,6),(1,2,6,5), \\
& (0,3,4,7),(2,1,7,4),(6,4,3,1),(4,6,2,0)\} .
\end{aligned}
$$

- F. Amirzade, D. Panario and M.-R. Sadeghi, "Trade-based LDPC codes", ISIT 2022 (International Symposium on Information Theory), IEEE Xplore, 542-547, 2022.

囯 M. P. C. Fossorier, "Quasi-Cyclic Low-Density Parity-Check codes from circulant permutation matrices," IEEE Trans. Inf. Theory, vol. 50, no. 8, pp. 1788-1793, (2004).
R H. Park, S. Hong, J. Seon and D. J. Shin, "Design of multiple-edge protographs for QC-LDPC codes avoiding short inevitable cycles," IEEE Trans. Inf. Theory, vol. 59, no. 7, pp. 4598-4614, (2013).
R M.-R Sadeghi and F. Amirzade, "Analytical Lower Bound on the Lifting Degree of Multiple-Edge QC-LDPC Codes with Girth 6," IEEE Commun. Letters, vol. 22, no. 8, pp. 1528-1531, (2018).
(F. Amirzade, D. Panario and M.-R. Sadeghi, "Trade-based LDPC codes", ISIT 2022 (International Symposium on Information Theory), IEEE Xplore, 542-547, 2022.

囯 M. P. C. Fossorier, "Quasi-Cyclic Low-Density Parity-Check codes from circulant permutation matrices," IEEE Trans. Inf. Theory, vol. 50, no. 8, pp. 1788-1793, (2004).
R H. Park, S. Hong, J. Seon and D. J. Shin, "Design of multiple-edge protographs for QC-LDPC codes avoiding short inevitable cycles," IEEE Trans. Inf. Theory, vol. 59, no. 7, pp. 4598-4614, (2013).
R M.-R Sadeghi and F. Amirzade, "Analytical Lower Bound on the Lifting Degree of Multiple-Edge QC-LDPC Codes with Girth 6," IEEE Commun. Letters, vol. 22, no. 8, pp. 1528-1531, (2018).

Many Thanks For Your Attention!

