On (non)symmetric association schemes and associated family of graphs

Safet Penjić (University of Primorska)

(joint work with Giusy Monzillo)

Rijeka, Tuesday, 4th of July, 2023.

Outline

(1) Some definitions and basic results

Basic notation
Commutative association scheme Our problem
(2) The distance-faithful intersection diagram Equitable partition with $d+1$ cells
(3) Three class association schemes

Basic notation

Some notation.

$$
\begin{aligned}
& \Gamma-\text { (strongly) connected (directed) simple graph. } \\
& X \text { - vertex set of } \Gamma \text {. } \\
& \partial(x, y) \text { - distance between } x, y \in X \text {. } \\
& D=\max \{\partial(x, y) \mid x, y \in X\} \text { - diameter of } \Gamma \text {. } \\
& \Gamma_{i}(x)=\{y \in X \mid \partial(x, y)=i\} . \\
& \Gamma_{1} \rightarrow(x)=\{z \mid(x, z) \in E(\Gamma)\} . \\
& \Gamma_{1}^{\leftarrow}(x)=\{z \mid(z, x) \in E(\Gamma)\} .
\end{aligned}
$$

Example of equitable distance-faithful partition

Directed graph Γ of diameter 3 and the intersection diagram of an equitable distance-faithful partition
$\Pi_{a}=\left\{\mathcal{P}_{0}=\{a\}, \mathcal{P}_{1}=\{b, c\}, \mathcal{P}_{2}=\{d, e\}, \mathcal{P}_{3}=\{f\}\right\}$ of Γ (around vertex a).

4 / 20

Example of equitable distance-faithful partition (cont.)

Undirected graph $\Gamma=\operatorname{Cay}\left(\mathbb{Z}_{7} ;\{1,2\}\right)$ of diameter 2 and the intersection diagram of an equitable distance-faithful partition of Γ (around vertex 0). The adjacency matrix of this graph generates a symmetric 3-class association scheme.

Commutative association scheme

Let X denote a finite set and $\operatorname{Mat}_{X}(\mathbb{C})$ the set of complex matrices with rows and columns indexed by X. Let $\mathcal{R}=\left\{R_{0}, R_{1}, \ldots, R_{d}\right\}$ denote a set of cardinality $d+1$ of nonempty subsets of $X \times X$. The elements of the set \mathcal{R} are called relations (or classes) on X. For each integer $i(0 \leq i \leq d)$, let $A_{i} \in \operatorname{Mat} X(\mathbb{C})$ denote the adjacency matrix of the graph $\left(X, R_{i}\right)$ (directed, in general). The pair $\mathfrak{X}=(X, \mathcal{R})$ is a commutative d-class association scheme (or a d-class scheme for short) if

Commutative association scheme (con.)

(AS1) $A_{0}=l$, the identity matrix.
(AS2) $\sum_{i=0}^{d} A_{i}=J$, the all-ones matrix.
(AS3) $A_{i}^{\top} \in\left\{A_{0}, A_{1}, \ldots, A_{d}\right\}$ for $0 \leq i \leq d$.
(AS4) $A_{i} A_{j}$ is a linear combination of $A_{0}, A_{1}, \ldots, A_{d}$ for $0 \leq i, j \leq d$ (i.e., for every $i, j(0 \leq i, j \leq d)$ there exist intersection numbers $p_{i j}^{h}, 0 \leq h \leq d$, such that $\left.A_{i} A_{j}=\sum_{h=0}^{d} p_{i j}^{h} A_{h}\right)$.
(AS5) $A_{i} A_{j}=A_{j} A_{i}$ for every $i, j(0 \leq i, j \leq d)$ (i.e., for the intersection numbers $p_{i j}^{h}, 0 \leq i, j, h \leq d$, from (AS4) we have that $p_{i j}^{h}=p_{j i}^{h}$).

Commutative association scheme (con.)

By (AS1)-(AS5) the vector space $\mathcal{M}=\operatorname{span}\left\{A_{0}, A_{1}, \ldots, A_{d}\right\}$ is a commutative algebra; we call it the Bose-Mesner algebra of \mathfrak{X}. The set of $(0,1)$-matrices $\left\{A_{0}, A_{1}, \ldots, A_{d}\right\}$ is linearly independent by (AS2) and thus forms a basis of \mathcal{M}. We say that \mathfrak{X} is symmetric if the A_{i} 's are symmetric matrices.

Problem

In this talk we study the following problem.

Problem

Can the Bose-Mesner algebra \mathcal{M} of every commutative d-class association scheme \mathfrak{X} (which is not necessarily symmetric) be generated by a 01-matrix A ? With other words, for a given \mathfrak{X} can we find a 01-matrix A such that $\mathcal{M}=(\langle A\rangle,+, \cdot)$? Moreover, since such a matrix A is the adjacency matrix of some (directed) graph Г, can we describe the combinatorial structure of Γ ? The vice-versa question is also of importance, i.e., what combinatorial structure does a (directed) graph need to have so that its adjacency matrix will generate the Bose-Mesner algebra of a commutative d-class association scheme \mathfrak{X} ?

Some definitions and basic results
The distance-faithful intersection diagram
Three class association schemes

Some of my co-authors, me and part of the team,

 Škocjanska jama, Slovenija, January 2023

Lemma 1

Lemma

Let \mathcal{M} denote the Bose-Mesner algebra of a commutative d-class association scheme $\mathfrak{X}=(X, \mathcal{R})$ with adjacency matrices $\left\{A_{i}\right\}_{i=0}^{d}$. For a given $x \in X$ we define the partition
$\Pi_{x}=\left\{\mathcal{P}_{0}(x), \mathcal{P}_{1}(x), \ldots, \mathcal{P}_{d}(x)\right\}$ of X in the following way

$$
\mathcal{P}_{i}(x)=\left\{z \mid\left(A_{i}\right)_{x z}=1\right\} \quad(0 \leq i \leq d)
$$

Let A denote arbitrary 01-matrix in \mathcal{M}, and consider (directed) graph $\Gamma=\Gamma(A)$. If Γ is (strongly) connected (directed) graph then in Γ all vertices in $\mathcal{P}_{i}(x)$ are at the same distance from x.

Lemma 2

Lemma

Let \mathcal{M} denote the Bose-Mesner algebra of a commutative d-class association scheme $\mathfrak{X}=(X, \mathcal{R})$ with the adjacency matrices
$\left\{A_{i}\right\}_{i=0}^{d}$. Pick $x, y \in X$ and define the partitions
$\Pi_{x}=\left\{\mathcal{P}_{0}(x), \mathcal{P}_{1}(x), \ldots, \mathcal{P}_{d}(x)\right\}$ and
$\Pi_{y}=\left\{\mathcal{P}_{0}(y), \mathcal{P}_{1}(y), \ldots, \mathcal{P}_{d}(y)\right\}$ of X on the following way

$$
\mathcal{P}_{i}(x)=\left\{z \mid\left(A_{i}\right)_{x z}=1\right\}, \quad \mathcal{P}_{i}(y)=\left\{z \mid\left(A_{i}\right)_{y z}=1\right\} \quad(0 \leq i \leq d)
$$

(The lemma is continue at the next slide.)

Lemma 2 (cont.)

Lemma

Let A denote arbitrary 01-matrix in \mathcal{M}, and consider (directed) graph $\Gamma=\Gamma(A)$. If Γ is (strongly) connected (directed) graph then for any $i, j(0 \leq i, j \leq d)$ there exists scalars $D_{i j}$ such that in Γ the following hold:

$$
\left|\Gamma_{1}^{\rightarrow}(z) \cap \mathcal{P}_{j}(x)\right|=D_{i j} \quad \text { for every } z \in \mathcal{P}_{i}(x)
$$

and

$$
\left|\Gamma_{1}(w) \cap \mathcal{P}_{j}(y)\right|=D_{i j} \quad \text { for every } w \in \mathcal{P}_{i}(y)
$$

One of the main results

Theorem

Let \mathcal{M} denote the Bose-Mesner algebra of a commutative d-class association scheme $\mathfrak{X}=(X, \mathcal{R})$, and $A \in \mathcal{M}$ denote a 01-matrix. Assume that $\Gamma=\Gamma(A)$ denotes a (strongly) connected (directed) graph. Then the following hold.
(i) For every vertex $x \in X$, there exists an x-distance-faithful intersection diagram (of an equitable partition Π_{x}) with $d+1$ cells.
(ii) The structure of the x-distance-faithful intersection diagram (of the equitable partition Π_{x}) from (i) does not depend on x.

Corollary 1

Recall that we a graph is walk-regular if the number of closed walks of length ℓ rooted at vertex x only depends on ℓ, for each $\ell \geq 0$ (i.e., the $\left(A^{\ell}\right)_{x x}$ entry for every $x \in X$ only depends on ℓ).

Corollary

Let \mathcal{M} denote the Bose-Mesner algebra of a commutative d-class association scheme $\mathfrak{X}=(X, \mathcal{R})$. If a (strongly) connected (directed) graph Γ 'live' in the association scheme \mathfrak{X} (i.e., if the adjacency matrix A of Γ belonts to \mathcal{M}) then Γ is a walk-regular graph.

Corollary 2

Corollary

Let \mathcal{M} denote the Bose-Mesner algebra of a symmetric d-class association scheme $\mathfrak{X}=(X, \mathcal{R})$, and $A \in \mathcal{M}$ denote a 01-matrix. If $\Gamma=\Gamma(A)$ generate \mathfrak{X} then the following hold.
(i) For every vertex $x \in X$, there exists an x-distance-faithful intersection diagram (of an equitable partition Π_{x}) with $d+1$ cells.
(ii) The structure of the x-distance-faithful intersection diagram (of the equitable partition Π_{x}) from (i) does not depend on x.
(iii) Graph 「 do not have x-distance-faithful intersection diagram with less than $d+1$ cells (i.e., $d+1$ is the smallest number of cells for which there exists x-distance-faithful equitable partition).

Corollary 3

Corollary

Let \mathcal{M} denote the Bose-Mesner algebra of a commutative 3-class association scheme $\mathfrak{X}=(X, \mathcal{R}), A \in \mathcal{M}$ denote a 01-matrix and let $\Gamma=\Gamma(A)$ denote a (directed) graph of diameter D with adjacency matrix A. If Γ generates \mathcal{M} then $D \in\{2,3\}$ and Γ has the same x-distance-faithful intersection diagram around every vertex x with 4 cells. Moreover, the following hold.
(i) If $D=3$, then the partition $\left\{\Gamma_{i}(x)\right\}_{0 \leq i \leq 3}$ is equitable and corresponding parameters do not depend on the choice of $x \in X$.
(Corollary is continued at the next slide.)

Corollary 3 (cont.)

Corollary

(i) If $D=2$, then exactly one of the following (a), (b) holds.
(a) Any two adjacent vertices have a constant number of common neighbors, and the number of common neighbors of any two nonadjacent vertices takes precisely two values.
(b) Any two nonadjacent vertices have a constant number of common neighbors, and the number of common neighbors of any two adjacent vertices takes precisely two values.

One of the main results

Recall that a 3-class association schemes is amorphic, if every graph $G_{i}=\left(X, R_{i}\right)(1 \leq i \leq 3)$ is strongly-regular.

Theorem

Let \mathfrak{X} denote a commutative 3-class association scheme. If \mathfrak{X} is not amorphic, then there exists a (strongly) connected (directed) graph $\Gamma=\Gamma(A)$ such that the following hold.
(i) The adjacency matrix A of Γ has exactly 4 distinct eigenvalues.
(ii) A generates the Bose-Mesner algebra \mathcal{M} of \mathfrak{X}.

Moreover, the scheme \mathfrak{X} is generated by a (directed) graph if and only if it is not amorphic.

Thank you

Questions?

Thank you for your attention.
The paper will be available at ArXiV in the next few days.

