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Basic notation

Some notation.

Γ – (strongly) connected (directed) simple graph.
X – vertex set of Γ.
∂(x , y) – distance between x , y ∈ X .
D = max{∂(x , y) | x , y ∈ X} – diameter of Γ.
Γi (x) = {y ∈ X | ∂(x , y) = i}.
Γ→1 (x) = {z | (x , z) ∈ EEE (Γ)}.
Γ←1 (x) = {z | (z , x) ∈ EEE (Γ)}.
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Example of equitable distance-faithful partition

Directed graph Γ of diameter 3 and the intersection diagram of an
equitable distance-faithful partition
Πa = {P0 = {a},P1 = {b, c},P2 = {d , e},P3 = {f }} of Γ
(around vertex a).
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Example of equitable distance-faithful partition (cont.)

Undirected graph Γ = Cay(Z7; {1, 2}) of diameter 2 and the
intersection diagram of an equitable distance-faithful partition of Γ
(around vertex 0). The adjacency matrix of this graph generates a
symmetric 3-class association scheme.
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Commutative association scheme

Let X denote a finite set and MatX (C) the set of complex
matrices with rows and columns indexed by X . Let
R = {R0,R1, . . . ,Rd} denote a set of cardinality d + 1 of
nonempty subsets of X × X . The elements of the set R are called
relations (or classes) on X . For each integer i (0 ≤ i ≤ d), let
Ai ∈ MatX (C) denote the adjacency matrix of the graph (X ,Ri )
(directed, in general). The pair X = (X ,R) is a commutative
d-class association scheme (or a d-class scheme for short) if
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Commutative association scheme (con.)

(AS1) A0 = I , the identity matrix.

(AS2)

d∑
i=0

Ai = J, the all-ones matrix.

(AS3) Ai
> ∈ {A0,A1, . . . ,Ad} for 0 ≤ i ≤ d .

(AS4) AiAj is a linear combination of A0,A1, . . . ,Ad for
0 ≤ i , j ≤ d (i.e., for every i , j (0 ≤ i , j ≤ d) there exist
intersection numbers ph

ij , 0 ≤ h ≤ d , such that

AiAj =
∑d

h=0 ph
ijAh).

(AS5) AiAj = AjAi for every i , j (0 ≤ i , j ≤ d) (i.e., for the
intersection numbers ph

ij , 0 ≤ i , j , h ≤ d , from (AS4) we

have that ph
ij = ph

ji ).
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Commutative association scheme (con.)

By (AS1)–(AS5) the vector space M = span{A0,A1, . . . ,Ad} is a
commutative algebra; we call it the Bose–Mesner algebra of X.
The set of (0, 1)-matrices {A0,A1, . . . ,Ad} is linearly independent
by (AS2) and thus forms a basis of M. We say that X is
symmetric if the Ai ’s are symmetric matrices.
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Problem

In this talk we study the following problem.

Problem

Can the Bose–Mesner algebra M of every commutative d-class
association scheme X (which is not necessarily symmetric) be
generated by a 01-matrix A? With other words, for a given X
can we find a 01-matrix A such that M = (〈A〉,+, ·)? Moreover,
since such a matrix A is the adjacency matrix of some
(directed) graph Γ, can we describe the combinatorial structure
of Γ? The vice-versa question is also of importance, i.e., what
combinatorial structure does a (directed) graph need to have so
that its adjacency matrix will generate the Bose–Mesner algebra
of a commutative d-class association scheme X?
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Some of my co-authors, me and part of the team,

Škocjanska jama, Slovenija, January 2023
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Lemma 1

Lemma

Let M denote the Bose–Mesner algebra of a commutative d-class
association scheme X = (X ,R) with adjacency matrices {Ai}di=0.
For a given x ∈ X we define the partition
Πx = {P0(x),P1(x), . . . ,Pd(x)} of X in the following way

P i (x) = {z | (Ai )xz = 1} (0 ≤ i ≤ d).

Let A denote arbitrary 01-matrix in M, and consider (directed)
graph Γ = Γ(A). If Γ is (strongly) connected (directed) graph then
in Γ all vertices in P i (x) are at the same distance from x.
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Lemma 2

Lemma

Let M denote the Bose–Mesner algebra of a commutative d-class
association scheme X = (X ,R) with the adjacency matrices
{Ai}di=0. Pick x , y ∈ X and define the partitions
Πx = {P0(x),P1(x), . . . ,Pd(x)} and
Πy = {P0(y),P1(y), . . . ,Pd(y)} of X on the following way

P i (x) = {z | (Ai )xz = 1}, P i (y) = {z | (Ai )yz = 1} (0 ≤ i ≤ d).

(The lemma is continue at the next slide.)
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Lemma 2 (cont.)

Lemma

Let A denote arbitrary 01-matrix in M, and consider (directed)
graph Γ = Γ(A). If Γ is (strongly) connected (directed) graph then
for any i , j (0 ≤ i , j ≤ d) there exists scalars D→ij such that in Γ
the following hold:

|Γ→1 (z) ∩ P j(x)| = D→ij for every z ∈ P i (x)

and
|Γ→1 (w) ∩ P j(y)| = D→ij for every w ∈ P i (y).
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One of the main results

Theorem

Let M denote the Bose–Mesner algebra of a commutative d-class
association scheme X = (X ,R), and A ∈M denote a 01-matrix.
Assume that Γ = Γ(A) denotes a (strongly) connected (directed)
graph. Then the following hold.

(i) For every vertex x ∈ X , there exists an x-distance-faithful
intersection diagram (of an equitable partition Πx) with d + 1
cells.

(ii) The structure of the x-distance-faithful intersection diagram
(of the equitable partition Πx) from (i) does not depend on x.

14 / 20



Some definitions and basic results
The distance-faithful intersection diagram

Three class association schemes
Equitable partition with d + 1 cells

Corollary 1

Recall that we a graph is walk-regular if the number of closed
walks of length ` rooted at vertex x only depends on `, for each
` ≥ 0 (i.e., the (A`)xx entry for every x ∈ X only depends on `).

Corollary

Let M denote the Bose–Mesner algebra of a commutative d-class
association scheme X = (X ,R). If a (strongly) connected
(directed) graph Γ ‘live’ in the association scheme X (i.e., if the
adjacency matrix A of Γ belonts to M) then Γ is a walk-regular
graph.
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Corollary 2

Corollary

Let M denote the Bose–Mesner algebra of a symmetric d-class
association scheme X = (X ,R), and A ∈M denote a 01-matrix.
If Γ = Γ(A) generate X then the following hold.

(i) For every vertex x ∈ X , there exists an x-distance-faithful
intersection diagram (of an equitable partition Πx) with d + 1
cells.

(ii) The structure of the x-distance-faithful intersection diagram
(of the equitable partition Πx) from (i) does not depend on x.

(iii) Graph Γ do not have x-distance-faithful intersection diagram
with less than d + 1 cells (i.e., d + 1 is the smallest number of
cells for which there exists x-distance-faithful equitable
partition).
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Corollary 3

Corollary

Let M denote the Bose–Mesner algebra of a commutative 3-class
association scheme X = (X ,R), A ∈M denote a 01-matrix and
let Γ = Γ(A) denote a (directed) graph of diameter D with
adjacency matrix A. If Γ generates M then D ∈ {2, 3} and Γ has
the same x-distance-faithful intersection diagram around every
vertex x with 4 cells. Moreover, the following hold.

(i) If D = 3, then the partition {Γi (x)}0≤i≤3 is equitable and
corresponding parameters do not depend on the choice of
x ∈ X .

(Corollary is continued at the next slide.)
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Corollary 3 (cont.)

Corollary

(i) If D = 2, then exactly one of the following (a), (b) holds.

(a) Any two adjacent vertices have a constant number of
common neighbors, and the number of common
neighbors of any two nonadjacent vertices takes precisely
two values.

(b) Any two nonadjacent vertices have a constant number of
common neighbors, and the number of common
neighbors of any two adjacent vertices takes precisely two
values.
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One of the main results

Recall that a 3-class association schemes is amorphic, if every
graph Gi = (X ,Ri ) (1 ≤ i ≤ 3) is strongly-regular.

Theorem

Let X denote a commutative 3-class association scheme. If X is
not amorphic, then there exists a (strongly) connected (directed)
graph Γ = Γ(A) such that the following hold.

(i) The adjacency matrix A of Γ has exactly 4 distinct
eigenvalues.

(ii) A generates the Bose–Mesner algebra M of X.

Moreover, the scheme X is generated by a (directed) graph if and
only if it is not amorphic.
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Thank you

Questions?

Thank you for your attention.

The paper will be available at ArXiV in the next few days.
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