On (non)symmetric association schemes and associated family of graphs

Safet Penjić (University of Primorska)

(joint work with Giusy Monzillo)

Rijeka, Tuesday, 4th of July, 2023.

Outline

1 Some definitions and basic results

Basic notation Commutative association scheme Our problem

2 The distance-faithful intersection diagram Equitable partition with d + 1 cells

3 Three class association schemes

Basic notation

Basic notation Commutative association schem Our problem

Some notation.

$$\begin{split} & \Gamma - (\text{strongly}) \text{ connected (directed) simple graph.} \\ & X - \text{vertex set of } \Gamma. \\ & \partial(x, y) - \text{distance between } x, y \in X. \\ & D = \max\{\partial(x, y) \mid x, y \in X\} - \text{diameter of } \Gamma. \\ & \Gamma_i(x) = \{y \in X \mid \partial(x, y) = i\}. \\ & \Gamma_1^{\rightarrow}(x) = \{z \mid (x, z) \in \boldsymbol{E}(\Gamma)\}. \\ & \Gamma_1^{\leftarrow}(x) = \{z \mid (z, x) \in \boldsymbol{E}(\Gamma)\}. \end{split}$$

Basic notation Commutative association scheme Our problem

Example of equitable distance-faithful partition

Directed graph Γ of diameter 3 and the intersection diagram of an equitable distance-faithful partition

 $\Pi_a = \{\mathcal{P}_0 = \{a\}, \mathcal{P}_1 = \{b, c\}, \mathcal{P}_2 = \{d, e\}, \mathcal{P}_3 = \{f\}\} \text{ of } \Gamma \text{ (around vertex } a).$

Basic notation Commutative association scheme Our problem

Example of equitable distance-faithful partition (cont.)

Undirected graph $\Gamma = \text{Cay}(\mathbb{Z}_7; \{1, 2\})$ of diameter 2 and the intersection diagram of an equitable distance-faithful partition of Γ (around vertex 0). The adjacency matrix of this graph generates a symmetric 3-class association scheme.

Basic notation Commutative association scheme Our problem

Commutative association scheme

Let X denote a finite set and $Mat_X(\mathbb{C})$ the set of complex matrices with rows and columns indexed by X. Let $\mathcal{R} = \{R_0, R_1, \ldots, R_d\}$ denote a set of cardinality d + 1 of nonempty subsets of $X \times X$. The elements of the set \mathcal{R} are called *relations* (or *classes*) on X. For each integer i ($0 \le i \le d$), let $A_i \in Mat_X(\mathbb{C})$ denote the adjacency matrix of the graph (X, R_i) (directed, in general). The pair $\mathfrak{X} = (X, \mathcal{R})$ is a *commutative* d-class association scheme (or a d-class scheme for short) if

Basic notation Commutative association scheme Our problem

Commutative association scheme (con.)

(AS1)
$$A_0 = I$$
, the identity matrix.
(AS2) $\sum_{i=0}^{d} A_i = J$, the all-ones matrix.
(AS3) $A_i^{\top} \in \{A_0, A_1, \dots, A_d\}$ for $0 \le i \le d$.
(AS4) $A_i A_j$ is a linear combination of A_0, A_1, \dots, A_d for
 $0 \le i, j \le d$ (i.e., for every i, j ($0 \le i, j \le d$) there exist
intersection numbers p_{ij}^h , $0 \le h \le d$, such that
 $A_i A_j = \sum_{h=0}^{d} p_{ij}^h A_h$.
(AS5) $A_i A_j = A_j A_i$ for every i, j ($0 \le i, j \le d$) (i.e., for the
intersection numbers p_{ij}^h , $0 \le i, j, h \le d$, from (AS4) we
have that $p_{ij}^h = p_{ji}^h$).

イロン イボン イヨン トヨ

Basic notation Commutative association scheme Our problem

Commutative association scheme (con.)

By (AS1)–(AS5) the vector space $\mathcal{M} = \text{span}\{A_0, A_1, \ldots, A_d\}$ is a commutative algebra; we call it the *Bose–Mesner algebra* of \mathfrak{X} . The set of (0, 1)-matrices $\{A_0, A_1, \ldots, A_d\}$ is linearly independent by (AS2) and thus forms a basis of \mathcal{M} . We say that \mathfrak{X} is *symmetric* if the A_i 's are symmetric matrices.

Problem

Basic notation Commutative association scheme Our problem

In this talk we study the following problem.

Problem

Can the Bose–Mesner algebra \mathcal{M} of every commutative *d*-class association scheme \mathfrak{X} (which is not necessarily symmetric) be generated by a 01-matrix A? With other words, for a given \mathfrak{X} can we find a 01-matrix A such that $\mathcal{M} = (\langle A \rangle, +, \cdot)$? Moreover, since such a matrix A is the adjacency matrix of some (directed) graph Γ , can we describe the combinatorial structure of Γ ? The vice-versa question is also of importance, i.e., what combinatorial structure does a (directed) graph need to have so that its adjacency matrix will generate the Bose–Mesner algebra of a commutative d-class association scheme \mathfrak{X} ?

Basic notation Commutative association scheme Our problem

Some of my co-authors, me and part of the team, Škocjanska jama, Slovenija, January 2023

10 / 20

Lemma 1

Lemma

Let \mathcal{M} denote the Bose–Mesner algebra of a commutative d-class association scheme $\mathfrak{X} = (X, \mathcal{R})$ with adjacency matrices $\{A_i\}_{i=0}^d$. For a given $x \in X$ we define the partition $\Pi_x = \{\mathcal{P}_0(x), \mathcal{P}_1(x), \dots, \mathcal{P}_d(x)\}$ of X in the following way

$$\mathcal{P}_i(x) = \{z \mid (A_i)_{xz} = 1\} \qquad (0 \le i \le d).$$

Let A denote arbitrary 01-matrix in \mathcal{M} , and consider (directed) graph $\Gamma = \Gamma(A)$. If Γ is (strongly) connected (directed) graph then in Γ all vertices in $\mathcal{P}_i(x)$ are at the same distance from x.

Lemma 2

Lemma

Let \mathcal{M} denote the Bose–Mesner algebra of a commutative d-class association scheme $\mathfrak{X} = (X, \mathcal{R})$ with the adjacency matrices $\{A_i\}_{i=0}^d$. Pick $x, y \in X$ and define the partitions $\Pi_x = \{\mathcal{P}_0(x), \mathcal{P}_1(x), \dots, \mathcal{P}_d(x)\}$ and $\Pi_y = \{\mathcal{P}_0(y), \mathcal{P}_1(y), \dots, \mathcal{P}_d(y)\}$ of X on the following way

$$\mathcal{P}_i(x) = \{ z \mid (A_i)_{xz} = 1 \}, \quad \mathcal{P}_i(y) = \{ z \mid (A_i)_{yz} = 1 \} \qquad (0 \le i \le d).$$

(The lemma is continue at the next slide.)

Lemma 2 (cont.)

Lemma

Let A denote arbitrary 01-matrix in \mathcal{M} , and consider (directed) graph $\Gamma = \Gamma(A)$. If Γ is (strongly) connected (directed) graph then for any i, j ($0 \le i, j \le d$) there exists scalars D_{ij}^{\rightarrow} such that in Γ the following hold:

$$|\Gamma_1^{
ightarrow}(z)\cap \mathcal{P}_j(x)|=D_{ij}^{
ightarrow} \qquad ext{for every } z\in \mathcal{P}_i(x)$$

and

$$|\Gamma_1^{
ightarrow}(w)\cap \mathcal{P}_j(y)|=D_{ij}^{
ightarrow} \qquad ext{for every } w\in \mathcal{P}_i(y).$$

Equitable partition with d + 1 cells

One of the main results

Theorem

Let \mathcal{M} denote the Bose–Mesner algebra of a commutative d-class association scheme $\mathfrak{X} = (X, \mathcal{R})$, and $A \in \mathcal{M}$ denote a 01-matrix. Assume that $\Gamma = \Gamma(A)$ denotes a (strongly) connected (directed) graph. Then the following hold.

- (i) For every vertex $x \in X$, there exists an x-distance-faithful intersection diagram (of an equitable partition Π_x) with d + 1 cells.
- (ii) The structure of the x-distance-faithful intersection diagram (of the equitable partition Π_x) from (i) does not depend on x.

Corollary 1

Equitable partition with d + 1 cells

Recall that we a graph is *walk-regular* if the number of closed walks of length ℓ rooted at vertex x only depends on ℓ , for each $\ell \geq 0$ (i.e., the $(A^{\ell})_{xx}$ entry for every $x \in X$ only depends on ℓ).

Corollary

Let \mathcal{M} denote the Bose–Mesner algebra of a commutative d-class association scheme $\mathfrak{X} = (X, \mathcal{R})$. If a (strongly) connected (directed) graph Γ 'live' in the association scheme \mathfrak{X} (i.e., if the adjacency matrix A of Γ belonts to \mathcal{M}) then Γ is a walk-regular graph.

Corollary 2

Corollary

Let \mathcal{M} denote the Bose–Mesner algebra of a symmetric d-class association scheme $\mathfrak{X} = (X, \mathcal{R})$, and $A \in \mathcal{M}$ denote a 01-matrix. If $\Gamma = \Gamma(A)$ generate \mathfrak{X} then the following hold.

- (i) For every vertex $x \in X$, there exists an x-distance-faithful intersection diagram (of an equitable partition Π_x) with d + 1 cells.
- (ii) The structure of the x-distance-faithful intersection diagram (of the equitable partition Π_x) from (i) does not depend on x.
- (iii) Graph Γ do not have x-distance-faithful intersection diagram with less than d + 1 cells (i.e., d + 1 is the smallest number of cells for which there exists x-distance-faithful equitable partition).

Corollary 3

Corollary

Let \mathcal{M} denote the Bose–Mesner algebra of a commutative 3-class association scheme $\mathfrak{X} = (X, \mathcal{R})$, $A \in \mathcal{M}$ denote a 01-matrix and let $\Gamma = \Gamma(A)$ denote a (directed) graph of diameter D with adjacency matrix A. If Γ generates \mathcal{M} then $D \in \{2,3\}$ and Γ has the same x-distance-faithful intersection diagram around every vertex x with 4 cells. Moreover, the following hold.

(i) If D = 3, then the partition {Γ_i(x)}_{0≤i≤3} is equitable and corresponding parameters do not depend on the choice of x ∈ X.

(Corollary is continued at the next slide.)

Equitable partition with d + 1 cells

Corollary 3 (cont.)

Corollary

- (i) If D = 2, then exactly one of the following (a), (b) holds.
 - (a) Any two adjacent vertices have a constant number of common neighbors, and the number of common neighbors of any two nonadjacent vertices takes precisely two values.
 - (b) Any two nonadjacent vertices have a constant number of common neighbors, and the number of common neighbors of any two adjacent vertices takes precisely two values.

One of the main results

Recall that a 3-class association schemes is amorphic, if every graph $G_i = (X, R_i)$ $(1 \le i \le 3)$ is strongly-regular.

Theorem

Let \mathfrak{X} denote a commutative 3-class association scheme. If \mathfrak{X} is not amorphic, then there exists a (strongly) connected (directed) graph $\Gamma = \Gamma(A)$ such that the following hold.

- (i) The adjacency matrix A of Γ has exactly 4 distinct eigenvalues.
- (ii) A generates the Bose–Mesner algebra \mathcal{M} of \mathfrak{X} .

Moreover, the scheme \mathfrak{X} is generated by a (directed) graph if and only if it is not amorphic.

Thank you

Questions?

Thank you for your attention.

The paper will be available at ArXiV in the next few days.