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Definition:

For a graph G, a G-design of order v consists of a collection B

of subgraphs of the complete graph Kv such that

• each subgraph in B is isomorphic to G

• the subgraphs in B partition the edges of Kv
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Definition:

For a graph G, a G-design of order v consists of a collection B

of subgraphs of the complete graph Kv such that

• each subgraph in B is isomorphic to G

• the subgraphs in B partition the edges of Kv

Some families of G-designs:

• Steiner triple systems, denoted STS(v)
G is a 3-cycle, namely C3 or K3

• balanced incomplete block designs, denoted BIBD(v, k, 1)

G is a clique Kk

• path systems
G is a path Pm
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Steiner triple systems

Example: K7Hypf
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Steiner triple systems

Example: a 3-cycle decomposition of K7Hypf

i.e., a STS(7) or a BIBD(7,3,1)
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Example: A BIBD(13,4,1)
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Example: A BIBD(13,4,1)
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Example: A BIBD(13,4,1)
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{0,1,3,9}
{0,2,8,C}
{0,4,5,7}
{0,6,A,B}
{1,2,4,A}
{1,5,6,8}
{1,7,B,C}
{2,3,5,B}
{2,6,7,9}
{3,4,6,C}
{3,7,8,A}
{4,8,9,B}
{5,9,A,C}
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Example: A BIBD(13,4,1)
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This is equivalent to a K4-decomposition of K13

{0,1,3,9}
{0,2,8,C}
{0,4,5,7}
{0,6,A,B}
{1,2,4,A}
{1,5,6,8}
{1,7,B,C}
{2,3,5,B}
{2,6,7,9}
{3,4,6,C}
{3,7,8,A}
{4,8,9,B}
{5,9,A,C}
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Example: A P3-decomposition of K4
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Example: A P3-decomposition of K4
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Example: A P3-decomposition of K4
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(w, y, x), (x, z, y)
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Example: A P3-decomposition of K4
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{

(w, y, x), (x, z, y), (x,w, z)
}
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Example: A P3-decomposition of K4
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B =
{

(w, y, x), (x, z, y), (x,w, z)
}

Example: A P4-decomposition of K4
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B =
{

(w, x, y, z)
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Example: A P3-decomposition of K4

x

z

w

y

B =
{

(w, y, x), (x, z, y), (x,w, z)
}

Example: A P4-decomposition of K4

x

z

w

y

B =
{

(w, x, y, z), (x, z, w, y)
}
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Conditions for existence:

Theorem (Tarsi, 1983)

A Pm-decomposition of Kv exists if and only if

• m 6 v

• (m− 1) divides
(

v

2

)

Definition

Any integer v satisfying the above criteria will be called
Pm-admissible or just admissible.
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Resolvable Path Decompositions:

Theorem (Horton, 1985)

A resolvable P3-decomposition of Kv exists if and only if
v ≡ 9 (mod 12)

Theorem (Bermond, Heinrich and Yu, 1990)

A resolvable Pm-decomposition of Kv exists if and only if

• v ≡ 0 (mod m)

• m(v − 1) ≡ 0 (mod 2(m− 1))
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Definition:

A weak c-colouring of a design D consists of a partition
of the points of D into c colour classes such that
no block of D is monochromatic.

A design D is said to be c-chromatic if c is the smallest
integer for which D admits a weak c-colouring.
Notation: we write χ(D) = c if D is c-chromatic.
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Definition:

A weak c-colouring of a design D consists of a partition
of the points of D into c colour classes such that
no block of D is monochromatic.

A design D is said to be c-chromatic if c is the smallest
integer for which D admits a weak c-colouring.
Notation: we write χ(D) = c if D is c-chromatic.

Example: {0,1,3,9} {1,5,6,8} {3,7,8,A}
{0,2,8,C} {1,7,B,C} {4,8,9,B}
{0,4,5,7} {2,3,5,B} {5,9,A,C}
{0,6,A,B} {2,6,7,9}
{1,2,4,A} {3,4,6,C}

A BIBD(13,4,1)
Slide 8 of 25



Definition:

A weak c-colouring of a design D consists of a partition
of the points of D into c colour classes such that
no block of D is monochromatic.

A design D is said to be c-chromatic if c is the smallest
integer for which D admits a weak c-colouring.
Notation: we write χ(D) = c if D is c-chromatic.

Example: {0,1,3,9} {1,5,6,8} {3,7,8,A}
{0,2,8,C} {1,7,B,C} {4,8,9,B}
{0,4,5,7} {2,3,5,B} {5,9,A,C}
{0,6,A,B} {2,6,7,9}
{1,2,4,A} {3,4,6,C}

This design is 2-chromatic.
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Definition:

A weak c-colouring of a design D consists of a partition
of the points of D into c colour classes such that
no block of D is monochromatic.

A design D is said to be c-chromatic if c is the smallest
integer for which D admits a weak c-colouring.
Notation: we write χ(D) = c if D is c-chromatic.

Example: {0,1,3} {1,2,4} {2,3,5}
{0,2,6} {1,5,6} {3,4,6}
{0,4,5}

A STS(7)
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Definition:

A weak c-colouring of a design D consists of a partition
of the points of D into c colour classes such that
no block of D is monochromatic.

A design D is said to be c-chromatic if c is the smallest
integer for which D admits a weak c-colouring.
Notation: we write χ(D) = c if D is c-chromatic.

Example: {0,1,3} {1,2,4} {2,3,5}
{0,2,6} {1,5,6} {3,4,6}
{0,4,5}

This design is 3-colourable.
But is it 3-chromatic?
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Some History – Steiner Triple Systems

• Every STS(v) with v > 7 requires at least 3 colours.
(Rosa and Pelikán, 1970)

• Every STS(v) with 7 6 v 6 15 is 3-chromatic.
(Mathon, Phelps and Rosa, 1983)

• Every STS(19) is 3-chromatic. (Colbourn et al., 2010)
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Some History – Steiner Triple Systems

• Every STS(v) with v > 7 requires at least 3 colours.
(Rosa and Pelikán, 1970)

• Every STS(v) with 7 6 v 6 15 is 3-chromatic.
(Mathon, Phelps and Rosa, 1983)

• Every STS(19) is 3-chromatic. (Colbourn et al., 2010)

• For each c there is a STS with chromatic number at least c.
(Rosa, 1970)

• For each c > 3 there is a c-chromatic STS.
(de Brandes, Phelps and Rödl, 1982)
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Some History – Steiner Triple Systems

• Every STS(v) with v > 7 requires at least 3 colours.
(Rosa and Pelikán, 1970)

• Every STS(v) with 7 6 v 6 15 is 3-chromatic.
(Mathon, Phelps and Rosa, 1983)

• Every STS(19) is 3-chromatic. (Colbourn et al., 2010)

• For each c there is a STS with chromatic number at least c.
(Rosa, 1970)

• For each c > 3 there is a c-chromatic STS.
(de Brandes, Phelps and Rödl, 1982)

• There is a 4-chromatic STS(21). (Haddad, 1999)

• There is a 5-chromatic STS(63). (Fugère, Haddad and Wehlau, 1994)

• There is a 6-chromatic STS(243). (Bruen, Haddad and Wehlau, 1998)
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Some History – BIBDs

• For each admissible v, i.e. v ≡ 1 or 4 (mod 12),
there is a 2-chromatic BIBD(v, 4, 1). (Hoffman, Lindner and Phelps, 1990)

(Franek, Griggs, Lindner and Rosa, 2002)

• A 3-chromatic BIBD(v, 4, 1) exists if and only if
v ≡ 1 or 4 (mod 12) and v > 25. (Rodger, Wantland, Chen, Zhu, 1994)

• The obvious necessary conditions for the existence of a
BIBD(v, 4, 1) are asymptotically sufficient for the existence of a
c-chromatic BIBD(v, 4, 1). (Linek and Wantland, 1998)

• For each admissible v, i.e. v ≡ 1 or 5 (mod 20),
there is a 2-chromatic BIBD(v, 5, 1). (Ling, 1999)
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Some History – BIBDs

• For λ > 2, for each admissible v,
there is a 2-chromatic BIBD(v, 4, λ).

(Hoffman, Lindner and Phelps, 1990)

(Hoffman, Lindner and Phelps, 1991)

(Rosa and Colbourn, 1992)

• For all integers λ > 1, c > 2 and k > 3 with (c, k) 6= (2, 3),
the obvious necessary conditions for the existence of a
BIBD(v, k, λ) are asymptotically sufficient for the existence
of a c-chromatic BIBD(v, k, λ). (Horsley and Pike, 2014)
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Path Systems

Theorem (Darijani and Pike, 2023+)

For each c > 2 and m > 3 there exists a c-chromatic Pm system.
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Path Systems

Theorem (Darijani and Pike, 2023+)

For each c > 2 and m > 3 there exists a c-chromatic Pm system.

Proof Sketch for when m is even:

For sufficiently large v, there exists a c-chromatic BIBD(v,m, 1)

(by Horsley and Pike, 2014).

The graph Km+1 can be decomposed into Hamilton cycles
(by Walecki, 1890s). Deleting one vertex from Km+1 yields a
decomposition of Km into Pm paths.

By decomposing each block of the BIBD(v,m, 1) into Pm paths,
we obtain a c-chromatic Pm system of order v.
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Path Systems

Theorem (Darijani and Pike, 2023+)

For each c > 2 and m > 3 there exists a c-chromatic Pm system.

Proof Sketch for when m is odd and m > 5:

For sufficiently large v, there exists a c-chromatic BIBD(v,m, 1)

such that v ≡ 0 (mod m) and v − 1 ≡ 0 (mod 2m− 2).

The block set of this BIBD can be partitioned into pairs of blocks
B and B′ that share one point.

The graph Km can be decomposed into Hamilton cycles.
By removing a particular edge from each Hamilton cycle, a set
of Pm paths is obtained from B and B′.

We obtain a c-chromatic Pm system of order v.
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P4 Path Systems

Theorem (Darijani and Pike, 2023+)

For each c > 2, there exists a c-chromatic P4 system of order v
for all sufficiently large admissible v.

Recall: The admissible orders for a P4 system are v ≡ 0, 1 (mod 3)

Proof Sketch:

For c = 2, we show that there exist 2-chromatic systems for all
admissible orders (by direct construction).

For c > 3, we show how to use a c-chromatic system of order v
to construct c-chromatic systems for some of the next admissible
orders. We then iterate this process, beginning with initial
instances (such as those from the previous slides).
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Unique Colourings

Definition:

A c-colouring of a design is unique if every c-colouring of the
design has the same partition into colour classes.

Note that whenever a design is uniquely c-colourable,
it must also be c-chromatic.
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An easy example of a uniquely 3-colourable graph

pg
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An easy example of a uniquely 3-colourable graph

At least 3 colours are necessary for a proper colouring.
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An easy example of a uniquely 3-colourable graph

At least 3 colours are necessary for a proper colouring.

We now have no choice.
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An easy example of a uniquely 3-colourable graph

At least 3 colours are necessary for a proper colouring.

We now have no choice.
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An easy example of a uniquely 3-colourable graph

At least 3 colours are necessary for a proper colouring.

We now have no choice.
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An easy example of a uniquely 3-colourable graph

At least 3 colours are necessary for a proper colouring.

This is a unique partition into 3 colour classes.
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Some History – Unique Colourings of Designs

• A uniquely 3-colourable STS(33) is observed to exist.
(de Brandes, Phelps and Rödl, 1982)

(Colbourn, Haddad and Linek, 1997)

• For each v > 25 there exists a uniquely 3-colourable STS(v)
(Forbes, 2003)
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Some History – Unique Colourings of Designs

• A uniquely 3-colourable STS(33) is observed to exist.
(de Brandes, Phelps and Rödl, 1982)

(Colbourn, Haddad and Linek, 1997)

• For each v > 25 there exists a uniquely 3-colourable STS(v)
(Forbes, 2003)

As far as I am aware, when c > 4, no examples of uniquely
c-colourable STS are currently known to exist.

Uniquely c-colourable BIBD(v, k, 1) with k > 4 are also unknown.

Uniquely c-colourable e-star systems were studied.
(Darijani and Pike, 2020)
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P4 Path Systems

Theorem (Darijani and Pike, 2023+)

There exists a uniquely 2-colourable P4 system of order v
for each admissible v > 109.
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Uniquely 2-Colourable P4 Systems

• We built a system S28 of order 28 in which two specific points
cannot have the same colour in any 2-colouring.

• We then used S28 to build a partial system on 109 points
that has a unique 2-colouring.

• We successfully completed this partial system to a full system
of order 109, by adding more blocks, none of which are
monochromatic.

• Finally we showed how to iteratively take a uniquely colourable
system and embed it in slightly larger systems that are also
uniquely colourable.
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Building S28

• Suppose points 27 and 28 have the same colour, say white.

• For i = 1, 2, . . . , 12, add the block (27, 2i, 2i− 1, 28).
This forces one of points 1 & 2 to be black,
one of points 3 & 4 to be black, etc.

• For distinct i, j, ℓ ∈ {1, 2, . . . , 12} consider these blocks:

(2i− 1, 2j, 2ℓ, 2i) (2i− 1, 2j − 1, 2ℓ− 1, 2i)

(2i− 1, 2ℓ− 1, 2j, 2i) (2i− 1, 2ℓ, 2j − 1, 2i)

Adding these blocks for (i, j, ℓ) = (1, 2, 3) forces
points 1 & 2 to have different colours.

Do similar for (i, j, ℓ) = (4, 5, 6), (7, 8, 9), (10, 11, 12)

so that points 7 & 8, 13 & 14, 19 & 20 are different too.
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Building S28 (continued)

• Specifying some more blocks forces points 1,7,13,19 to be
one colour and 2,8,14,20 to be the other.

• Similar steps force points 3,9,15,21 to be one colour and
4,10,16,22 to be the other.

• A monochromatic block is eventually forced.
Hence the supposition that 27 & 28 have the same colour
is contradicted.

• Demonstrating a valid 2-colouring where 27 and 28 are
different is all that remains, to confirm that the system’s
chromatic number is not larger than 2. In fact, we exhibit a
2-colouring for which the colour classes have equal size.
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Building S109

• Take four copies of S28 on point sets

{1, 2, . . . , 27, 28} {1′, 2′, . . . , 27′, 28}

{1′′, 2′′, . . . , 27′′, 28} {1′′′, 2′′′, . . . , 27′′′, 28}

• If point 28 is white, then 27, 27′, 27′′ and 27′′′ are each black.

• Add blocks between the four copies of S28 such as:

(27, 1′, 27′′, 27′) (27, 3′, 27′′, 27′′′)

(27, 1′′, 27′′′, 27′) (27′, 27, 1′′′, 27′′)

Points 1′, 3′, 1′′ and 1′′′ are therefore white.

• Add more blocks, eventually forcing each point’s colour.

• Then complete the design by adding additional blocks
(none of which are monochromatic). Slide 23 of 25



Future Work

• Prove that uniquely c-colourable P4 systems exist for c > 3.

• Also consider Pm systems with m 6= 4
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Future Work

• Prove that uniquely c-colourable P4 systems exist for c > 3.

• Also consider Pm systems with m 6= 4

• Prove that uniquely c-colourable Steiner triple systems exist
for c > 4.

• Also consider (v, k, λ)-BIBDs with k > 4

and m-cycle systems with m > 4.
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Thank you.
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