Colourings of Path Systems

Definition:

For a graph G, a G-design of order v consists of a collection \mathcal{B} of subgraphs of the complete graph K_{v} such that

- each subgraph in \mathcal{B} is isomorphic to G
- the subgraphs in \mathcal{B} partition the edges of K_{v}

Definition:

For a graph G, a G-design of order v consists of a collection \mathcal{B} of subgraphs of the complete graph K_{v} such that

- each subgraph in \mathcal{B} is isomorphic to G
- the subgraphs in \mathcal{B} partition the edges of K_{v}

Some families of G-designs:

- Steiner triple systems, denoted STS (v)
- balanced incomplete block designs, denoted $\operatorname{BIBD}(v, k, 1)$
- path systems

Definition:

For a graph G, a G-design of order v consists of a collection \mathcal{B} of subgraphs of the complete graph K_{v} such that

- each subgraph in \mathcal{B} is isomorphic to G
- the subgraphs in \mathcal{B} partition the edges of K_{v}

Some families of G-designs:

- Steiner triple systems, denoted STS (v)
G is a 3 -cycle, namely C_{3} or K_{3}
- balanced incomplete block designs, denoted $\operatorname{BIBD}(v, k, 1)$ G is a clique K_{k}
- path systems
G is a path P_{m}

Steiner triple systems

Example: K_{7}

Steiner triple systems

Example: a 3-cycle decomposition of K_{7}

i.e., a $\operatorname{STS}(7)$ or a $\operatorname{BIBD}(7,3,1)$

Example: A BIBD(13,4,1)

$$
\begin{aligned}
& C_{0} \quad{ }_{0}^{0} 0^{1} \\
& \text { B } \\
& \text { A O } \\
& 90 \\
& 0^{2} \\
& \text { O } 3 \\
& \text { O } 4 \\
& 8^{0} \\
& \mathrm{O}_{5} \\
& 6
\end{aligned}
$$

Example: A BIBD(13,4,1)

Example: A BIBD(13,4,1)

\{0,2,8,C\}
$\{3,4,6, C\}$

Example: A BIBD(13,4,1)

$\{0,1,3,9\}$
$\{0,2,8, C\}$
$\{0,4,5,7\}$
$\{0,6, A, B\}$
$\{1,2,4, A\}$
$\{1,5,6,8\}$
$\{1,7, B, C\}$
$\{2,3,5, B\}$
$\{2,6,7,9\}$
$\{3,4,6, C\}$
$\{3,7,8, A\}$
$\{4,8,9, B\}$
$\{5,9, A, C\}$

Example: A BIBD(13,4,1)

$\{0,1,3,9\}$
$\{0,2,8, C\}$
$\{0,4,5,7\}$
$\{0,6, A, B\}$
$\{1,2,4, A\}$
$\{1,5,6,8\}$
$\{1,7, B, C\}$
$\{2,3,5, B\}$
$\{2,6,7,9\}$
$\{3,4,6, C\}$
$\{3,7,8, A\}$
$\{4,8,9, B\}$
$\{5,9, A, C\}$

This is equivalent to a K_{4}-decomposition of K_{13}

Example: A P_{3}-decomposition of K_{4}

Example: A P_{3}-decomposition of K_{4}

Example: A P_{3}-decomposition of K_{4}

$$
\mathcal{B}=\{(w, y, x),(x, z, y)
$$

Example: A P_{3}-decomposition of K_{4}

$$
\mathcal{B}=\{(w, y, x),(x, z, y),(x, w, z)\}
$$

Example: A P_{3}-decomposition of K_{4}

$$
\mathcal{B}=\{(w, y, x),(x, z, y),(x, w, z)\}
$$

Example: A P_{4}-decomposition of K_{4}

$$
\mathcal{B}=\{(w, x, y, z)
$$

Example: A P_{3}-decomposition of K_{4}

$$
\mathcal{B}=\{(w, y, x),(x, z, y),(x, w, z)\}
$$

Example: A P_{4}-decomposition of K_{4}

$$
\mathcal{B}=\{(w, x, y, z),(x, z, w, y)\}
$$

Conditions for existence:

Theorem (Tarsi, 1983)

A P_{m}-decomposition of K_{v} exists if and only if

- $m \leqslant v$
- $(m-1)$ divides $\binom{v}{2}$

Definition

Any integer v satisfying the above criteria will be called P_{m}-admissible or just admissible.

Resolvable Path Decompositions:

Theorem (Horton, 1985)
A resolvable P_{3}-decomposition of K_{v} exists if and only if
$v \equiv 9(\bmod 12)$

Theorem (Bermond, Heinrich and Yu, 1990)
A resolvable P_{m}-decomposition of K_{v} exists if and only if

- $v \equiv 0(\bmod m)$
- $m(v-1) \equiv 0(\bmod 2(m-1))$

Definition:

A weak c-colouring of a design \mathcal{D} consists of a partition of the points of \mathcal{D} into c colour classes such that no block of \mathcal{D} is monochromatic.

A design \mathcal{D} is said to be c-chromatic if c is the smallest integer for which \mathcal{D} admits a weak c-colouring. Notation: we write $\chi(\mathcal{D})=c$ if \mathcal{D} is c-chromatic.

Definition:

A weak c-colouring of a design \mathcal{D} consists of a partition of the points of \mathcal{D} into c colour classes such that no block of \mathcal{D} is monochromatic.

A design \mathcal{D} is said to be c-chromatic if c is the smallest integer for which \mathcal{D} admits a weak c-colouring.
Notation: we write $\chi(\mathcal{D})=c$ if \mathcal{D} is c-chromatic.

Example: | | $\{0,1,3,9\}$ | $\{1,5,6,8\}$ | $\{3,7,8, \mathrm{~A}\}$ |
| :---: | :---: | :---: | :---: |
| | $\{0,2,8, \mathrm{C}\}$ | $\{1,7, \mathrm{~B}, \mathrm{C}\}$ | $\{4,8,9, \mathrm{~B}\}$ |
| | $\{0,4,5,7\}$ | $\{2,3,5, \mathrm{~B}\}$ | $\{5,9, \mathrm{~A}, \mathrm{C}\}$ |
| | $\{0,6, \mathrm{~A}, \mathrm{~B}\}$ | $\{2,6,7,9\}$ | |
| | $\{1,2,4, \mathrm{~A}\}$ | $\{3,4,6, \mathrm{C}\}$ | |

A BIBD $(13,4,1)$

Definition:

A weak c-colouring of a design \mathcal{D} consists of a partition of the points of \mathcal{D} into c colour classes such that no block of \mathcal{D} is monochromatic.

A design \mathcal{D} is said to be c-chromatic if c is the smallest integer for which \mathcal{D} admits a weak c-colouring.
Notation: we write $\chi(\mathcal{D})=c$ if \mathcal{D} is c-chromatic.

Example: | | $\{0,1,3,9\}$ | $\{1,5,6,8\}$ | $\{3,7,8, \mathrm{~A}\}$ |
| :--- | :--- | :--- | :--- |
| | $\{0,2,8, \mathrm{C}\}$ | $\{1,7, \mathrm{~B}, \mathrm{C}\}$ | $\{4,8,9, \mathrm{~B}\}$ |
| | $\{0,4,5,7\}$ | $\{2,3,5, \mathrm{~B}\}$ | $\{5,9, \mathrm{~A}, \mathrm{C}\}$ |
| | $\{0,6, \mathrm{~A}, \mathrm{~B}\}$ | $\{2,6,7,9\}$ | |
| | $\{1,2,4, \mathrm{~A}\}$ | $\{3,4,6, \mathrm{C}\}$ | |

This design is 2-chromatic.

Definition:

A weak c-colouring of a design \mathcal{D} consists of a partition of the points of \mathcal{D} into c colour classes such that no block of \mathcal{D} is monochromatic.

A design \mathcal{D} is said to be c-chromatic if c is the smallest integer for which \mathcal{D} admits a weak c-colouring.
Notation: we write $\chi(\mathcal{D})=c$ if \mathcal{D} is c-chromatic.
Example:
$\{0,1,3\}$
$\{0,2,6\}$
$\{0,4,5\}$
A STS(7)

Definition:

A weak c-colouring of a design \mathcal{D} consists of a partition of the points of \mathcal{D} into c colour classes such that no block of \mathcal{D} is monochromatic.

A design \mathcal{D} is said to be c-chromatic if c is the smallest integer for which \mathcal{D} admits a weak c-colouring.
Notation: we write $\chi(\mathcal{D})=c$ if \mathcal{D} is c-chromatic.
Example:

$$
\begin{array}{lll}
\{0,1,3\} & \{1,2,4\} & \{2,3,5\} \\
\{0,2,6\} & \{1,5,6\} & \{3,4,6\} \\
\{0,4,5\} & &
\end{array}
$$

This design is 3 -colourable.
But is it 3-chromatic?

Some History - Steiner Triple Systems

- Every $\operatorname{STS}(v)$ with $v \geqslant 7$ requires at least 3 colours.
(Rosa and Pelikán, 1970)
- Every $\operatorname{STS}(v)$ with $7 \leqslant v \leqslant 15$ is 3 -chromatic.
(Mathon, Phelps and Rosa, 1983)
- Every STS(19) is 3-chromatic. (Colbourn et al., 2010)

Some History - Steiner Triple Systems

- Every $\operatorname{STS}(v)$ with $v \geqslant 7$ requires at least 3 colours.
(Rosa and Pelikán, 1970)
- Every $\operatorname{STS}(v)$ with $7 \leqslant v \leqslant 15$ is 3 -chromatic.
(Mathon, Phelps and Rosa, 1983)
- Every STS(19) is 3-chromatic. (Colbourn et al., 2010)
- For each c there is a STS with chromatic number at least c.
(Rosa, 1970)
- For each $c \geqslant 3$ there is a c-chromatic STS.
(de Brandes, Phelps and Rödl, 1982)

Some History - Steiner Triple Systems

- Every $\operatorname{STS}(v)$ with $v \geqslant 7$ requires at least 3 colours.
(Rosa and Pelikán, 1970)
- Every $\operatorname{STS}(v)$ with $7 \leqslant v \leqslant 15$ is 3 -chromatic.
(Mathon, Phelps and Rosa, 1983)
- Every STS(19) is 3-chromatic.
- For each c there is a STS with chromatic number at least c.
(Rosa, 1970)
- For each $c \geqslant 3$ there is a c-chromatic STS.
(de Brandes, Phelps and Rödl, 1982)
- There is a 4-chromatic STS(21).
(Haddad, 1999)
- There is a 5 -chromatic STS(63). (Fugère, Haddad and Wehlau, 1994)
- There is a 6-chromatic STS(243). (Bruen, Haddad and Wehlau, 1998)

Some History - BIBDs

- For each admissible v, i.e. $v \equiv 1$ or $4(\bmod 12)$, there is a 2 -chromatic $\operatorname{BIBD}(v, 4,1)$. (Hoffiman, Lindner and Phelps, 1990) (Franek, Griggs, Lindner and Rosa, 2002)
- A 3-chromatic $\operatorname{BIBD}(v, 4,1)$ exists if and only if $v \equiv 1$ or $4(\bmod 12)$ and $v \geqslant 25 . \quad$ (Rodger, Wantland, Chen, Zhu, 1994)
- The obvious necessary conditions for the existence of a $\operatorname{BIBD}(v, 4,1)$ are asymptotically sufficient for the existence of a c-chromatic $\operatorname{BIBD}(v, 4,1)$.
(Linek and Wantland, 1998)
- For each admissible v, i.e. $v \equiv 1$ or $5(\bmod 20)$, there is a 2 -chromatic $\operatorname{BIBD}(v, 5,1)$.

Some History - BIBDs

- For $\lambda \geqslant 2$, for each admissible v, there is a 2 -chromatic $\operatorname{BIBD}(v, 4, \lambda)$.
(Hoffman, Lindner and Phelps, 1990) (Hoffman, Lindner and Phelps, 1991)
(Rosa and Colbourn, 1992)
- For all integers $\lambda \geqslant 1, c \geqslant 2$ and $k \geqslant 3$ with $(c, k) \neq(2,3)$, the obvious necessary conditions for the existence of a $\operatorname{BIBD}(v, k, \lambda)$ are asymptotically sufficient for the existence of a c-chromatic $\operatorname{BIBD}(v, k, \lambda)$.

Path Systems

Theorem (Darijani and Pike, 2023+)

For each $c \geqslant 2$ and $m \geqslant 3$ there exists a c-chromatic P_{m} system.

Path Systems

Theorem (Darijani and Pike, 2023+)

For each $c \geqslant 2$ and $m \geqslant 3$ there exists a c-chromatic P_{m} system.
Proof Sketch for when m is even:
For sufficiently large v, there exists a c-chromatic $\operatorname{BIBD}(v, m, 1)$ (by Horsley and Pike, 2014).

The graph K_{m+1} can be decomposed into Hamilton cycles (by Walecki, 1890s). Deleting one vertex from K_{m+1} yields a decomposition of K_{m} into P_{m} paths.

By decomposing each block of the $\operatorname{BIBD}(v, m, 1)$ into P_{m} paths, we obtain a c-chromatic P_{m} system of order v.

Path Systems

Theorem (Darijani and Pike, 2023+)

For each $c \geqslant 2$ and $m \geqslant 3$ there exists a c-chromatic P_{m} system.
Proof Sketch for when m is odd and $m \geqslant 5$:
For sufficiently large v, there exists a c-chromatic $\operatorname{BIBD}(v, m, 1)$ such that $v \equiv 0(\bmod m)$ and $v-1 \equiv 0(\bmod 2 m-2)$.

The block set of this BIBD can be partitioned into pairs of blocks B and B^{\prime} that share one point.

The graph K_{m} can be decomposed into Hamilton cycles. By removing a particular edge from each Hamilton cycle, a set of P_{m} paths is obtained from B and B^{\prime}.

We obtain a c-chromatic P_{m} system of order v.

P_{4} Path Systems

Theorem (Darijani and Pike, 2023+)

For each $c \geqslant 2$, there exists a c-chromatic P_{4} system of order v for all sufficiently large admissible v.

Recall: The admissible orders for a P_{4} system are $v \equiv 0,1(\bmod 3)$
Proof Sketch:
For $c=2$, we show that there exist 2-chromatic systems for all admissible orders (by direct construction).

For $c \geqslant 3$, we show how to use a c-chromatic system of order v to construct c-chromatic systems for some of the next admissible orders. We then iterate this process, beginning with initial instances (such as those from the previous slides).

Unique Colourings

Definition:

A c-colouring of a design is unique if every c-colouring of the design has the same partition into colour classes.

Note that whenever a design is uniquely c-colourable, it must also be c-chromatic.

An easy example of a uniquely 3-colourable graph

An easy example of a uniquely 3-colourable graph

At least 3 colours are necessary for a proper colouring.

An easy example of a uniquely 3-colourable graph

At least 3 colours are necessary for a proper colouring.

We now have no choice.

An easy example of a uniquely 3-colourable graph

At least 3 colours are necessary for a proper colouring.

We now have no choice.

An easy example of a uniquely 3-colourable graph

At least 3 colours are necessary for a proper colouring.

We now have no choice.

An easy example of a uniquely 3-colourable graph

At least 3 colours are necessary for a proper colouring.

This is a unique partition into 3 colour classes.

Some History - Unique Colourings of Designs

A uniquely 3-colourable $\operatorname{STS}(33)$ is observed to exist.
(de Brandes, Phelps and Rödl, 1982)
(Colbourn, Haddad and Linek, 1997)

- For each $v \geqslant 25$ there exists a uniquely 3-colourable STS (v)
(Forbes, 2003)

Some History - Unique Colourings of Designs

- A uniquely 3-colourable STS(33) is observed to exist.
(de Brandes, Phelps and Rödl, 1982)
(Colbourn, Haddad and Linek, 1997)
- For each $v \geqslant 25$ there exists a uniquely 3-colourable $\operatorname{STS}(v)$
(Forbes, 2003)

As far as I am aware, when $c \geqslant 4$, no examples of uniquely c-colourable STS are currently known to exist.

Uniquely c-colourable $\operatorname{BIBD}(v, k, 1)$ with $k \geqslant 4$ are also unknown.

Uniquely c-colourable e-star systems were studied.
(Darijani and Pike, 2020)

P_{4} Path Systems

Theorem (Darijani and Pike, 2023+)

There exists a uniquely 2-colourable P_{4} system of order v for each admissible $v \geqslant 109$.

Uniquely 2-Colourable P_{4} Systems

- We built a system S_{28} of order 28 in which two specific points cannot have the same colour in any 2 -colouring.
- We then used δ_{28} to build a partial system on 109 points that has a unique 2 -colouring.
- We successfully completed this partial system to a full system of order 109, by adding more blocks, none of which are monochromatic.
- Finally we showed how to iteratively take a uniquely colourable system and embed it in slightly larger systems that are also uniquely colourable.

Building S_{28}

- Suppose points 27 and 28 have the same colour, say white.
- For $i=1,2, \ldots, 12$, add the block ($27,2 i, 2 i-1,28$).

This forces one of points $1 \& 2$ to be black, one of points $3 \& 4$ to be black, etc.

- For distinct $i, j, \ell \in\{1,2, \ldots, 12\}$ consider these blocks:

$$
\begin{array}{cc}
(2 i-1,2 j, 2 \ell, 2 i) & (2 i-1,2 j-1,2 \ell-1,2 i) \\
(2 i-1,2 \ell-1,2 j, 2 i) & (2 i-1,2 \ell, 2 j-1,2 i)
\end{array}
$$

Adding these blocks for $(i, j, \ell)=(1,2,3)$ forces points $1 \& 2$ to have different colours.
Do similar for $(i, j, \ell)=(4,5,6),(7,8,9),(10,11,12)$
so that points $7 \& 8,13 \& 14,19 \& 20$ are different too.

Building S_{28} (continued)

- Specifying some more blocks forces points $1,7,13,19$ to be one colour and $2,8,14,20$ to be the other.
- Similar steps force points 3,9,15,21 to be one colour and $4,10,16,22$ to be the other.
- A monochromatic block is eventually forced. Hence the supposition that 27 \& 28 have the same colour is contradicted.
- Demonstrating a valid 2-colouring where 27 and 28 are different is all that remains, to confirm that the system's chromatic number is not larger than 2. In fact, we exhibit a 2 -colouring for which the colour classes have equal size.

Building S_{109}

- Take four copies of δ_{28} on point sets

$$
\begin{array}{cc}
\{1,2, \ldots, 27,28\} & \left\{1^{\prime}, 2^{\prime}, \ldots, 27^{\prime}, 28\right\} \\
\left\{1^{\prime \prime}, 2^{\prime \prime}, \ldots, 27^{\prime \prime}, 28\right\} & \left\{1^{\prime \prime \prime}, 2^{\prime \prime \prime}, \ldots, 27^{\prime \prime \prime}, 28\right\}
\end{array}
$$

- If point 28 is white, then $27,27^{\prime}, 27^{\prime \prime}$ and $27^{\prime \prime \prime}$ are each black.
- Add blocks between the four copies of \mathcal{S}_{28} such as:

$$
\begin{array}{ll}
\left(27,1^{\prime}, 27^{\prime \prime}, 27^{\prime}\right) & \left(27,3^{\prime}, 27^{\prime \prime}, 27^{\prime \prime \prime}\right) \\
\left(27,1^{\prime \prime}, 27^{\prime \prime \prime}, 27^{\prime}\right) & \left(27^{\prime}, 27,1^{\prime \prime \prime}, 27^{\prime \prime}\right)
\end{array}
$$

Points $1^{\prime}, 3^{\prime}, 1^{\prime \prime}$ and $1^{\prime \prime \prime}$ are therefore white.

- Add more blocks, eventually forcing each point's colour.
- Then complete the design by adding additional blocks (none of which are monochromatic).

Future Work

- Prove that uniquely c-colourable P_{4} systems exist for $c \geqslant 3$.

Also consider P_{m} systems with $m \neq 4$

Future Work

- Prove that uniquely c-colourable P_{4} systems exist for $c \geqslant 3$.
- Also consider P_{m} systems with $m \neq 4$
- Prove that uniquely c-colourable Steiner triple systems exist for $c \geqslant 4$.

Also consider (v, k, λ)-BIBDs with $k \geqslant 4$ and m-cycle systems with $m \geqslant 4$.

Thank you.

Acknowledgements:

