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A breakthrough in the modern study of geometric configurations of points
and lines came with the seminal 1990 paper [7] of Grünbaum and Rigby in
which the first geometric point-line representation of a 4-configuration was
constructed.

Figure: The Grünbaum–Rigby (214) geometric configuration, denoted by
GR(214).



This (214) configuration was based on the work of Felix Klein [8] on his
famous quartic curve, and is nowadays known as the Grünbaum–Rigby
configuration.

What is a geometric 4-
configuration?
It is a structure composed of
points and lines such that
• Each line contains 4 points.
• Each point belongs to 4 lines.

The Grünbaum–Rigby (214) geometric configuration, denoted by GR(214).
• Rotational symmetry.
• 3 point orbits, 3 line orbirts
• All orbits of the same size (=7)!



Rotational symmetry of a (93) configuration.

Color-coded orbits under cyclic
(rotational) symmetry of this
geometric 3-configuration.

• 3 lines in blue orbit,
• 3 lines in orange orbit,
• 3 lines in cyan orbit,
• 3 points in blue orbit,
• 3 points in orange orbit,
• 3 points in cyan orbit,

All orbits of the same size (= 3)!



Two versions of Pappus configuration (93).

Geometric configuration with rotational
symmetry where all orbits have the same size
is polycyclic configuration.

Rotational symmetry but not
polycyclic!

Polycyclic version of Pappus.
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Later Branko Grünbaum discovered a large number of (n4) configurations.
Some of them were constructed in the spirit of GR(214), while others were
constructed by various techniques from smaller ones. Nowadays only the
existence of geometric (234) configuration is undetermined.



Parallel Switch; A Method for constructing large configurations from
smaller building blocks.

• From any (mk) configuration C we
obtain a (kmk) configuration D. If C is
connected, then D is connected, too.
• In this example, from three copies of
Pappus (93) a (273) configuration is
obtained.



In 2003 Boben and Pisanski [1] initiated the theory of polycyclic
configurations, having GR(214) and some other configurations from
another paper (1992) of Grünbaum (co-authored by Harold Dorwart) [4] as
the prime models of such configurations. This strategy was independently
pursued and further developed by Grünbaum and Berman. It is closely
intertwined with graph theory as well; for some details on this connection,
see [9].

• The key tool for studying configurations was the underlying combinatorial
incidence structure which has an equivalent representation as a bipartite
incidence graph or what Coxeter called in 1950, Levi graph (with a given
vertex 2-coloring).
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Figure: The Grünbaum–Rigby (214) geometric configuration and its Levi graph.

• There is an obvious geometric rotational symmetry of order 7. Hence Z7 acts
on points and lines. The action is semiregular.
• If, in addition, we consider reflections, there is an action of dihedral group D7 or
order 14. However, the action is not semiregular since the orbits have only size 7.
• The automorphism group of the corresponding Levi graph has order 672. The
graph is vertex-transitive.
• Half (336) of the graph automorphisms respect vertex colors. They correspond
to the automorphisms of the combinatorial configuration.
• Half (336) of the graph automorphisms interchange vertex colors. They
correspond to self-dualities of the corresponding combinatorial configuration.
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In their paper Grünbaum and Rigby conjectured that no other (n4)
configuration exists for n ≤ 21. It was a big surprise when Grünbaum
himself in 2006 disproved this conjecture [5] by constructing a (204)
configuration, that we denote by G(204).

Figure: The Grünbaum (204) geometric configuration, denoted by G(204).



Later, Bokowski and his co-workers showed that there are exactly two
distinct (184) configurations and proved that no geometric (194)
configuration exists [3, 2].



Although their conjecture has been disproven, it was widely believed that
the GR(214) configuration is the only geometric 4-configuration for n = 21
and that G(204) is the smallest geometric 4-configuration.



Several months ago, surprisingly Leah Berman constructed a new (214)
geometric configuration, depicted in Figure 4. We denote it by B(214).

Figure: A new (214) geometric configuration, denoted by B(214) It has a 3-fold
rotational symmetry, making the configuration polycyclic.



• How did she do it?

• How did she discover this fascinating 4-configuration, the second (214)
configuration, more than 30 years after the first (214) configuration has
been discovered?
• The key fact is that both configurations are polycyclic. In particular each
of them admits an automorphism of the corresponding Levi graph that is
semiregular.
• Let us change the angle and start with graphs.
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Let G be a graph of order n = mk .

An (m, k)-semiregular automorphism α ∈ AutG is an
automorphism with m orbits of size k .

Since the identity is an automorphism for every graph it would follow that
every graph admits a semi-regular automorphism, actually, an
(n, 1)-semiregular automorphism. We usually exclude this and amend the
definition:

An (m, k)-semiregular automorphism α ∈ AutG is a non-
trivial automorphism with m orbits of size k . I.e. k > 1.

Note that both m and k are divisors of graph order n. While k = 1 is
excluded, the other extreme, k = n,m = 1 is legitimate. The
(1, n)-semiregular automorphism is regular. In this case the corresponding
graph is a circulant graph, a Cayley graph for cyclic group Zn.
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This justifies the following definition:

A graph G admitting a semi-regular automorphism is
polycirculant. In particular, if α is an (m, k)-semiregular
automorphism, the graph is (m, k)-multicirculant. More-
over, if k = 1, then G is a circulant graph, for k = 2 it
is a bicirculant graph, for k = 3 it is a tricirculant graph,
for k = 4 it is tetracirculant graph, etc.

Note that the Levi graph of GR(214) is a (6, 7)-multicirculant while the
Levi graph of B(214) is a (14, 3)-multicirculant.



Let G be a graph and let α be a (m, k)-semiregular automorphism. Then
the quotient G/α is well-defined and the projection π : G → G/α is a
regular covering projection. G is a Zk covering graph over G/α. Note that
G/α is a pregraph (may have multiple edges, loops and semi-edges.)
Theory of covering graphs and voltage graphs applies.

This is the reason for an alternative definition of a polycirculant graph.

Graph G is polycirculant ((m, k)-circulant) if and only if there exists a pre-
graph B of order m such that G is a Zk covering graph over B .

Note that every Levi graph of a polycyclic configuration is a polycirculant
graph.

In this case, the quotient graph B = G/α is called reduced Levi graph (RLG).

What about the converse? Which polycirculant graphs are Levi graphs of
polycyclic configurations?
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We give an answer to the above question in the combinatorial – group
theoretical settings.
Every (m, k)-circulant graph G together with a (m.k)-semiregular
automorphism α may be recovered from its quotient graph B = G/α by
assigning appropriate voltages, i.e. elements from Zk to arcs of B such
that reverse arcs are assigned complementary voltages.
Starting with voltage graph on B the following is needed to get a Levi
graph of a connected (m, k)-cyclic d-configuration.
• B is connected, regular of order k and valence d . [Otherwise the result is
not a d-configuration.]
• gcd of all voltages and k is equal to 1. [Ensures connectivity]
• For any closed walk in B of length r with accumulated voltage a ∈ Zm

such that b = gcd(a, k) and c = k/b we need: rc ≥ 6. [no cycle of length
< 6 in G ]
Under these conditions B is a reduced Levi graph.



GR(214) RLG of GR(214), voltage group Z7

Since 21 = 7 × 3 we have 3 + 3 orbits of size 7.
Gábor Gévay asked whether there exists a realization of GR configuration
with 7 + 7 orbits of size 3.



How many reduced Levi graphs does (combinatorial) GR configuration
have?
• GR has 672 automorphisms.
• GR has 314 semiregular automorphisms.
• GR has 8 non-isomorphic quotient graphs.
• GR has 2 reduced Levi graphs.



GR(214)
RLG of GR(214), voltage group Z3

Unfortunately, this RLG has no geometric realization. (Shown by Leah
Berman).



B(214) The RLG of B(214), voltage group Z3

However, by changing voltages in this RLG exactly one new (214)
configuration, namely B(214) was constructed.



How many reduced Levi graphs does (combinatorial) B configuration have?
• B has 12 automorphisms.
• B has 314 semiregular automorphisms.
• B has 8 non-isomorphic quotient graphs.
• B has 1 reduced Levi graphs.



I used the same program with nauty to experiment with 3-configurations.

n (a) (b) (c) (d) (e)
7 1 1 1 1 1
8 1 1 1 1 1
9 3 3 3 3 3

10 10 10 10 2 2
11 31 25 28 1 1
12 229 95 162 14 14
13 2036 366 1201 2 2
14 21398 1432 11415 51 45

• (a) Number of configurations
• (b) Number of self-dual configurations
• (c) Number of Levi graphs
• (d) Number of polycyclic configurations
• (e) Number of polycyclic Levi graphs (i.e. graphs admitting at least one
reduced Levi graph)



The usual quotient graph of the Möbius-Kantor graph is the handcuff
graph. However,

there is another (2, 8) semi-regular automorphism. The corresponding
quotient is the dipole alias theta graph θ3. It is a reduced Levi graph.
Hence Möbius-Kantor is (poly)cyclic!
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Polycirculant graphs are important

The term emphpolycirculant comes from the renowned Polycirculant
conjecture posed by Dragan Marušič in 1981.
One variant can be stated as a problem:

Does every vertex transitive graph admit an
(m, k)-semiregular autormorphism?

The polycirculant conjecture has been solved for many special case,
however, the general problem is still open.

There is an older famous problem from 1969, due to László Lovász,
concerning vertex-transitive graphs.

Does every vertex transitive graph admit a
hamilton path?

With Simona Bonvicini we transferred this problem to bicirculants. In
particular, we completed classification of cubic bicirculants that are
hamiltonian. Currently we are working on hamiltonicity of bicirculants of
higher degrees.
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All circulants are Cayley graphs of cyclic groups.
Already bicirculants, we are mouch more diverse.

There exist bicirculant graphs that are not regular and
certainly not vertex-transitive.

Here is an example of a bicirculant graph that is not vertex-transitive:

Usually we consider only regular polycirculant graphs.
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Bicirculants and other polycirculants have only finitely many different
quotients. For instance, there are only three types of cubic bicirculants.

• Top - Cyclic Haar graphs, Cayley graphs of dihedral group.
• Middle - Prisms and Möbius ladders.
• Bottom - I -graphs that include generalized Petersen graphs.



Two books on configurations with different emphases. One (2009) is
focused on geometry the other one (2013) on algebraic graph theory.



Thank you!
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