Beyond Fibonacci cubes and Pell graphs

Luka Podrug

(joint work with Tomislav Došlić)

Alphabet $\mathcal{T} = \{0, 1\}$. Adjacency $0 \leftrightarrow 1$

Fibonacci cubes

Alphabet $\mathcal{T} = \{0, 1\}$. Adjacency $0 \leftrightarrow 1$

Pell graphs¹

Alphabet $\mathcal{T} = \{0, 1, 2\}$. Adjacency $0 \leftrightarrow 1$ or $11 \leftrightarrow 22$

¹E. Munarini, *Pell graphs*, Discrete Mathematics, **342**,2019

Luka Podrug (joint work with Tomislav Došlić)

Beyond Fibonacci cubes and Pell graphs

Alphabet
$$\mathcal{S}^{\boldsymbol{a}} = \{0, 1, 2, \dots, \boldsymbol{a} - 1, \boldsymbol{a}\}.$$

Alphabet
$$\mathcal{S}^{\boldsymbol{a}} = \{0, 1, 2, \dots, \boldsymbol{a} - 1, \boldsymbol{a}\}.$$

 $s_n = a \cdot s_{n-1} + s_{n-2}$

Luka Podrug (joint work with Tomislav Došlić)

Alphabet
$$\mathcal{S}^{\mathsf{a}} = \{0, 1, 2, \dots, \mathsf{a}-1, \mathsf{a}\}.$$

 $s_n = a \cdot s_{n-1} + s_{n-2}$

Graph Π_n^a :

 $V(\Pi_n^a) = \mathcal{S}_n^a.$

Graphs of linear recurrences of length two

Alphabet
$$\mathcal{S}^{\boldsymbol{a}} = \{0, 1, 2, \dots, \boldsymbol{a} - 1, \boldsymbol{a}\}.$$

 $s_n = a \cdot s_{n-1} + s_{n-2}$

Graph Π_n^a :

 $V(\Pi_n^a) = \mathcal{S}_n^a.$

For $\alpha = \alpha_1 \cdots \alpha_n$ and $\beta = \beta_1 \cdots \beta_n$ we define

$$\overline{h}(\alpha,\beta) = \sum_{k=1}^{n} |\alpha_k - \beta_k|.$$

Then α and β are adjacent if and only if $\overline{h}(\alpha,\beta) = 1$.

Decompositions of graph Π_n^a

Figure: Canonical decomposition $\Pi_n^a = \Pi_{n-1}^a \oplus \cdots \oplus \Pi_{n-1}^a \oplus \Pi_{n-2}^a$.

Figure: $\Pi_3^3 = \Pi_2^3 \oplus \Pi_2^3 \oplus \Pi_2^3 \oplus \Pi_1^3$.

$$e_n^a = a \cdot e_{n-1}^a + e_{n-2}^a + s_n^a - s_{n-1}^a$$
.

$$e_n^a = a \cdot e_{n-1}^a + e_{n-2}^a + s_n^a - s_{n-1}^a$$
.

The number of edges in graph Π_n^a is

$$e_n^a = \sum_{k=0}^n (-1)^{n+k} \left\lceil \frac{n+k}{2} \right\rceil {\binom{\lfloor \frac{n+k}{2} \rfloor}{k}} a^k$$

Luka Podrug (joint work with Tomislav Došlić) Beyond Fibonacci cubes and Pell graphs

Number of edges

$$e_n^a = a \cdot e_{n-1}^a + e_{n-2}^a + s_n^a - s_{n-1}^a.$$

Theorem

The number of edges in graph Π_n^a is

$$e_n^a = \sum_{k=0}^n (-1)^{n+k} \left\lceil \frac{n+k}{2} \right\rceil {\binom{\lfloor \frac{n+k}{2} \rfloor}{k}} a^k$$

Klavžar² proved that $|E(\Gamma_n)| = F_{n+1} + \sum_{k=1}^{n-2} F_k F_{n+1-k}$. But since $\prod_n^1 = \Gamma_{n-1}$, we obtained identity

$$\sum_{k=0}^{n} (-1)^{n+k} \left\lceil \frac{n+k}{2} \right\rceil \left(\lfloor \frac{n+k}{2} \rfloor \atop k \right) = \sum_{k=0}^{n} F_k F_{n-k}.$$

²S. Klavžar, *On median nature and enumerative properties of fibonacci-like cubes*, Discrete Mathematics, **299**,2005

Luka Podrug (joint work with Tomislav Došlić)

Sequence s_n^a defined with initial values $s_0^a = 1$, $s_1^a = a$ and recursive relation

$$s_n^a = as_{n-1}^a + s_{n-2}^a$$

satisfies well-known identity

$$s_n^a = \sum_{k\geq 0} \binom{n-k}{k} a^{n-2k}.$$

Theorem

Graph Π_n^a can be decomposed into F_{n-1} lattice graphs, where F_n denotes n-th Fibonacci number, i.e.,

$$\Pi_n^a = \bigoplus_{k \ge 0} \binom{n-k}{k} P_a^{n-2k}.$$

Figure: Decomposition of $\Pi_4^2 = P_2^4 \oplus P_2^2 \oplus P_2^2 \oplus P_2^2 \oplus P_2^0$.

Graphs Π_n^1 and Γ_{n-1} are isomorphic.

Graphs Π_n^1 and Γ_{n-1} are isomorphic.

Theorem

For any $a \geq 2$ we have embedding $\prod_{n=1}^{a} \subseteq \prod_{(2a-2)n=1}^{1} = \Gamma_{(2a-2)n-1}$.

Luka Podrug (joint work with Tomislav Došlić) Beyond Fibonacci cubes and Pell graphs 14 / 25

A median of three vertices is vertex that lies on the shortest path between every two of three vertices. We say that graph is a median if every three vertices have unique median.

Figure: Median of vertices 10, 22 and 03 is a vertex 12.

Theorem (Mulder)

A graph G is median graph if and only if G is connected induced subgraph of an n-cube such that with any three vertices of G their median in n-cube is also a vertex of G.

Theorem (Mulder)

A graph G is median graph if and only if G is connected induced subgraph of an n-cube such that with any three vertices of G their median in n-cube is also a vertex of G.

Theorem

For $a \ge 1$ and $n \ge 0$, graph $\prod_{n=1}^{a}$ is a median graph.

Radius and diameter of graph Π_n^a .

Luka Podrug (joint work with Tomislav Došlić)

Beyond Fibonacci cubes and Pell graphs

Figure: Graph Π_n^3 for n = 1, 2, 3 with eccentricity of every vertex.

By eccentricity e(v) of some vertex $v \in V(G)$ we mean distance from the vertex farthest from it. More precisely, $e(v) = \max_{w \in V(G)} d(v, w)$.

The radius of G, denoted by r(G), is minimum eccentricity of the vertices, and diameter of G, denoted by d(G), is maximum eccentricity.

Subset $Z(G) = \{v \in V(G) : e(v) = r(G)\} \subset V(G)$ is called center of G. Subset $P(G) = \{v \in V(G) : e(v) = r(G)\} \subset V(G)$ is called periphery of G.

For $a \ge 1$ and $n \ge 0$ we have

$$r(\Pi_n^a) = \left\lfloor \frac{a}{2} \right\rfloor \left\lceil \frac{n}{2} \right\rceil + \left\lceil \frac{a}{2} \right\rceil \left\lfloor \frac{n}{2} \right\rfloor.$$
(2.1)

Theorem

For $a \ge 1$ and $n \ge 0$ we have

$$d(\Pi_n^a) = an - 1. \tag{2.2}$$

Periphery consists of two vertices $0a0a \cdots 0a(0)$ and $(a-1)0a \cdots a0(a)$.

Corollary

For a and n odd, center $Z(\prod_{n=1}^{a}) = {\hat{\epsilon}}. |Z(\prod_{n=1}^{a})| = 1$

 $Z(\Pi_7^5) = \{2222222\}.$

Luka Podrug (joint work with Tomislav Došlić) Beyond Fibonacci cubes and Pell graphs 21 / 25

Corollary

For a and n odd, center $Z(\Pi_n^a) = \{\hat{\epsilon}\}$. $|Z(\Pi_n^a)| = 1$

 $Z(\Pi_7^5) = \{2222222\}.$

Let $\epsilon = \lfloor \frac{a}{2} \rfloor$ and $\hat{\epsilon} = \epsilon \cdots \epsilon \in V(\prod_n^a)$, as before. We define $U_n^a \subseteq V(\prod_n^a)$ to be set containing all vertices such that

- they differ from $\hat{\epsilon}$ in exactly one position, i.e., they have form $\epsilon \cdots \epsilon \alpha \epsilon \cdots \epsilon$, where $\alpha = \epsilon$ or $\alpha = \epsilon \pm 1$,
- 2 letter $\epsilon + 1$ can only appear on even positions,
- (a) letter $\epsilon 1$ can only appear on odd positions.

Corollary

For a and n odd, center $Z(\Pi_n^a) = {\hat{\epsilon}}. |Z(\Pi_n^a)| = 1$

 $Z(\Pi_7^5) = \{2222222\}.$

Let $\epsilon = \lfloor \frac{a}{2} \rfloor$ and $\hat{\epsilon} = \epsilon \cdots \epsilon \in V(\Pi_n^a)$, as before. We define $U_n^a \subseteq V(\Pi_n^a)$ to be set containing all vertices such that

- they differ from $\hat{\epsilon}$ in exactly one position, i.e., they have form $\epsilon \cdots \epsilon \alpha \epsilon \cdots \epsilon$, where $\alpha = \epsilon$ or $\alpha = \epsilon \pm 1$,
- 2 letter $\epsilon + 1$ can only appear on even positions,
- 3 letter $\epsilon 1$ can only appear on odd positions.

Corollary

For a odd and n even, center $Z(\Pi_n^a) = U_n^a \cup \{\hat{\epsilon}\}$. $|Z(\Pi_n^a)| = n + 1$.

 $Z(\Pi_6^5) = \{122222, 221222, 222212, 222222, 222223, 222322, 232222\}.$

Let $\epsilon = \frac{a}{2}$ and $V_n^a \subseteq Z(\prod_n^a)$ be set containing all vertices with letters ϵ or $\epsilon - 1$ such that $\epsilon - 1$ does not appear immediately after ϵ -block of odd length.

Corollary

For a even, center $Z(\Pi_n^a) = V_n^a$. $|Z(\Pi_n^a)| = f_{n+2}$.

 $Z(\Pi_4^4) = \{1111, 1112, 1122, 1221, 1222, 2211, 2212, 2222\}.$

For $a, n \ge 1$, graphs $\prod_{n=1}^{a}$ contain Hamiltonian path.

For $a, n \ge 1$, graphs $\prod_{n=1}^{a}$ contain Hamiltonian path.

Figure: Hamiltonian path of Π_3^1 , Π_3^2 and Π_3^3 .

For a, $n \ge 1$, graphs $\prod_{n=1}^{n}$ contain Hamiltonian path.

Figure: Hamiltonian path of Π_4^2 with endpoints 1111 and 0202.

For even a: endpoints $0a \cdots 0a(0)$ and $(a-1) \cdots (a-1)$

Thank you for your attention.