

Novel constructions of normal covers of the complete bipartite graphs $K_{2^n2^n}$

Cheryl E Praeger

July / 2023 / RICOTTA

Centre for the Mathematics of Symmetry and Computation

Timeline

1960 +

Norman Biggs Distance-transitive graphs

2001

Cai Heng Li Basic 2-arctransitive graphs prime power order

Dan Hawtin, CP, Jin Xin Zhou constructing covers of 2-power order of complete bipartite graphs

1947 +

Bill Tutte

Cubic s-arc-transitive graphs

CP Normal quotients of 2-arc transitive graphs; Ivanov + CP affine (bi)primitive classified

Constructions of semisymmetric graphs from various classes of groups

Background: study families of graphs *Particularly edge – transitive graphs*

Distance transitive graphs

 $\Gamma = (\Omega, E)$ graph with vertex set Ω , edge set E, and diameter d

For $0 \le i \le d$, let $\Gamma_i = \{(\alpha, \beta) | distance(\alpha, \beta) = i\}$

G –distance transitive if *G* is transitive on each Γ_i (and Γ connected)

Biggs—Smith graph Largest distance transitive graph of valency 3

From Sims' Conjecture 1983: for each $k \ge 3$, \exists only finitely many DTGs of valency k'

Always G transitive on vertex set Ω , on the edge set E, and arc set Γ_1

1971 D.H.Smith - imprimitive DTGs well understood – in terms of links to primitive ones ... taking "bipartite halves" and "antipodal quotients"

Background: study families of graphs *Particularly edge – transitive graphs*

All graphs finite

Distance transitive graphs

$\Gamma = (\Omega, E)$ graph with vertex set Ω , edge set E, and diameter d

For $0 \le i \le d$, let $\Gamma_i = \{(\alpha, \beta) | distance(\alpha, \beta) = i\}$

G –distance transitive if G is transitive on each Γ_i

1987 CP, Saxl, Yokoyama: Applied O'Nan-Scott Theorem

- To G DTGs with G primitive on vertices
 - G is affine Ω finite vector space
 - G is almost simple
 - Γ is a Hamming graph or complement

Launched program to classify all finite DTGs Biggs—Smith graph Largest distance transitive graph of valency 3

5

Can similar approaches work for other families of connected graphs? Tutte's work on s – arc transitive graphs

Connected graph: $\Gamma = (V, E)$ subgroup $G \le Aut(\Gamma)$; G transitive on V and on 2-arcs

Suitable reduction strategies:

Answer: normal graph quotients

Input: connected graph $\Gamma = (V, E)$ and

- $G \leq Aut(\Gamma)$, G transitive on E;
- normal subgroup N of G, usually N intransitive on V

Output: **normal quotient** $\Gamma_N = (V_N, E_N)$ with

- V_N set of N-orbits in V
- E_N N-orbit pairs connected by at least one edge

 Γ connected implies that $\ensuremath{\,\Gamma_{\!N}}$ is connected

G is transitive on E_N

Answer: normal graph quotients

Input: connected graph $\Gamma = (V, E)$ and

- $G \leq Aut(\Gamma)$, G transitive on V and on 2-arcs of Γ
- normal subgroup N of G, N with > 2 orbits on V

Output: **normal quotient** $\Gamma_N = (V_N, E_N)$ with

- $G/N \leq Aut(\Gamma_N)$; G/N transitive on V_N and on 2-arcs of Γ_N
- Γ cover of Γ_N

Γ a COVER of Γ_N if adjacent parts "joined by" a perfect matching

G/N is transitive on E_N

Basic normal quotients

Given: connected graph $\Gamma = (V, E)$ and

• $G \leq Aut(\Gamma)$, G transitive on V and on 2-arcs of Γ

(Γ , G) called *basic* if every normal subgroup N \neq 1 of G is either transitive on V, or has two (equal-sized) orbits in V

Outcome: each (Γ , G) has at least one basic normal quotient (Γ_N , G/N) and Γ is a cover of Γ_N

Choose N maximal such that N has at most two orbits in V

Studying 2-arc-transitive graphs

(Γ , G) *basic* if every normal subgroup N of G is either transitive on V, or has two (equal-sized) orbits in V

Challenge 1: find all basic (Γ, G) in some families

Challenge 2: **find normal covers of a basic** (Γ, G)

Tools: 1. quasiprimitive O'Nan-ScottTheorem; 2. voltage graphs

Timeline

1960+

Norman Biggs Distance-transitive graphs

2001

Cai Heng Li Basic 2-arctransitive graphs prime power order

Dan Hawtin, CP, Jin Xin Zhou constructing covers of 2-power order of complete bipartite graphs

1947 +

Bill Tutte

Cubic s-arc-transitive graphs

1993

CP

Normal quotients of 2-arc transitive graphs; Ivanov + CP affine (bi)primitive classified

Constructions of semisymmetric graphs from various classes of groups

11

Basic 2-arc-transitive p-power order

Challenge 1: (Γ, G) *basic* and $|V| = p^m$ for some prime p.

1993 Ivanov & CP:

found all basic (Γ, G) where ∃ elementary abelian normal subgroup N of G (regular on V)

2001 *Li*: found all additional basic (Γ, G) of p-power order

• Which are K_{p^n} , $K_{2^n,2^n}$, or $K_{2^n,2^n} - 2^n K_2$ with non-affine **G**

Tools: quasiprimitive O'Nan-Scott Theorem

All 2-arc-transitive p-power order

Problem: find 2–arc–transitive normal covers of p–power order of these basic (Γ, G)

2001 Li: posed this problem after writing:

"We are inclined to think that non-basic 2-arc transitive graphs of prime-power order would be rare and hard to construct"

Tools: voltage o		issignments;
This was an important	Malnic et al	
Notivation for "our" investigation – i.e.		
Dan Hawtin, CP, Jin Xin Zhou		

Timeline

1960+

Norman Biggs Distance-transitive graphs 2001

Cai Heng Li Basic 2-arctransitive graphs prime power order 2023 +

Dan Hawtin, CP, Jin Xin Zhou constructing covers of 2-power order of complete bipartite graphs

1947 +

Bill Tutte

Cubic s-arc-transitive graphs

CP Normal quotients of 2-arc transitive graphs; lvanov + CP affine (bi)primitive classified

Constructions of semisymmetric graphs from various classes of groups

Normal 2-arc-trans covers of $K_{2^n,2^n}$

- 2023 Hawtin, CP, Zhou: (Γ , G) connected 2-arc-transitive graph with normal quotient $\Gamma_N = K_{2^n,2^n}$ where N normal in G implies
- a) Either Γ is a Cayley graph

Cayley graphs feature in each case

b) Or N < H < G with H normal in G, N=H', and H is an n-dimensional mixed dihedral group, and the line graph of Γ is a Cayley graph for H

What is an n-dimensional mixed dihedral group?

Cayley graphs

Start with group G and subset C: Define $\Gamma = Cay(G; C)$

- to have vertex set G and edges all pairs $\{g, cg\}$ for $g \in G, c \in C$ We want
- No loops so 1_G not in C
- Undirected graph so C inverse-closed, $c \in C \Rightarrow c^{-1} \in C$
- Connected graph so C generates G

Affine symmetries of Cayley graphs

Group G and inverse – closed generating set C: $\Gamma = Cay(G; C)$

• Reminder: edges all pairs $\{g, cg\}$ for $g \in G, c \in C$

"Affine symmetries" $Aff(\Gamma) = G.Aut(G; C) \leq Aut(\Gamma)$

- "Translations" $x: g \to gx$ sends each edge { g, cg } to edge { gx, cgx } get copy of $G \le Aut(\Gamma)$ [transitive on vertices]
- "Automorphisms" for $\sigma \in Aut(G)$ with $c^{\sigma} \in C \forall c \in C$, $\sigma: g \to g^{\sigma}$ sends each edge { g, cg} to edge { $g^{\sigma}, c^{\sigma}g^{\sigma}$ } get subgroup $Aut(G; C) \leq Aut(\Gamma)$ [fixes 1, acts on C]
- $\Gamma = Cay(G; C)$ is **Xu-normal** if $Aff(\Gamma) = Aut(\Gamma)$ Ming Yao Xu

n-dimensional mixed dihedral group

- Let H be a finite group and X, Y < H. Then H is an n-dimensional mixed dihedral group relative to X and Y if
- $X \cong Y \cong C_2^n$
- $H = \langle X, Y \rangle$ and
- $H/H' \cong X \times Y$

Examples: which suggested the name

Choose any n even integers m_1, \ldots, m_n

- $D_{2m_i} = \langle x_i, y_i \rangle$ with $x_i^2 = y_i^2 = 1$ and $|x_i y_i| = m_i$
- $H = D_{2m_1} \times \cdots \times D_{2m_n} = \langle X, Y \rangle$ with $X = \langle x_1, \dots, x_n \rangle$, $Y = \langle y_1, \dots, y_n \rangle$

n-dimensional mixed dihedral group

- Let H be a finite group and X, Y < H. Then H is an n-dimensional mixed dihedral group relative to X and Y if
- $X \cong Y \cong C_2^n$
- $H = \langle X, Y \rangle$ and
- $H/H' \cong X \times Y$

In case b) where N < H < G with H normal in G

- N=H' and the line graph of Γ is the Cayley graph
- C(H,X,Y) = Cay(H, S) with $S = (X \cup Y) \setminus \{1\}$

Graphs for n-dim mixed dih'l groups • $X, Y < H, X \cong Y \cong C_2^n, H = \langle X, Y \rangle$ and $H/H' \cong X \times Y$

- The Cayley graph: C(H,X,Y) = Cay(H, S) with $S = (X \cup Y) \setminus \{1\}$ Two families of maximal cliques (complete subgraphs)
- $\{Xh \mid h \in H\}$ and $\{Yh \mid h \in H\}$

These form the vertex set of its clique graph $\Sigma(H,X,Y)$ with

• $E\Sigma = \{ \{Xh, Yg\} \mid Xh \cap Yg \neq \emptyset \}$

Properties of the clique graph

The clique graph $\Sigma(H,X,Y)$ of C(H,X,Y) has

- $V\Sigma = \{Xh \mid h \in H\} \cup \{Yh \mid h \in H\}$
- $E\Sigma = \{ \{Xh, Yg\} \mid Xh \cap Yg \neq \emptyset \}$

Edges from X: to YxEdges from Y: to Xy

- $\Sigma = \Sigma(H,X,Y)$ is bipartite with valency 2^n [explain why]
- H has two orbits on $V\Sigma$ and H is transitive on $E\Sigma$
- Σ is a cover of its normal quotient $\Sigma_{H'} = K_{2^n,2^n}$
- $\phi: z \to \{Xz, Yz\}$ defines isomorphism between $\Gamma = C(H, X, Y)$ and the line graph of Σ (bijection from H to $E\Sigma$)

Properties of the clique graph

The clique graph $\Sigma(H,X,Y)$ of C(H,X,Y) has

- $V\Sigma = \{Xh \mid h \in H\} \cup \{Yh \mid h \in H\}$
- $E\Sigma = \{ \{Xh, Yg\} \mid Xh \cap Yg \neq \emptyset \}$

Extra properties needed:

Edges from X: to YxEdges from Y: to Xy

- $|V\Sigma| = 2^{M}$ for some M Holds iff H is a 2-group
- Σ 2-arc-transitive Sufficient condition is that Aff (Γ) is edge-transitive on $\Gamma = C(H, X, Y)$

First explicit construction of ndimensional mixed dihedral groups

• Set $X = \langle x_1, \dots, x_n \rangle$, $Y = \langle y_1, \dots, y_n \rangle$, and

H= $\langle x_1, ..., x_n, y_1, ..., y_n \rangle$ satisfying the following defining relations, for $x, x' \in X, y, y' \in Y$

- $x^2 = y^2 = 1, [x, x'] = [y, y'] = 1, [x, y]^2 = 1,$
- [[x, y], x'] = [[x, y], y'] = 1

Properties:

- H is an n-dimensional mixed dihedral group; $H/H' \cong X \times Y \cong C_2^{2n}$
- Aut(H; S) = $(GL(X) \times GL(Y))$. 2 is transitive and faithful on S
- So Aff(Γ) edge transitive on $\Gamma = C(H,X,Y)=Cay(H,S)$
- Hence $\Sigma(H,X,Y)$ is a 2-arc transitive normal cover of $K_{2^n,2^n}$
- Also H is a 2-group of order 2^{n^2+2n} and $|V\Sigma| = 2^{n^2+n+1}$
- And C(H,X,Y) is a normal Cayley graph

For the smallest case n=2, here is the distance diagram for the stabiliser in Aut(Γ) for $\Gamma = C(H, X, Y)$

For the smallest case n=2, here is the distance diagram for the stabiliser in Aut(Γ) for $\Gamma = C(H,X,Y)$

Also aware of another question

Question (Chen, Jin, Li 2019) Is there a normal Cayley graph that is 2-distance-transitive, but is neither distance-transitive nor 2-arc-transitive?

All our examples have these properties

Huang, Feng and Zhou (2022) answered with a different construction

Review construction: symmetric in x's and y's nilpotent class 2, ...modifications?

H= ($x_1, ..., x_n, y_1, ..., y_n$) satisfying the following defining relations, for $i, j, k \le n$

- $x_i^2 = y_i^2 = 1$, $[x_{i_i}, x_j] = [y_{i_j}, y_j] = 1$, $[x_i, y_j]^2 = 1$,
- $[[x_i, y_j], x_k] = [[x_i, y_j], y_k] = 1$ And set

• $X = \langle x_1, \dots, x_n \rangle, Y = \langle y_1, \dots, y_n \rangle$

Why would we care?

Semisymmetric graphs \varGamma

- **Definition:** Γ is regular & Aut(Γ) is transitive on $E\Gamma$ but not on $V\Gamma$ **Consequences:** Γ bipartite and Aut(Γ)–orbits in $V\Gamma$ two biparts **Non-examples:**
- $K_{a,b}$ with $a \neq b$ Aut(Γ) is transitive on $E\Gamma$ but not on $V\Gamma$ but Γ not regular
- For bipartite G-arc-transitive Γ is regular and index 2 subgroup G^+ is transitive on $E\Gamma$ but not on $V\Gamma$... but ... $G^+ \neq Aut(\Gamma)$

Semisymmetric graphs \varGamma

Examples:

- 1967 Folkman: first constructions from abelian groups;
- Folkman asked what are all possible $v = |V\Gamma|$ and $k = valency of \Gamma$?
- *Ivanov* (1987), *Conder et al* (2006): $k = 3, v \le 728$
- *Bi-Cayley graphs used to construct examples*
- Zhou&Feng (2016) $k = 3, v = 2^{2n+7}$
- Conder et al (2020) $k \to \infty$

Observation: all the last examples used 2 – generated groups

Ming Yao Xu noticed: no examples of 2 – power order

Review construction: symmetric in x's and y's nilpotent class 2, ...modifications?

H= ($x_1, ..., x_n, y_1, ..., y_n$) satisfying the following defining relations, for $i, j, k \le n$

- $x_i^2 = y_i^2 = 1$, $[x_{i_i} x_j] = [y_{i_j} y_j] = 1$, $[x_i, y_j]^2 = 1$,
- $[[x_i, y_j], x_k] = [[x_i, y_j], y_k] = 1$ And set

• $X = \langle x_1, \dots, x_n \rangle, Y = \langle y_1, \dots, y_n \rangle$

H needs 2n generators

Second construction:

H= $\langle X_0 \cup Y_0 | R \rangle$ where $X_0 = \{x_1, \dots, x_n\}, Y_0 = \{y_1, \dots, y_n\}$ and R is the following set of relations, where $x, x' \in X_0, y, y' \in Y_0$, and $z, z', z'' z''' \in X_0 \cup Y_0$,

• $z^2 = 1, [x, x'] = [y, y'] = 1, [x, y]^2 = 1,$ [no change]

•
$$[[y, x], y'] = 1, [[x, y], z]^2 = 1, [[[z, z'], z'',]z'''] = 1$$
 [different]

H has nilpotency class 3, and relations for x and y different

Second construction: facts

2023 Hawtin, CP, Zhou (paper 2):

- H= $\langle X_0 \cup Y_0 | R \rangle$ is an n-dimensional mixed dihedral 2-group of order $2^{n(n^2+n+4)/2}$ relative to $X = \langle X_0 \rangle$ and $Y = \langle Y_0 \rangle$
- Σ(H,X,Y) is semisymmetric and is locally 2-arc transitive transitive of valency 2ⁿ

H has nilpotency class 3, and relations for x and y different

Second const: smallest example n=2

Distance diagrams from one vertex in each bipart

This smallest one is locally 3-distance transitive: not known in general

Third construction: question of Li et al

2009 Li, Ma, Pan :

Given Γ vertex-transitive, locally primitive, prime power order

• Implies either Γ Cayley graph, or Γ normal cover of $K_{2^n,2^n}$

Question: are ALL the examples Cayley graphs?

2023 Hawtin, CP, Zhou (paper 3): NO!

We give just one example: 4-dim mixed dihedral

Third construction: question of Li et al

2023 Hawtin, CP, Zhou (paper 3):

Our example is $\Sigma(H,X,Y)$ for a 4-dimensional mixed dihedral group H of order 2⁵⁶. The graph $\Sigma(H,X,Y)$ has order 2⁵³.

- Vertex transitive, 2-arc-transitive normal cover of $K_{\rm 16,16}$ and not a Cayley graph

Our Questions: are there infinitely many non-Cayley examples?

And what is the smallest such graph?

We give ~ 7 pages of computer assisted analysis in our proof

Some final comments

1: New method of building graph examples from 2groups – works with appropriate quotients of free groups.

2: Hope this might be relevant for other graph constructions.

Some references:

1. C. E. Praeger, An O'Nan-Scott Theorem for finite quasiprimitive permutation groups, and an application to 2arc transitive graphs, J. London Math. Soc. (2) 47 (1993), 227-239.

- 2. A. A. Ivanov, C. E. Praeger, On finite affine 2-arc-transitive graphs, Eur. J. Combin. 14 (1993) 421-444.
- 3. C. H. Li, Finite s-arc transitive graphs of prime-power order, Bull. London Math. Soc. 33 (2001) 129-137.
- 4. J. Chen, W. Jin, C.H. Li, On 2-distance-transitive circulants, J. Algebr. Comb. 49 (2019) 179-191.
- 5. C. H. Li, L. Ma, J. Pan, Locally primitive graphs of prime-power order, J. Aust. Math. Soc. 86 (2009) 111–122.
- 6. D. Hawtin, C. E. Praeger, Jin-Xin Zhou, [all on arXiv]
 - A characterisation of edge-affine 2-arc-transitive covers of $K_{2^n,2^n}$;
 - A family of 2-groups and an associated family of semisymmetric, locally 2-arc-transitive graphs

Using mixed dihedral groups to construct normal Cayley graphs, and a new bipartite 2-arctransitive graph which is not a Cayley graph

December 11-15, 2023

45ACCuwa@gmail.com

45th Australasian Combinatorics Conference

Thank you all Stay safe