Novel constructions of normal covers of the complete bipartite graphs $K_{2^{n} 2^{n}}$
 Cheryl E Praeger

1960+

Norman Biggs Distance-transitive graphs

2001

Cai Heng Li
Basic 2-arc
transitive graphs prime power order

2023+

Dan Hawtin, CP, Jin Xin Zhou constructing covers of 2-power order of complete bipartite graphs

1947+
Bill Tutte
Cubic s-arc-transitive graphs

1993

CP
Normal quotients of 2-arc transitive graphs; Ivanov + CP affine (bi)primitive classified

2000-20

Constructions of semisymmetric graphs from various classes of groups

Background: study families of graphs Particularly edge - transitive graphs

Distance transitive graphs

Biggs-Smith graph Largest distance transitive graph of valency 3
$\Gamma=(\Omega, E)$ graph with vertex set Ω, edge set E , and diameter d For $0 \leq i \leq d$, let $\Gamma_{i}=\{(\alpha, \beta) \mid$ distance $(\alpha, \beta)=i\}$
G-distance transitive if G is transitive on each Γ_{i} (and Γ connected)

From Sims' Conjecture 1983: for each $k \geq 3, \exists$ only finitely many DTGs of valency Always G transitive on vertex set Ω, on the edge set E, and arc set Γ_{1}
 1971 D.H.Smith - imprimitive DTGs well understood - in terms of links to primitive ones ... taking "bipartite halves" and "antipodal quotients"

Background: study families of graphs Particularly edge - transitive graphs

Distance transitive graphs

All graphs finite

Biggs-Smith graph Largest distance transitive graph of valency 3
$\Gamma=(\Omega, E)$ graph with vertex set Ω, edge set E , and diameter d For $0 \leq i \leq d$, let $\Gamma_{i}=\{(\alpha, \beta) \mid$ distance $(\alpha, \beta)=i\}$
G-distance transitive if G is transitive on each Γ_{i}
1987 CP, Saxl, Yokoyama: Applied O'Nan-Scott Theorem
To G - DTGs with G primitive on vertices
G is affine $-\Omega$ finite vector space
Launched
G is almost simple
Γ is a Hamming graph or complement
program to classify all finite DTGs

Can similar approaches work for other families of connected graphs? Tutte's work on s-arc transitive graphs

Connected graph: $\quad \Gamma=(V, E)$ subgroup $\mathrm{G} \leq \operatorname{Aut}(\Gamma) ; \mathrm{G}$ transitive on \vee and on 2-arcs
Suitable reduction strategies:
> Reduced graphs should have same transitivity properties
> Tools available to study "basic graphs"
> Methods for studying preimages triple (a, b, c)

$$
\begin{aligned}
& \text { s-arc: similarly: vertex tuple } \\
& \left(a_{1} \ldots a_{s+1}\right), \text { s edges } \ldots
\end{aligned}
$$

$$
\begin{aligned}
& \text { G transitive on 2- } \\
& \text { arcs and on } \\
& \text { vertices }
\end{aligned}
$$

Answer: normal graph quotients

Input: connected graph $\Gamma=(V, E)$ and

- $\mathrm{G} \leq \operatorname{Aut}(\Gamma), \mathrm{G}$ transitive on E ;
- normal subgroup N of G , usually N intransitive on V

Output: normal quotient $\Gamma_{\mathrm{N}}=\left(V_{N}, E_{N}\right)$ with

- V_{N} set of N -orbits in V
- $E_{N} \mathrm{~N}$-orbit pairs connected by at least one edge

「 connected implies that Γ_{N} is connected

G is transitive
on E_{N}

Answer: normal graph quotients

Input: connected graph $\Gamma=(V, E)$ and

- $\mathrm{G} \leq \operatorname{Aut}(\Gamma), \mathrm{G}$ transitive on V and on 2 -arcs of Γ
- normal subgroup N of G, N with >2 orbits on V

Output: normal quotient $\Gamma_{\mathrm{N}}=\left(V_{N}, E_{N}\right)$ with

- $\mathrm{G} / \mathrm{N} \leq \operatorname{Aut}\left(\Gamma_{N}\right) ; \mathrm{G} / \mathrm{N}$ transitive on V_{N} and on 2-arcs of Γ_{N}
- Γ cover of Γ_{N}

G/N is transitive on E_{N}

Basic normal quotients

Given: connected graph $\Gamma=(V, E)$ and

- $\mathrm{G} \leq \operatorname{Aut}(\Gamma), \mathrm{G}$ transitive on V and on 2 -arcs of Γ
(Γ, G) called basic if every normal subgroup $\mathrm{N} \neq 1$ of G is either transitive on V , or has two (equal-sized) orbits in V
Outcome: each (Γ, G) has at least one basic normal quotient $\left(\Gamma_{\mathrm{N}}, G / N\right)$ and Γ is a cover of Γ_{N}

Choose N maximal such that N has at most two orbits in V

Studying 2-arc-transitive graphs

(Γ, G) basic if every normal subgroup N of G is either transitive on V, or has two (equal-sized) orbits in V

Challenge 1: find all basic (Γ, G) in some families
Challenge 2: find normal covers of a basic (Γ, G)

1960+

Norman Biggs Distance-transitive graphs

2001

Cai Heng Li
Basic 2-arc-
transitive graphs
prime power order

2023+

Dan Hawtin, CP, Jin Xin Zhou constructing covers of 2-power order of complete bipartite graphs

1947+

Bill Tutte
Cubic s-arc-transitive graphs

1993

CP
Normal quotients of 2-arc transitive graphs; Ivanov + CP affine (bi)primitive classified

2000-20

Constructions of semisymmetric graphs from various classes of groups

Basic 2-arc-transitive p-power order

Challenge 1: (Γ, G) basic and $|\mathrm{V}|=\mathrm{p}^{\mathrm{m}}$ for some prime p .
1993 Ivanov \& CP:

- found all basic (Γ, G) where \exists elementary abelian normal subgroup N of G (regular on V)

2001 Li: found all additional basic (Γ, G) of p-power order

- Which are $\mathrm{K}_{p^{n}}, \mathrm{~K}_{2^{\mathrm{n}}, 2^{\mathrm{n}}}$, or $\mathrm{K}_{2^{\mathrm{n}}, 2^{\mathrm{n}}}-2^{n} K_{2}$ with non-affine G

Tools: quasiprimitive O'Nan-Scott Theorem

All 2-arc-transitive p-power order

Problem: find 2-arc-transitive normal covers of p-power order of these basic (Γ, G)

2001 Li: posed this problem after writing:
"We are inclined to think that non-basic 2-arc transitive graphs of prime-power order would be rare and hard to construcf"

Tools: voltage assignments;
This was an important Malnic et al

1960+

Norman Biggs Distance-transitive graphs

2001

Cai Heng Li
Basic 2-arc
transitive graphs prime power order

2023+
Dan Hawtin, CP, Jin Xin
Zhou constructing covers of 2-power order of complete bipartite graphs

1947+
Bill Tutte
Cubic s-arc-transitive graphs

1993

CP
Normal quotients of 2-arc transitive graphs; Ivanov + CP affine (bi)primitive classified

2000-20

Constructions of semisymmetric graphs from various classes of groups

Normal 2-arc-trans covers of $\mathrm{K}_{2^{\mathrm{n}}, 2^{\mathrm{n}}}$

2023 Hawtin, CP, Zhou: (Г, G) connected 2-arc-transitive graph with normal quotient $\Gamma_{\mathrm{N}}=\mathrm{K}_{2^{\mathrm{n}}, 2^{\mathrm{n}}}$ where N normal in G implies
a) Either Γ is a Cayley graph

Cayley graphs feature in each case
b) $\operatorname{Or} \mathrm{N}<\mathrm{H}<\mathrm{G}$ with H normal in $\mathrm{G}, \mathrm{N}=\mathrm{H}^{\prime}$, and H is an n-dimensional mixed dihedral group, and the line graph of Γ is a Cayley graph for H

Cayley graphs

Start with group G and subset C : Define $\Gamma=\operatorname{Cay}(G ; C)$

- to have vertex set G and edges all pairs $\{g, c g\}$ for $g \in G, c \in C$ We want
- No loops so 1_{G} not in C
- Undirected graph so C inverse-closed, $c \in C \Rightarrow c^{-1} \in C$
- Connected graph so C generates G

Affine symmetries of Cayley graphs

Group G and inverse - closed generating set $C: \Gamma=\operatorname{Cay}(G ; C)$

- Reminder: edges all pairs $\{g, c g\}$ for $g \in G, c \in C$
"Affine symmetries" $\operatorname{Aff}(\Gamma)=G \cdot \operatorname{Aut}(G ; C) \leq \operatorname{Aut}(\Gamma)$
- "Translations" $x: g \rightarrow g x$ sends each edge $\{g, c g\}$ to edge $\{g x, \operatorname{cg} x\}$ get copy of $G \leq \operatorname{Aut}(\Gamma) \quad$ [transitive on vertices]
- "Automorphisms" for $\sigma \in \operatorname{Aut}(G)$ with $c^{\sigma} \in C \forall c \in C, \sigma: g \rightarrow g^{\sigma}$ sends each edge $\{g, c g\}$ to edge $\left\{g^{\sigma}, c^{\sigma} g^{\sigma}\right\}$ get subgroup $\operatorname{Aut}(G ; C) \leq \operatorname{Aut}(\Gamma) \quad[f i x e s$ 1, acts on C]
- $\Gamma=\operatorname{Cay}(G ; C)$ is Xu-normal if $\operatorname{Aff}(\Gamma)=\operatorname{Aut}(\Gamma)$

n-dimensional mixed dihedral group

Let H be a finite group and $X, Y<H$. Then H is an n-dimensional mixed dihedral group relative to X and Y if

- $X \cong Y \cong C_{2}^{n}$
- $H=\langle X, Y\rangle$ and
- $\mathrm{H} / \mathrm{H}^{\prime} \cong X \times Y$

Examples: which

suggested the name
Choose any n even integers m_{1}, \ldots, m_{n}

- $D_{2 m_{i}}=\left\langle x_{i}, y_{i}\right\rangle$ with $x_{i}^{2}=y_{i}^{2}=1$ and $\left|x_{i} y_{i}\right|=m_{i}$
- $H=D_{2 m_{1}} \times \cdots \times D_{2 m_{n}}=\langle X, Y\rangle$ with $\mathrm{X}=\left\langle x_{1}, \ldots, x_{n}\right\rangle, \mathrm{Y}=\left\langle y_{1}, \ldots, y_{n}\right\rangle$

n-dimensional mixed dihedral group

Let H be a finite group and $X, Y<H$. Then H is an n-dimensional mixed dihedral group relative to X and Y if

- $X \cong Y \cong C_{2}^{n}$
- $H=\langle X, Y\rangle$ and
- $\mathrm{H} / \mathrm{H}^{\prime} \cong X \times Y$

In case b) where $\mathrm{N}<\mathrm{H}<\mathrm{G}$ with H normal in G

- $\mathrm{N}=\mathrm{H}^{\prime}$ and the line graph of Γ is the Cayley graph
- $\mathrm{C}(\mathrm{H}, \mathrm{X}, \mathrm{Y})=\mathrm{Cay}(\mathrm{H}, \mathrm{S})$ with $\mathrm{S}=(X \cup Y) \backslash\{1\}$

Graphs for \mathbf{n}-dim mixed dih'l groups

- $X, Y<H, \quad X \cong Y \cong C_{2}^{n}, \quad H=\langle X, Y\rangle$ and $\mathrm{H} / \mathrm{H}^{\prime} \cong X \times Y$

The Cayley graph: $\mathrm{C}(\mathrm{H}, \mathrm{X}, \mathrm{Y})=\mathrm{Cay}(\mathrm{H}, \mathrm{S})$ with $\mathrm{S}=(X \cup Y) \backslash\{1\}$
Two families of maximal cliques (complete subgraphs)

- $\{X h \mid h \in H\}$ and $\{Y h \mid h \in H\}$

These form the vertex set of its clique graph $\Sigma(H, X, Y)$ with

- $E \Sigma=\{\{X h, Y g\} \mid X h \cap Y g \neq \varnothing\}$

Properties of the clique graph

 The clique graph $\Sigma(\mathrm{H}, \mathrm{X}, \mathrm{Y})$ of $\mathrm{C}(\mathrm{H}, \mathrm{X}, \mathrm{Y})$ has- $V \Sigma=\{X h \mid h \in H\} \cup\{Y h \mid h \in H\}$
- $E \Sigma=\{\{X h, Y g\} \mid X h \cap Y g \neq \emptyset\}$

Edges from X : to $Y x$ Edges from Y: to Xy
$\Sigma=\Sigma(\mathrm{H}, \mathrm{X}, \mathrm{Y})$ is bipartite with valency 2^{n} [explain why]

- H has two orbits on $V \Sigma$ and H is transitive on $E \Sigma$
- Σ is a cover of its normal quotient $\Sigma_{\mathrm{H}^{\prime}}=\mathrm{K}_{2^{\mathrm{n}}, 2^{\mathrm{n}}}$
- $\phi: z \rightarrow\{X z, Y z\}$ defines isomorphism between $\Gamma=C(H, X, Y)$ and the line graph of Σ (bijection from H to $E \Sigma$)

Properties of the clique graph

The clique graph $\Sigma(\mathrm{H}, \mathrm{X}, \mathrm{Y})$ of $\mathrm{C}(\mathrm{H}, \mathrm{X}, \mathrm{Y})$ has

- $V \Sigma=\{X h \mid h \in H\} \cup\{Y h \mid h \in H\}$
- $E \Sigma=\{\{X h, Y g\} \mid X h \cap Y g \neq \varnothing\}$

Extra properties needed:

- $|V \Sigma|=2^{\mathrm{M}}$ for some M Holds iff H is a 2-group
- Σ 2-arc-transitive Sufficient condition is that Aff (Г) is edge-transitive on $\Gamma=C(H, X, Y)$

First explicit construction of n dimensional mixed dihedral groups

- Set $\mathrm{X}=\left\langle x_{1}, \ldots, x_{n}\right\rangle, Y=\left\langle y_{1}, \ldots, y_{n}\right\rangle$, and
$\mathrm{H}=\left\langle x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right\rangle$ satisfying the following defining relations, for $x, x^{\prime} \in X, y, y^{\prime} \in Y$
- $x^{2}=y^{2}=1,\left[x, x^{\prime}\right]=\left[y, y^{\prime}\right]=1,[x, y]^{\wedge} 2=1$,
- $\left[[x, y], x^{\prime}\right]=\left[[x, y], y^{\prime}\right]=1$

Properties:

- H is an n -dimensional mixed dihedral group; $\mathrm{H} / \mathrm{H}^{\prime} \cong X \times Y \cong C_{2}^{2 n}$
- $\operatorname{Aut}(\mathrm{H} ; \mathrm{S})=(\mathrm{GL}(\mathrm{X}) \times G L(Y)) .2$ is transitive and faithful on S
- So $\operatorname{Aff}(\Gamma)$ edge - transitive on $\Gamma=C(H, X, Y)=\operatorname{Cay}(H, S)$
- Hence $\Sigma(\mathrm{H}, \mathrm{X}, \mathrm{Y})$ is a 2-arc transitive normal cover of $\mathrm{K}_{2^{\mathrm{n}}, 2^{\mathrm{n}}}$
- Also H is a 2-group of order $2^{n^{2}+2 n}$ and $|V \Sigma|=2^{n^{2}+n+1}$
- And $\mathrm{C}(\mathrm{H}, \mathrm{X}, \mathrm{Y})$ is a normal Cayley graph

For the smallest case $\mathrm{n}=2$, here is the distance diagram for the stabiliser in Aut(Γ) for $\Gamma=C(H, X, Y)$

For the smallest case $\mathrm{n}=2$, here is the distance diagram for the stabiliser in $\operatorname{Aut}(\Gamma)$ for $\Gamma=\mathrm{C}(\mathrm{H}, \mathrm{X}, \mathrm{Y})$

Also aware of another question

Question (Chen, Jin, Li 2019) Is there a normal Cayley graph that is 2-distance-transitive, but is neither distance-transitive nor 2-arc-transitive?

All our examples have these properties

Huang, Feng and Zhou (2022) answered with a different construction

Review construction:

 symmetric in x's and y's nilpotent class 2, ...modifications?$\mathrm{H}=\left\langle x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right\rangle$ satisfying the following defining relations, for $i, j, k \leq n$

- $x_{i}^{2}=y_{i}^{2}=1,\left[x_{i}, x_{j}\right]=\left[y_{i}, y_{j}\right]=1,\left[x_{i}, y_{j}\right]^{\wedge} 2=1$,
- $\left[\left[x_{i}, y_{j}\right], x_{k}\right]=\left[\left[x_{i}, y_{j}\right], y_{k}\right]=1$

And set
Why would we

- $\mathrm{X}=\left\langle x_{1}, \ldots, x_{n}\right\rangle, Y=\left\langle y_{1}, \ldots, y_{n}\right\rangle$

Semisymmetric graphs Γ

Definition: Γ is regular $\mathcal{E} \operatorname{Aut}(\Gamma)$ is transitive on $E \Gamma$ but not on $V \Gamma$
Consequences: Γ bipartite and $A u t(\Gamma)$-orbits in $V \Gamma$ two biparts
Non-examples:

- $K_{a, b}$ with $a \neq b \operatorname{Aut}(\Gamma)$ is transitive on $Е Г$ but not on $V \Gamma$ but Γ not regular
- For bipartite G-arc-transitive Γ is regular and index 2 subgroup G^{+}is transitive on $Е Г$ but not on $V \Gamma \ldots$ but $\ldots G^{+} \neq \operatorname{Aut}(\Gamma)$

Semisymmetric graphs Γ

Examples:

- 1967 Folkman: first constructions - from abelian groups;
- Folkman asked what are all possible $v=|V \Gamma|$ and $k=$ valency of Γ ?
- Ivanov (1987), Conder et al (2006): $k=3, v \leq 728$

Ming Yao Xu noticed: no examples
of 2 - power order

- Bi-Cayley graphs used to construct examples
- Zhou\&Feng (2016) $k=3, v=2^{2 n+7} \quad$ Observation: all the
- Conder et al (2020) $\quad k \rightarrow \infty$

Review construction:

symmetric in x 's and y 's

 nilpotent class 2, ...modifications?$\mathrm{H}=\left\langle x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right\rangle$ satisfying the following defining relations, for $i, j, k \leq n$

- $x_{i}^{2}=y_{i}^{2}=1,\left[x_{i}, x_{j}\right]=\left[y_{i}, y_{j}\right]=1,\left[x_{i}, y_{j}\right]^{\wedge} 2=1$,
- $\left[\left[x_{i}, y_{j}\right], x_{k}\right]=\left[\left[x_{i}, y_{j}\right], y_{k}\right]=1$

And set
H needs $2 n$

- $\mathrm{X}=\left\langle x_{1}, \ldots, x_{n}\right\rangle, Y=\left\langle y_{1}, \ldots, y_{n}\right\rangle$

Second construction:

$\mathrm{H}=\left\langle X_{0} \cup Y_{0} \mid R\right\rangle$ where $X_{0}=\left\{x_{1}, \ldots, x_{n}\right\}, Y_{0}=\left\{y_{1}, \ldots, y_{n}\right\}$ and R is the following set of relations, where $x, x^{\prime} \in X_{0}, y, y^{\prime} \in Y_{0}$, and $z, z^{\prime}, z^{\prime \prime} z^{\prime \prime \prime} \in X_{0} \cup Y_{0}$,

- $z^{2}=1,\left[x, x^{\prime}\right]=\left[y, y^{\prime}\right]=1,[x, y]^{2}=1, \quad[$ no change $]$
- $\left[[y, x], y^{\prime}\right]=1,[[x, y], z]^{2}=1,\left[\left[\left[z, z^{\prime}\right], z^{\prime \prime},\right] z^{\prime \prime \prime}\right]=1$ [different]

Second construction: facts

2023 Hawtin, CP, Zhou (paper 2):

- $\mathrm{H}=\left\langle X_{0} \cup Y_{0} \mid R\right\rangle$ is an n-dimensional mixed dihedral 2-group of order $2^{n\left(n^{2}+n+4\right) / 2}$ relative to $X=\left\langle X_{0}\right\rangle$ and $Y=\left\langle Y_{0}\right\rangle$
- $\Sigma(\mathrm{H}, \mathrm{X}, \mathrm{Y})$ is semisymmetric and is locally 2-arc transitive transitive of valency 2^{n}

Second const: smallest example $\mathrm{n}=2$

Distance diagrams from one vertex in each bipart

Third construction: question of Li et al

2009 Li, Ma, Pan :
Given Γ vertex-transitive, locally primitive, prime power order

- Implies either Γ Cayley graph, or Γ normal cover of $\mathrm{K}_{2} \mathrm{n}, 2^{\mathrm{n}}$

Question: are ALL the examples Cayley graphs?

2023 Hawtin, CP, Zhou (paper 3): NO!

Third construction: question of Li et al

2023 Hawtin, CP, Zhou (paper 3):
Our example is $\Sigma(\mathrm{H}, \mathrm{X}, \mathrm{Y})$ for a 4-dimensional mixed dihedral group H of order 2^{56}. The graph $\Sigma(\mathrm{H}, \mathrm{X}, \mathrm{Y})$ has order 2^{53}.

- Vertex transitive, 2-arc-transitive normal cover of $\mathrm{K}_{16,16}$ and not a Cayley graph
Our Questions: are there infinitely many non-Cayley examples?
And what is the smallest such graph?

Some final comments

1: New method of building graph examples from 2groups - works with appropriate quotients of free groups.

2: Hope this might be relevant for other graph constructions.

Some references:

1. C. E. Praeger, An O'Nan-Scott Theorem for finite quasiprimitive permutation groups, and an application to 2 arc transitive graphs, J. London Math. Soc. (2) 47 (1993), 227-239.
2. A. A. Ivanov, C. E. Praeger, On finite affine 2-arc-transitive graphs, Eur. J. Combin. 14 (1993) 421-444.
3. C. H. Li, Finite s-arc transitive graphs of prime-power order, Bull. London Math. Soc. 33 (2001) 129-137.
4. J. Chen, W. Jin, C.H. Li, On 2-distance-transitive circulants, J. Algebr. Comb. 49 (2019) 179-191.
5. C. H. Li, L. Ma, J. Pan, Locally primitive graphs of prime-power order, J. Aust. Math. Soc. 86 (2009) 111-122.
6. D. Hawtin, C. E. Praeger, Jin-Xin Zhou, [all on arXiv]

A characterisation of edge-affine 2-arc-transitive covers of $\mathrm{K}_{2^{\mathrm{n}}, 2^{\mathrm{n}}}$;
A family of 2-groups and an associated family of semisymmetric, locally 2-arc-transitive graphs
Using mixed dihedral groups to construct normal Cayley graphs, and a new bipartite 2-arctransitive graph which is not a Cayley graph

December 11-15, 2023

45ACCuwa@gmail.com

45 ${ }^{\text {th }}$

Australasian

 Combinatorics ConferenceThank you all Stay safe

