groups of degree a product of two odd primes

Sarobidy Razafimahatratra
University of Primorska FAMNIT

\$_ Joint work with

Roghayeh Maleki

Angelot Behajaina

Karen Meagher

1. The EKR Theorem
2. EKR for transitive groups
3. Derangement graphs
4. Transitive groups with fixed degree
5. The primitive case
6. The imprimitive case

\#_ The EKR Theorem

\$_ The Erdős-Ko-Rado theorem

Theorem (Erdós-Ko-Rado, 1961)

For any two positive integers such that $n \geqslant 2 k+1$, if \mathcal{F} is a collection of k-subsets of $[n]:=\{1,2, \ldots, n\}$ such that $|A \cap B| \geqslant 1$, for all $A, B \in \mathcal{F}$, then

$$
|\mathcal{F}| \leqslant\binom{ n-1}{k-1}
$$

Moreover, equality holds if and only if \mathcal{F} is of the form

$$
\mathcal{F}_{a}=\{A \subset[n]:|A|=k \text { and } a \in A\}
$$

for some $a \in[n]$.

$$
\begin{gathered}
\#_{-} \quad \text { EKR for transitive } \\
\text { groups }
\end{gathered}
$$

> \$_ Definitions
> Let $G \leqslant \operatorname{Sym}(\Omega)$ be a finite transitive group.

\$_ Definitions

Let $G \leqslant \operatorname{Sym}(\Omega)$ be a finite transitive group.
(*) A set $\mathcal{F} \subset G$ is intersecting if for any $\sigma, \pi \in \mathcal{F}$, there exist $\omega \in \Omega$ such that $\omega^{\sigma}=\omega^{\pi}$.

\$_ Definitions

Let $G \leqslant \operatorname{Sym}(\Omega)$ be a finite transitive group.
(*) A set $\mathcal{F} \subset G$ is intersecting if for any $\sigma, \pi \in \mathcal{F}$, there exist $\omega \in \Omega$ such that $\omega^{\sigma}=\omega^{\pi}$.
» What are the obvious intersecting sets?

\$_ Definitions

Let $G \leqslant \operatorname{Sym}(\Omega)$ be a finite transitive group.
(*) A set $\mathcal{F} \subset G$ is intersecting if for any $\sigma, \pi \in \mathcal{F}$, there exist $\omega \in \Omega$ such that $\omega^{\sigma}=\omega^{\pi}$.
» What are the obvious intersecting sets?
» The intersection density of the transitive group $G \leqslant \operatorname{Sym}(\Omega)$ is the rational number

$$
\rho(G):=\max \left\{\frac{|\mathcal{F}|}{\left|G_{\omega}\right|}: \mathcal{F} \subseteq G \text { is intersecting }\right\}
$$

\$_ Definitions

Let $G \leqslant \operatorname{Sym}(\Omega)$ be a finite transitive group.
(*) A set $\mathcal{F} \subset G$ is intersecting if for any $\sigma, \pi \in \mathcal{F}$, there exist $\omega \in \Omega$ such that $\omega^{\sigma}=\omega^{\pi}$.
» What are the obvious intersecting sets?
» The intersection density of the transitive group $G \leqslant \operatorname{Sym}(\Omega)$ is the rational number

$$
\rho(G):=\max \left\{\frac{|\mathcal{F}|}{\left|G_{\omega}\right|}: \mathcal{F} \subseteq G \text { is intersecting }\right\}
$$

» $\rho(G) \geqslant 1$.

\$_ Definitions

Let $G \leqslant \operatorname{Sym}(\Omega)$ be a finite transitive group.
(*) A set $\mathcal{F} \subset G$ is intersecting if for any $\sigma, \pi \in \mathcal{F}$, there exist $\omega \in \Omega$ such that $\omega^{\sigma}=\omega^{\pi}$.
» What are the obvious intersecting sets?
» The intersection density of the transitive group $G \leqslant \operatorname{Sym}(\Omega)$ is the rational number

$$
\rho(G):=\max \left\{\frac{|\mathcal{F}|}{\left|G_{\omega}\right|}: \mathcal{F} \subseteq G \text { is intersecting }\right\}
$$

$\gg(G) \geqslant 1$.
$» G$ has the EKR property if $\rho(G)=1$.

\$_ Definitions

Let $G \leqslant \operatorname{Sym}(\Omega)$ be a finite transitive group.
(*) A set $\mathcal{F} \subset G$ is intersecting if for any $\sigma, \pi \in \mathcal{F}$, there exist $\omega \in \Omega$ such that $\omega^{\sigma}=\omega^{\pi}$.
» What are the obvious intersecting sets?
» The intersection density of the transitive group $G \leqslant \operatorname{Sym}(\Omega)$ is the rational number

$$
\rho(G):=\max \left\{\frac{|\mathcal{F}|}{\left|G_{\omega}\right|}: \mathcal{F} \subseteq G \text { is intersecting }\right\}
$$

$\gg \rho(G) \geqslant 1$.
$» G$ has the EKR property if $\rho(G)=1$.
$» G$ has the strict EKR property if whenever $\mathcal{F} \subset G$ is an intersecting set such that $\rho(G)=\frac{|\mathcal{F}|}{\left|G_{\omega}\right|}$, then \mathcal{F} is a coset of a stabilizer of a point.

\$_ Examples

Results

» $\operatorname{Sym}(n)$ has the EKR and strict EKR property (Deza-Frankl, Larose-Malvenuto, Cameron-Ku, Godsil-Meagher).

\$_ Examples

Results

» $\operatorname{Sym}(n)$ has the EKR and strict EKR property (Deza-Frankl, Larose-Malvenuto, Cameron-Ku, Godsil-Meagher).
» $\mathrm{PSL}_{2}(q)$ acting on the projective line $\mathrm{PG}_{1}(q)$ has the EKR and strict EKR property (Meagher-Spiga).

\$_ Examples

Results

》 $\operatorname{Sym}(n)$ has the EKR and strict EKR property (Deza-Frankl, Larose-Malvenuto, Cameron-Ku, Godsil-Meagher).
$\geqslant \mathrm{PSL}_{2}(q)$ acting on the projective line $\mathrm{PG}_{1}(q)$ has the EKR and strict EKR property (Meagher-Spiga).
» $\mathrm{GL}_{n}(q)$ acting on $\mathbb{F}_{q}^{n} \backslash\{0\}$ has the EKR property, but not the strict EKR property.

\$_ Examples

Results

» $\operatorname{Sym}(n)$ has the EKR and strict EKR property (Deza-Frankl, Larose-Malvenuto, Cameron-Ku, Godsil-Meagher).
$» \mathrm{PSL}_{2}(q)$ acting on the projective line $\mathrm{PG}_{1}(q)$ has the EKR and strict EKR property (Meagher-Spiga).
» $G L_{n}(q)$ acting on $\mathbb{F}_{q}^{n} \backslash\{0\}$ has the EKR property, but not the strict EKR property.

Theorem (Meagher-Spiga-Tiep, 2015)
If G is a finite 2 -transitive group, then G has the EKR property.

\$_ A non-example

* Consider $H=\left\langle\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}3 & 4\end{array}\right),\left(\begin{array}{ll}3 & 4\end{array}\right)\left(\begin{array}{ll}5 & 6\end{array}\right)\right\rangle$ and $g=\left(\begin{array}{lll}1 & 3 & 5\end{array}\right)\left(\begin{array}{ll}2 & 4\end{array}\right)$.
* The permutation g is in the normalizer of H in $\operatorname{Sym}(6)$ and $G=\langle H, g\rangle \cong \operatorname{Alt}(4)$ is transitive.
* H is intersecting and $\rho(G) \geqslant \frac{4}{2}$.

\#_ Derangement graphs

\$_ Derangement graph

If $G \leqslant \operatorname{Sym}(\Omega)$ is transitive and $\operatorname{Der}(G)$ is the set of all derangements of G, then the derangement graph Γ_{G} of G is the Cayley graph $\operatorname{Cay}(G, \operatorname{Der}(G))$. That is, Γ_{G} is the graph with
» vertex set G,
$» g \sim_{\Gamma_{G}} h \Leftrightarrow h g^{-1} \in \operatorname{Der}(G)$.
\$_ Example of a derangement graph

Figure: Derangement graph for $\operatorname{Alt}(4) \leqslant \operatorname{Sym}(6)$

\$_ Derangement graph

$$
\begin{gathered}
\mathcal{F} \subset G \text { is intersecting } \\
\Leftrightarrow \\
\mathcal{F} \text { is a coclique (independent set) of } \Gamma_{G}
\end{gathered}
$$

\$_ Derangement graph

$$
\begin{gathered}
\mathcal{F} \subset G \text { is intersecting } \\
\stackrel{\Leftrightarrow}{\mathcal{F} \text { is a coclique (independent set) of } \Gamma_{G} .} \\
\rho(G)=\frac{\alpha\left(\Gamma_{G}\right)}{\left|G_{\omega}\right|}
\end{gathered}
$$

\$_ Derangement graph

$$
\begin{gathered}
\mathcal{F} \subset G \text { is intersecting } \\
\stackrel{\Leftrightarrow}{\mathcal{F} \text { is a coclique (independent set) of } \Gamma_{G} .} \\
\rho(G)=\frac{\alpha\left(\Gamma_{G}\right)}{\left|G_{\omega}\right|} .
\end{gathered}
$$

* Clique-coclique bound,
* Hoffman's ratio bound,

\$_ The clique-coclique bound

Theorem (Clique-coclique)
Let $X=(V, E)$ be a vertex-transitive graph. Then, $\alpha(X) \omega(X) \leqslant|V(X)|$.

\$_ The clique-coclique bound

Theorem (Clique-coclique)
Let $X=(V, E)$ be a vertex-transitive graph. Then, $\alpha(X) \omega(X) \leqslant|V(X)|$.
$» \omega\left(\Gamma_{G}\right) \leqslant|\Omega|$. If equality holds, then G has the EKR property.

\$_ The clique-coclique bound

Theorem (Clique-coclique)
Let $X=(V, E)$ be a vertex-transitive graph. Then, $\alpha(X) \omega(X) \leqslant|V(X)|$.
$» \omega\left(\Gamma_{G}\right) \leqslant|\Omega|$. If equality holds, then G has the EKR property.
» If S is a sharply transitive set of G, then G has the EKR property.

\$_ The clique-coclique bound

Theorem (Clique-coclique)
Let $X=(V, E)$ be a vertex-transitive graph. Then, $\alpha(X) \omega(X) \leqslant|V(X)|$.
$» \omega\left(\Gamma_{G}\right) \leqslant|\Omega|$. If equality holds, then G has the EKR property.
» If S is a sharply transitive set of G, then G has the EKR property.
$»$ If $|\Omega|$ is a prime number, then $\rho(G)=1$.

\#_ Transitive groups with fixed degree

\$_ Intersection density of groups of a given degree

For any $n \geqslant 2$, define

$$
\mathcal{I}_{n}:=\{\rho(G) \mid G \text { is transitive of degree } n\}
$$

\$_ Intersection density of groups of a given degree

For any $n \geqslant 2$, define

$$
\mathcal{I}_{n}:=\{\rho(G) \mid G \text { is transitive of degree } n\} .
$$

Conjecture (Meagher-R-Spiga, 2021)
(I) If p is a prime number and $k \geqslant 1$, then $\mathcal{I}_{p^{k}}=\{1\}$.
(II) If p is an odd prime, then $\mathcal{I}_{2 p} \subset[1,2] \cap \mathbb{Q}$.
(III) If $p>q$ are two distinct odd primes, then $\mathcal{I}_{p q}=\{1\}$.
\$_ Intersection density of groups of a given degree

For any $n \geqslant 2$, define

$$
\mathcal{I}_{n}:=\{\rho(G) \mid G \text { is transitive of degree } n\} .
$$

Conjecture (Meagher-R-Spiga, 2021)
(I) If p is a prime number and $k \geqslant 1$, then $\mathcal{I}_{p^{k}}=\{1\}$.
(II) If p is an odd prime, then $\mathcal{I}_{2 p} \subset[1,2] \cap \mathbb{Q}$.
(III) If $p>q$ are two distinct odd primes, then $\mathcal{I}_{p q}=\{1\}$.
» (I) was proved independently by Li et al., and Marušič et al., in 2021.
》(II) by R., 2021. Marušič et al. showed that $\mathcal{I}_{2 p}=\{1,2\}$.
\$_ Conjecture (III)
» Let $p>q$ be two odd primes.

\$_ Conjecture (III)

》 Let $p>q$ be two odd primes.
» Phrase as a Question vs Conjecture?

\$_ Conjecture (III)

》 Let $p>q$ be two odd primes.
» Phrase as a Question vs Conjecture?
» TransitiveGroup $(33,18)$ has intersection density equal to 3.

\$_ Conjecture (III)

》 Let $p>q$ be two odd primes.
» Phrase as a Question vs Conjecture?
» TransitiveGroup $(33,18)$ has intersection density equal to 3. Theorem (Marušič et. al (2021))
There are '‘infinitely’ many imprimitive groups of degree pq that have a unique complete block system with blocks of size q and intersection density equal to q.

Question

What about other transitive groups of degree $p q$?

\#_ The primitive case

\$_ Reduction

Lemma (No Homomorphism Lemma)

Let X and Y be two graphs, Y is vertex transitive. If $\phi: V(X) \rightarrow V(Y)$ is a homomorphism of graphs, then

$$
\frac{\alpha(Y)}{|V(Y)|} \leqslant \frac{\alpha(X)}{|V(X)|}
$$

Corollary
If $H \leqslant G$ is transitive, then $\rho(G) \leqslant \rho(H)$.

\$_ Reduction

Lemma (No Homomorphism Lemma)

Let X and Y be two graphs, Y is vertex transitive. If $\phi: V(X) \rightarrow V(Y)$ is a homomorphism of graphs, then

$$
\frac{\alpha(Y)}{|V(Y)|} \leqslant \frac{\alpha(X)}{|V(X)|}
$$

Corollary
If $H \leqslant G$ is transitive, then $\rho(G) \leqslant \rho(H)$.
A primitive group of is either
»2-transitive group (Meagher-Spiga-Tiep)
» simply primitive.

\$_ Primitive case

» The socle $\operatorname{Soc}(G)$ of a group G is the subgroup generated by the minimal normal subgroups.
$» \operatorname{Soc}(G) \approx G$.
$»$ If $G \leqslant \operatorname{Sym}(\Omega)$ is primitive, then a normal subgroup is transitive or in the kernel of the action.
» If G is primitive, then $\operatorname{Soc}(G)$ is a transitive subgroup of G. In particular,

$$
\rho(G) \leqslant \rho(\operatorname{Soc}(G))
$$

\$_ Primitive case

Line	Socle	(p, q)	action	Intersection density
1	Alt(7)	$(7,5)$	triples	1
2	PSL_{4} (2)	$(7,5)$	2-spaces	1
3	PSL_{5} (2)	$(31,5)$	2-spaces	1
4	$\mathrm{PSL}_{2}(23)$	$(23,11)$	cosets of Sym(4)	1
5	$\mathrm{PSL}_{2}(11)$	$(11,5)$	cosets of Alt(4)	1
6	M_{11}	$(11,5)$		1
7	M_{22}	$(11,7)$		1
8	M_{23}	$(23,11)$		1
9	Alt (p)	(p, $\frac{p-1}{2}$)	pairs	1
10	Alt $(p+1)$	(p, $\frac{p+1}{2}$)	pairs	1
11	$\operatorname{PSp}(4, k)$	$\left(k^{2}+1, k+1\right)$	1-spaces	1
12	$P \Omega_{2 d}^{\varepsilon}$ (2)	$\left(2^{d}-\varepsilon, 2^{d-1}+\varepsilon\right)$	singular 1-spaces	???
13	$\mathrm{PSL}_{2}(p)$	$\left(p, \frac{p+1}{2}\right)$	$\begin{gathered} \text { cosets of } D_{p-1} \\ p \geqslant 13 \text { and } p \equiv 1(\bmod 4) \end{gathered}$???
14	$\mathrm{PSL}_{2}(p)$	$\left(p, \frac{p-1}{2}\right)$	$\begin{gathered} \text { cosets of } D_{p+1} \\ p \geqslant 13 \text { and } p \equiv 3(\bmod 4) \end{gathered}$	1
15	$\mathrm{PSL}_{2}\left(q^{2}\right)$	$\left(\frac{q^{2}+1}{2}, q\right)$	cosets of $\mathrm{PGL}_{2}(q)$???
16	$\mathrm{PSL}_{2}(p)$	$(19,3),(29,7),(59,29)$	cosets of Alt(5)	1
17	$\mathrm{PSL}_{2}(13)$	$(13,7)$	cosets of Alt(4)	1
18	PSL_{2} (61)	$(61,31)$	cosets of Alt(5)	???

Table: Socle of simply primitive groups of degree pq.
» Weighted ratio bound.
» Clique-coclique bound.

\#_ The imprimitive case

\$_ Large/many blocks

Let $G \leqslant \operatorname{Sym}(\Omega)$ be imprimitive.

\$_ Large/many blocks

Let $G \leqslant \operatorname{Sym}(\Omega)$ be imprimitive.
Lemma (Marušič et al., 2021)
If $G \leqslant \operatorname{Sym}(\Omega)$ admits a block of size p, then $\rho(G)=1$.

\$_ Large/many blocks

Let $G \leqslant \operatorname{Sym}(\Omega)$ be imprimitive.
Lemma (Marušič et al., 2021)
If $G \leqslant \operatorname{Sym}(\Omega)$ admits a block of size p, then $\rho(G)=1$.
Lemma (R., 2021)
If $G \leqslant \operatorname{Sym}(\Omega)$ admits more than one complete block system, then $\rho(G)=1$.

\$_ Large/many blocks

Let $G \leqslant \operatorname{Sym}(\Omega)$ be imprimitive.
Lemma (Marušič et al., 2021)
If $G \leqslant \operatorname{Sym}(\Omega)$ admits a block of size p, then $\rho(G)=1$.
Lemma (R., 2021)
If $G \leqslant \operatorname{Sym}(\Omega)$ admits more than one complete block system, then $\rho(G)=1$.

Question

What about the imprimitive groups with a unique block system? Complete [q^{D}]-block system?

\$_ Construction by Marušič et al.

» Marušič et al. constructed a $[p, k]_{q}$ cyclic code C, for any projective prime

$$
p=\frac{q^{k}-1}{q-1}=\left|\mathrm{PG}_{k-1}(q)\right|
$$

with the property that $w(c)=q^{k-1}<p$, for all $c \in C$.

\$_ Construction by Marušič et al.

» Marušič et al. constructed a $[p, k]_{q}$ cyclic code C, for any projective prime

$$
p=\frac{q^{k}-1}{q-1}=\left|P G_{k-1}(q)\right|,
$$

with the property that $w(c)=q^{k-1}<p$, for all $c \in C$.
$»$ For any $c=\left(c_{0}, c_{1}, \ldots, c_{p-1}\right) \in C$, define

$$
\begin{aligned}
\beta_{c}: \mathbb{Z}_{q} \times \mathbb{Z}_{p} & \rightarrow \mathbb{Z}_{q} \times \mathbb{Z}_{p} \\
(i, j) & \mapsto\left(i+c_{j}, j\right) .
\end{aligned}
$$

$$
\begin{aligned}
\alpha: \mathbb{Z}_{q} \times & \times \mathbb{Z}_{p}
\end{aligned} \rightarrow \mathbb{Z}_{q} \times \mathbb{Z}_{p} .
$$

\$_ Construction by Marušič et al.

» Marušič et al. constructed a $[p, k]_{q}$ cyclic code C, for any projective prime

$$
p=\frac{q^{k}-1}{q-1}=\left|\mathrm{PG}_{k-1}(q)\right|,
$$

with the property that $w(c)=q^{k-1}<p$, for all $c \in C$.
$»$ For any $c=\left(c_{0}, c_{1}, \ldots, c_{p-1}\right) \in C$, define

$$
\begin{aligned}
\beta_{c}: \mathbb{Z}_{q} \times \mathbb{Z}_{p} & \rightarrow \mathbb{Z}_{q} \times \mathbb{Z}_{p} \\
(i, j) & \mapsto\left(i+c_{j}, j\right) .
\end{aligned}
$$

»

$$
\begin{aligned}
\alpha: \mathbb{Z}_{q} & \times \mathbb{Z}_{p} \\
& \rightarrow \mathbb{Z}_{q} \times \mathbb{Z}_{p} \\
(i, j) & \mapsto(i, j+1) .
\end{aligned}
$$

» $H(C)=\left\langle\left\{\beta_{c} \mid c \in C\right\}\right\rangle$ and $G(C)=\langle H(C), \alpha\rangle \cong \mathbb{F}_{q}^{k} \rtimes \mathbb{Z}_{p}$ is an imprimitive group of degree $p q$.

\$_ Construction by Marušič et al.

» Marušič et al. constructed a $[p, k]_{q}$ cyclic code C, for any projective prime

$$
p=\frac{q^{k}-1}{q-1}=\left|\mathrm{PG}_{k-1}(q)\right|,
$$

with the property that $w(c)=q^{k-1}<p$, for all $c \in C$.
$»$ For any $c=\left(c_{0}, c_{1}, \ldots, c_{p-1}\right) \in C$, define

$$
\begin{aligned}
\beta_{c}: \mathbb{Z}_{q} \times \mathbb{Z}_{p} & \rightarrow \mathbb{Z}_{q} \times \mathbb{Z}_{p} \\
(i, j) & \mapsto\left(i+c_{j}, j\right) .
\end{aligned}
$$

»

$$
\begin{aligned}
\alpha: \mathbb{Z}_{q} & \times \mathbb{Z}_{p} \\
& \rightarrow \mathbb{Z}_{q} \times \mathbb{Z}_{p} \\
(i, j) & \mapsto(i, j+1) .
\end{aligned}
$$

$\geqslant H(C)=\left\langle\left\{\beta_{c} \mid c \in C\right\}\right\rangle$ and $G(C)=\langle H(C), \alpha\rangle \cong \mathbb{F}_{q}^{k} \rtimes \mathbb{Z}_{p}$ is an imprimitive group of degree $p q$.
$\geqslant \rho(G(C))=q$.
\$_ A characterization
$»$ Let \bar{G} be the induced action of G on its unique complete block system.
\$_ A characterization
» Let \bar{G} be the induced action of G on its unique complete block system.
Theorem (Behajaina, Maleki, R., 2022)
Let $G \leqslant \operatorname{Sym}(\Omega)$ be an imprimitive group admitting a $\left[q^{p}\right]$-block system and $\operatorname{ker}(G \rightarrow \bar{G}) \neq 1$. Then, $\rho(G)=q$ if and only if there exists a cyclic $[p, k]_{q}$ code C with the property that

$$
w(c)<p
$$

for all $c \in C$.
\$_ A characterization
» Let \bar{G} be the induced action of G on its unique complete block system.
Theorem (Behajaina, Maleki, R., 2022)
Let $G \leqslant \operatorname{Sym}(\Omega)$ be an imprimitive group admitting a $\left[q^{p}\right]$-block system and $\operatorname{ker}(G \rightarrow \bar{G}) \neq 1$. Then, $\rho(G)=q$ if and only if there exists a cyclic $[p, k]_{q}$ code C with the property that

$$
w(c)<p
$$

for all $c \in C$.
Question
Does $\mathcal{I}_{p q}$ contain proper rational number?
\$_ A characterization
» Let \bar{G} be the induced action of G on its unique complete block system.

Theorem (Behajaina, Maleki, R., 2022)

Let $G \leqslant \operatorname{Sym}(\Omega)$ be an imprimitive group admitting a $\left[q^{p}\right]$-block system and $\operatorname{ker}(G \rightarrow \bar{G}) \neq 1$. Then, $\rho(G)=q$ if and only if there exists a cyclic $[p, k]_{q}$ code C with the property that

$$
w(c)<p
$$

for all $c \in C$.
Question
Does $\mathcal{I}_{p q}$ contain proper rational number?
Theorem (Behajaina, Maleki, R., 2022)
If $p=\frac{q^{k}-1}{q-1}$ is a prime such that $k<q<p$, then there exists a transitive group of degree $p q$ such that $\rho(G)=\frac{q}{k}$.
» We used certain permutation automorphism in $\operatorname{PAut}(C)$.
\$_ What's next for imprimitive groups?
» Let \bar{G} be the induced action of G on its unique complete block system.
\$_ What's next for imprimitive groups?
» Let \bar{G} be the induced action of G on its unique complete block system.
» If $\operatorname{ker}(G \rightarrow \bar{G})=1$, then G is quasiprimitive and $G \cong \bar{G}$. Is it true that $\rho(G)=1$?
\$_ What's next for imprimitive groups?
» Let \bar{G} be the induced action of G on its unique complete block system.
» If $\operatorname{ker}(G \rightarrow \bar{G})=1$, then G is quasiprimitive and $G \cong \bar{G}$. Is it true that $\rho(G)=1$?
$\mathrm{PSL}_{d}(r) \leqslant G$ admitting an action of degree p and $p q$.
\$_ What's next for imprimitive groups?
» Let \bar{G} be the induced action of G on its unique complete block system.
» If $\operatorname{ker}(G \rightarrow \bar{G})=1$, then G is quasiprimitive and $G \cong \bar{G}$. Is it true that $\rho(G)=1$?
$\mathrm{PSL}_{d}(r) \leqslant G$ admitting an action of degree p and $p q$.
» If $\operatorname{ker}(G \rightarrow \bar{G}) \neq 1$, then G is genuinely imprimitive.

* If $N \leqslant \operatorname{ker}(G \rightarrow \bar{G})$ is a non-abelian minimal normal subgroup of G, then $\rho(G)=1$.

\$_ What's next for imprimitive groups?

» Let \bar{G} be the induced action of G on its unique complete block system.
» If $\operatorname{ker}(G \rightarrow \bar{G})=1$, then G is quasiprimitive and $G \cong \bar{G}$. Is it true that $\rho(G)=1$?
$\mathrm{PSL}_{d}(r) \leqslant G$ admitting an action of degree p and $p q$.
» If $\operatorname{ker}(G \rightarrow \bar{G}) \neq 1$, then G is genuinely imprimitive.

* If $N \leqslant \operatorname{ker}(G \rightarrow \bar{G})$ is a non-abelian minimal normal subgroup of G, then $\rho(G)=1$.
* If $N \leqslant \operatorname{ker}(G \rightarrow \bar{G})$ is a minimal normal subgroup which is an elementary abelian q-group containing a derangement, then $\rho(G)=1$.

\$_ What's next for imprimitive groups?

» Let \bar{G} be the induced action of G on its unique complete block system.
» If $\operatorname{ker}(G \rightarrow \bar{G})=1$, then G is quasiprimitive and $G \cong \bar{G}$. Is it true that $\rho(G)=1$?
$\mathrm{PSL}_{d}(r) \leqslant G$ admitting an action of degree p and $p q$.
» If $\operatorname{ker}(G \rightarrow \bar{G}) \neq 1$, then G is genuinely imprimitive.

* If $N \leqslant \operatorname{ker}(G \rightarrow \bar{G})$ is a non-abelian minimal normal subgroup of G, then $\rho(G)=1$.
* If $N \leqslant \operatorname{ker}(G \rightarrow \bar{G})$ is a minimal normal subgroup which is an elementary abelian q-group containing a derangement, then $\rho(G)=1$.
* Any minimal normal subgroup $N \leqslant \operatorname{ker}(G \rightarrow \bar{G})$ is a derangement-free elementary abelian q-group.

\$_ What's next for imprimitive groups?

» Let \bar{G} be the induced action of G on its unique complete block system.
» If $\operatorname{ker}(G \rightarrow \bar{G})=1$, then G is quasiprimitive and $G \cong \bar{G}$. Is it true that $\rho(G)=1$?
$\mathrm{PSL}_{d}(r) \leqslant G$ admitting an action of degree p and $p q$.
» If $\operatorname{ker}(G \rightarrow \bar{G}) \neq 1$, then G is genuinely imprimitive.

* If $N \leqslant \operatorname{ker}(G \rightarrow \bar{G})$ is a non-abelian minimal normal subgroup of G, then $\rho(G)=1$.
* If $N \leqslant \operatorname{ker}(G \rightarrow \bar{G})$ is a minimal normal subgroup which is an elementary abelian q-group containing a derangement, then $\rho(G)=1$.
* Any minimal normal subgroup $N \leqslant \operatorname{ker}(G \rightarrow \bar{G})$ is a derangement-free elementary abelian q-group.
\dagger If \bar{G} is 2-transitive, then is $\rho(G)=1$?

\$_ What's next for imprimitive groups?

» Let \bar{G} be the induced action of G on its unique complete block system.
» If $\operatorname{ker}(G \rightarrow \bar{G})=1$, then G is quasiprimitive and $G \cong \bar{G}$. Is it true that $\rho(G)=1$?
$\mathrm{PSL}_{d}(r) \leqslant G$ admitting an action of degree p and $p q$.
» If $\operatorname{ker}(G \rightarrow \bar{G}) \neq 1$, then G is genuinely imprimitive.

* If $N \leqslant \operatorname{ker}(G \rightarrow \bar{G})$ is a non-abelian minimal normal subgroup of G, then $\rho(G)=1$.
* If $N \leqslant \operatorname{ker}(G \rightarrow \bar{G})$ is a minimal normal subgroup which is an elementary abelian q-group containing a derangement, then $\rho(G)=1$.
* Any minimal normal subgroup $N \leqslant \operatorname{ker}(G \rightarrow \bar{G})$ is a derangement-free elementary abelian q-group.
\dagger If \bar{G} is 2-transitive, then is $\rho(G)=1$?
\dagger Is it true that if $\bar{G}<\operatorname{AGL}_{1}(p)$, then $\rho(G) \in\left\{\frac{q}{k}: k \mid(p-1)\right.$ and $\left.k<q\right\} ?$

\$_ Open problems: primitive case

What are the intersection density of the other socles of primitive groups?
$» P \Omega_{2 d}^{\varepsilon}(2)$ acting on the singular 1 -spaces.

* $\varepsilon=+$ and d is a Fermat prime.
* $\varepsilon=-$ and $d-1$ is a Mersenne prime.
$» \mathrm{PSL}_{2}(p)$ acting on 2 -subsets of $\mathrm{PG}_{1}(p)$, where $p \equiv 1(\bmod 4)$.
$\geqslant \mathrm{PSL}_{2}\left(q^{2}\right)$ acting on cosets of $\mathrm{PGL}_{2}(q)$ (or sublines).
$» \mathrm{PSL}_{2}(61)$ acting on cosets of $\operatorname{Alt}(5)$.
Φ_{-}

Thank you!!

Thank you for your attention!

Any Questions?

