

An Erdős-Ko-Rado theorem for transitive groups of degree a product of two odd primes

> Sarobidy Razafimahatratra University of Primorska FAMNIT

> > RICCOTA 2023

\$_ Joint work with

Roghayeh Maleki

Pablo Spiga

Angelot Behajaina

Karen Meagher

- 1. The EKR Theorem
- 2. EKR for transitive groups
- 3. Derangement graphs
- 4. Transitive groups with fixed degree
- 5. The primitive case
- 6. The imprimitive case

#_ The EKR Theorem

\$_ The Erdős-Ko-Rado theorem

Theorem (Erdős-Ko-Rado, 1961)

For any two positive integers such that $n \ge 2k + 1$, if \mathcal{F} is a collection of k-subsets of $[n] := \{1, 2, ..., n\}$ such that $|A \cap B| \ge 1$, for all $A, B \in \mathcal{F}$, then

$$|\mathcal{F}| \leqslant \binom{n-1}{k-1}$$

Moreover, equality holds if and only if ${\mathcal F}$ is of the form

$$\mathcal{F}_a = \{A \subset [n] : |A| = k \text{ and } a \in A\}$$
,

for some $a \in [n]$.

#_ EKR for transitive groups

Let $G \leq \operatorname{Sym}(\Omega)$ be a finite transitive group.

Let $G \leq \operatorname{Sym}(\Omega)$ be a finite transitive group. (*) A set $\mathcal{F} \subset G$ is intersecting if for any $\sigma, \pi \in \mathcal{F}$, there exist $\omega \in \Omega$ such that $\omega^{\sigma} = \omega^{\pi}$.

Let $G \leq \text{Sym}(\Omega)$ be a finite transitive group. (*) A set $\mathcal{F} \subset G$ is intersecting if for any $\sigma, \pi \in \mathcal{F}$, there exist $\omega \in \Omega$ such that $\omega^{\sigma} = \omega^{\pi}$.

» What are the obvious intersecting sets?

Let $G \leq \text{Sym}(\Omega)$ be a finite transitive group. (*) A set $\mathcal{F} \subset G$ is intersecting if for any $\sigma, \pi \in \mathcal{F}$, there exist $\omega \in \Omega$ such that $\omega^{\sigma} = \omega^{\pi}$.

- » What are the obvious intersecting sets?
- » The intersection density of the transitive group $G \leqslant {\rm Sym}(\Omega)$ is the rational number

$$\rho(G) := \max \left\{ \frac{|\mathcal{F}|}{|G_{\omega}|} : \mathcal{F} \subseteq G \text{ is intersecting} \right\}.$$

Let $G \leq \text{Sym}(\Omega)$ be a finite transitive group. (*) A set $\mathcal{F} \subset G$ is intersecting if for any $\sigma, \pi \in \mathcal{F}$, there exist $\omega \in \Omega$ such that $\omega^{\sigma} = \omega^{\pi}$.

- » What are the obvious intersecting sets?
- » The intersection density of the transitive group $G \leqslant {\rm Sym}(\Omega)$ is the rational number

$$\rho(G) := \max \left\{ \frac{|\mathcal{F}|}{|G_{\omega}|} : \mathcal{F} \subseteq G \text{ is intersecting} \right\}.$$

» $\rho(G) ≥ 1$.

Let $G \leq \text{Sym}(\Omega)$ be a finite transitive group. (*) A set $\mathcal{F} \subset G$ is intersecting if for any $\sigma, \pi \in \mathcal{F}$, there exist $\omega \in \Omega$ such that $\omega^{\sigma} = \omega^{\pi}$.

- » What are the obvious intersecting sets?
- » The intersection density of the transitive group $G \leqslant {\rm Sym}(\Omega)$ is the rational number

$$\rho(G) := \max \left\{ \frac{|\mathcal{F}|}{|G_{\omega}|} : \mathcal{F} \subseteq G \text{ is intersecting} \right\}.$$

» $\rho(G) \ge 1$. » *G* has the EKR property if $\rho(G) = 1$.

Let $G \leq \text{Sym}(\Omega)$ be a finite transitive group. (*) A set $\mathcal{F} \subset G$ is intersecting if for any $\sigma, \pi \in \mathcal{F}$, there exist $\omega \in \Omega$ such that $\omega^{\sigma} = \omega^{\pi}$.

- » What are the obvious intersecting sets?
- » The intersection density of the transitive group $G \leqslant {\rm Sym}(\Omega)$ is the rational number

$$ho(G) := \max \left\{ rac{|\mathcal{F}|}{|G_{\omega}|} : \mathcal{F} \subseteq G \text{ is intersecting}
ight\}.$$

- » $\rho(G) ≥ 1$.
- » G has the EKR property if ho(G)=1.
- » G has the strict EKR property if whenever $\mathcal{F} \subset G$ is an intersecting set such that $\rho(G) = \frac{|\mathcal{F}|}{|G_{\omega}|}$, then \mathcal{F} is a coset of a stabilizer of a point.

Results

» Sym(n) has the EKR and strict EKR property (Deza-Frankl, Larose-Malvenuto, Cameron-Ku, Godsil-Meagher).

Results

- » Sym(n) has the EKR and strict EKR property (Deza-Frankl, Larose-Malvenuto, Cameron-Ku, Godsil-Meagher).
- > $PSL_2(q)$ acting on the projective line $PG_1(q)$ has the EKR and strict EKR property (Meagher-Spiga).

Results

- » Sym(n) has the EKR and strict EKR property (Deza-Frankl, Larose-Malvenuto, Cameron-Ku, Godsil-Meagher).
- > $PSL_2(q)$ acting on the projective line $PG_1(q)$ has the EKR and strict EKR property (Meagher-Spiga).
- » ${\rm GL}_n(q)$ acting on $\mathbb{F}_q^n\backslash\{0\}$ has the EKR property, but not the strict EKR property.

Results

- » Sym(n) has the EKR and strict EKR property (Deza-Frankl, Larose-Malvenuto, Cameron-Ku, Godsil-Meagher).
- > $PSL_2(q)$ acting on the projective line $PG_1(q)$ has the EKR and strict EKR property (Meagher-Spiga).
- » $\operatorname{GL}_n(q)$ acting on $\mathbb{F}_q^n \setminus \{0\}$ has the EKR property, but not the strict EKR property.

Theorem (Meagher-Spiga-Tiep, 2015) If G is a finite 2-transitive group, then G has the EKR property.

\$_ A non-example

- * Consider $H = \langle (1 \ 2)(3 \ 4), (3 \ 4)(5 \ 6) \rangle$ and $g = (1 \ 3 \ 5)(2 \ 4 \ 6)$.
- * The permutation g is in the normalizer of H in Sym(6) and $G = \langle H, g \rangle \cong Alt(4)$ is transitive.
- * H is intersecting and $\rho(G) \geqslant \frac{4}{2} \, .$

#_ Derangement graphs

If $G \leq \text{Sym}(\Omega)$ is transitive and Der(G) is the set of all derangements of G, then the derangement graph Γ_G of G is the Cayley graph Cay(G, Der(G)). That is, Γ_G is the graph with

» vertex set G,

»
$$g \sim_{\Gamma_G} h \Leftrightarrow hg^{-1} \in \text{Der}(G)$$
.

\$_ Example of a derangement graph

Figure: Derangement graph for $Alt(4) \leq Sym(6)$

\$_ Derangement graph

$\label{eq:F} \begin{array}{l} \mathcal{F} \subset G \text{ is intersecting} \\ \Leftrightarrow \\ \mathcal{F} \text{ is a coclique (independent set) of } \Gamma_G. \end{array}$

\$_ Derangement graph

$\label{eq:F} \begin{array}{l} \mathcal{F} \subset G \text{ is intersecting} \\ \Leftrightarrow \\ \mathcal{F} \text{ is a coclique (independent set) of } \Gamma_G. \end{array}$

$$\rho(G) = \frac{\alpha(\Gamma_G)}{|G_{\omega}|}.$$

\$_ Derangement graph

$$\mathcal{F} \subset G \text{ is intersecting} \\ \Leftrightarrow \\ \mathcal{F} \text{ is a coclique (independent set) of } \Gamma_G.$$

$$\rho(G) = \frac{\alpha(\Gamma_G)}{|G_{\omega}|}.$$

- * Clique-coclique bound,
- * Hoffman's ratio bound,

\$_ The clique-coclique bound

Theorem (Clique-coclique) Let X = (V, E) be a vertex-transitive graph. Then, $\alpha(X)\omega(X) \leq |V(X)|$.

\$_ The clique-coclique bound

Theorem (Clique-coclique)

Let X = (V, E) be a vertex-transitive graph. Then, $\alpha(X)\omega(X) \leq |V(X)|$.

» $\omega(\Gamma_G) \leqslant |\Omega|$. If equality holds, then G has the EKR property.

\$_ The clique-coclique bound

Theorem (Clique-coclique)

Let X=(V,E) be a vertex-transitive graph. Then, $\alpha(X)\omega(X)\leqslant |V(X)|\,.$

- » $\omega(\Gamma_G) \leqslant |\Omega|$. If equality holds, then G has the EKR property.
- » If S is a sharply transitive set of G, then G has the EKR property.

Theorem (Clique-coclique)

Let X=(V,E) be a vertex-transitive graph. Then, $\alpha(X)\omega(X)\leqslant |V(X)|\,.$

- » $\omega(\Gamma_G) \leqslant |\Omega|$. If equality holds, then G has the EKR property.
- » If S is a sharply transitive set of G, then G has the EKR property.
- » If $|\Omega|$ is a prime number, then $\rho(G) = 1$.

#_ Transitive groups
 with fixed degree

\$_ Intersection density of groups of a given degree

For any $n \ge 2$, define

 $\mathcal{I}_n := \{ \rho(G) \mid G \text{ is transitive of degree } n \}.$

\$_ Intersection density of groups of a given degree

For any $n \ge 2$, define

 $\mathcal{I}_n := \{ \rho(G) \mid G \text{ is transitive of degree } n \}.$

Conjecture (Meagher-R-Spiga, 2021)

(I) If p is a prime number and $k \ge 1$, then $\mathcal{I}_{p^k} = \{1\}$.

(II) If p is an odd prime, then $\mathcal{I}_{2p} \subset [1,2] \cap \mathbb{Q}$.

(III) If p > q are two distinct odd primes, then $\mathcal{I}_{pq} = \{1\}$.

\$_ Intersection density of groups of a given degree

For any $n \ge 2$, define

 $\mathcal{I}_n := \{ \rho(G) \mid G \text{ is transitive of degree } n \}.$

Conjecture (Meagher-R-Spiga, 2021) (I) If p is a prime number and $k \ge 1$, then $\mathcal{I}_{p^k} = \{1\}$. (II) If p is an odd prime, then $\mathcal{I}_{2p} \subset [1,2] \cap \mathbb{Q}$. (III) If p > q are two distinct odd primes, then $\mathcal{I}_{pq} = \{1\}$.

- » (I) was proved independently by Li et al., and Marušič et al., in 2021.
- » (II) by R., 2021. Marušič et al. showed that $\mathcal{I}_{2p} = \{1, 2\}$.

» Let p > q be two odd primes.

- » Let p > q be two odd primes.
- » Phrase as a Question vs Conjecture?

- » Let p > q be two odd primes.
- » Phrase as a Question vs Conjecture?
- » TransitiveGroup(33, 18) has intersection density equal to 3.

- » Let p > q be two odd primes.
- » Phrase as a Question vs Conjecture?
- » TransitiveGroup(33,18) has intersection density equal to 3.

Theorem (Marušič et. al (2021))

There are "infinitely" many imprimitive groups of degree pq that have a unique complete block system with blocks of size q and intersection density equal to q.

Question

What about other transitive groups of degree pq?

#_ The primitive case

\$_ Reduction

Lemma (No Homomorphism Lemma) Let X and Y be two graphs, Y is vertex transitive. If $\phi: V(X) \to V(Y)$ is a homomorphism of graphs, then

$$\frac{\alpha(Y)}{|V(Y)|} \leq \frac{\alpha(X)}{|V(X)|}.$$

Corollary $\text{If } H \leqslant G \text{ is transitive, then } \rho(G) \leqslant \rho(H) \, . \\$

\$_ Reduction

Lemma (No Homomorphism Lemma) Let X and Y be two graphs, Y is vertex transitive. If $\phi: V(X) \to V(Y)$ is a homomorphism of graphs, then

$$\frac{\alpha(Y)}{|V(Y)|} \leq \frac{\alpha(X)}{|V(X)|}.$$

Corollary

- If $H \leq G$ is transitive, then $\rho(G) \leq \rho(H)$.
- A primitive group of is either
 - » 2-transitive group (Meagher-Spiga-Tiep)
 - » simply primitive.

\$_ Primitive case

- » The socle Soc(G) of a group G is the subgroup generated by the minimal normal subgroups.
- » Soc(G) ≤ G.
- » If $G \leq \text{Sym}(\Omega)$ is primitive, then a normal subgroup is transitive or in the kernel of the action.
- \gg If G is primitive, then ${\rm Soc}(G)$ is a transitive subgroup of G . In particular,

$$\rho(G) \leq \rho(\operatorname{Soc}(G)).$$

\$_ Primitive case

Line	Socle	(p,q)	action	Intersection density
1	Alt(7)	(7,5)	triples	1
2	$PSL_4(2)$	(7,5)	2-spaces	1
3	PSL ₅ (2)	(31, 5)	2-spaces	1
4	PSL ₂ (23)	(23, 11)	cosets of Sym(4)	1
5	PSL ₂ (11)	(11,5)	cosets of Alt(4)	1
6	M ₁₁	(11,5)		1
7	M ₂₂	(11,7)		1
8	M ₂₃	(23, 11)		1
9	Alt(p)	$\left(p, \frac{p-1}{2}\right)$	pairs	1
10	Alt(p+1)	$\left(p, \frac{p+1}{2}\right)$	pairs	1
11	PSp(4, k)	$(k^2 + 1, k + 1)$	1-spaces	1
12	$P\Omega_{2d}^{\varepsilon}(2)$	$\left(2^d-\varepsilon,2^{d-1}+\varepsilon\right)$	singular 1-spaces	???
13	$PSL_2(p)$	$\left(p, \frac{p+1}{2}\right)$	cosets of D_{p-1} $p \ge 13$ and $p \equiv 1 \pmod{4}$???
14	PSL ₂ (p)	$\left(p, \frac{p-1}{2}\right)$	cosets of D_{p+1} $p \ge 13$ and $p \equiv 3 \pmod{4}$	1
15	$PSL_2(q^2)$	$\left(\frac{q^2+1}{2},q\right)$	cosets of $PGL_2(q)$???
16	$PSL_2(p)$	(19, 3), (29, 7), (59, 29)	cosets of Alt(5)	1
17	PSL ₂ (13)	(13,7)	cosets of Alt(4)	1
18	PSL ₂ (61)	(61,31)	cosets of Alt(5)	???

Table: Socle of simply primitive groups of degree pq.

- » Weighted ratio bound.
- » Clique-coclique bound.

#_ The imprimitive case

Let $G \leq \operatorname{Sym}(\Omega)$ be imprimitive.

Let $G \leq \operatorname{Sym}(\Omega)$ be imprimitive.

Lemma (Marušič et al., 2021)

If $G \leq \operatorname{Sym}(\Omega)$ admits a block of size p, then $\rho(G) = 1$.

Let $G \leq \operatorname{Sym}(\Omega)$ be imprimitive.

Lemma (Marušič et al., 2021) If $G \leq \text{Sym}(\Omega)$ admits a block of size p, then $\rho(G) = 1$. Lemma (R., 2021)

If $G \leq \operatorname{Sym}(\Omega)$ admits more than one complete block system, then $\rho(G) = 1$.

Let $G \leq \operatorname{Sym}(\Omega)$ be imprimitive.

Lemma (Marušič et al., 2021) If $G \leq \text{Sym}(\Omega)$ admits a block of size p, then $\rho(G) = 1$.

Lemma (R., 2021) If $G \leqslant {\rm Sym}(\Omega)$ admits more than one complete block system, then $\rho(G)=1\,.$

Question

What about the imprimitive groups with a unique block system? Complete $[q^p]$ -block system?

» Marušič et al. constructed a $[p, k]_q$ cyclic code C, for any projective prime

$$p = \frac{q^k - 1}{q - 1} = |\mathsf{PG}_{k-1}(q)|,$$

with the property that $w(c) = q^{k-1} < p$, for all $c \in C$.

» Marušič et al. constructed a $[p, k]_q$ cyclic code C, for any projective prime

$$p = \frac{q^k - 1}{q - 1} = |\mathsf{PG}_{k-1}(q)|,$$

with the property that $w(c) = q^{k-1} < p$, for all $c \in C$. » For any $c = (c_0, c_1, \dots, c_{p-1}) \in C$, define

$$\beta_c : \mathbb{Z}_q \times \mathbb{Z}_p \to \mathbb{Z}_q \times \mathbb{Z}_p$$
$$(i,j) \mapsto (i+c_j,j)$$

$$\alpha: \mathbb{Z}_q \times \mathbb{Z}_p \to \mathbb{Z}_q \times \mathbb{Z}_p$$
$$(i, j) \mapsto (i, j+1).$$

» Marušič et al. constructed a $[p, k]_q$ cyclic code C, for any projective prime

$$p = \frac{q^k - 1}{q - 1} = |\mathsf{PG}_{k-1}(q)|,$$

with the property that $w(c) = q^{k-1} < p$, for all $c \in C$. » For any $c = (c_0, c_1, \dots, c_{p-1}) \in C$, define

$$\beta_c : \mathbb{Z}_q \times \mathbb{Z}_p \to \mathbb{Z}_q \times \mathbb{Z}_p$$
$$(i,j) \mapsto (i+c_j,j)$$

$$\alpha: \mathbb{Z}_q \times \mathbb{Z}_p \to \mathbb{Z}_q \times \mathbb{Z}_p$$
$$(i, j) \mapsto (i, j+1).$$

» $H(C) = \langle \{\beta_c \mid c \in C\} \rangle$ and $G(C) = \langle H(C), \alpha \rangle \cong \mathbb{F}_q^k \rtimes \mathbb{Z}_p$ is an imprimitive group of degree pq.

» Marušič et al. constructed a $[p, k]_q$ cyclic code C, for any projective prime

$$p = rac{q^k - 1}{q - 1} = |\mathsf{PG}_{k-1}(q)|,$$

with the property that $w(c) = q^{k-1} < p$, for all $c \in C$. » For any $c = (c_0, c_1, \dots, c_{p-1}) \in C$, define

$$\beta_c : \mathbb{Z}_q \times \mathbb{Z}_p \to \mathbb{Z}_q \times \mathbb{Z}_p$$
$$(i,j) \mapsto (i+c_j,j)$$

≫

$$\alpha: \mathbb{Z}_q \times \mathbb{Z}_p \to \mathbb{Z}_q \times \mathbb{Z}_p$$
$$(i, j) \mapsto (i, j+1).$$

» $H(C) = \langle \{\beta_c \mid c \in C\} \rangle$ and $G(C) = \langle H(C), \alpha \rangle \cong \mathbb{F}_q^k \rtimes \mathbb{Z}_p$ is an imprimitive group of degree *pq*. » $\rho(G(C)) = q$.

[6.]\$_

» Let \overline{G} be the induced action of G on its unique complete block system.

» Let \overline{G} be the induced action of G on its unique complete block system.

Theorem (Behajaina, Maleki, R., 2022)

Let $G \leq \text{Sym}(\Omega)$ be an imprimitive group admitting a $[q^p]$ -block system and $\ker(G \to \overline{G}) \neq 1$. Then, $\rho(G) = q$ if and only if there exists a cyclic $[p, k]_q$ code C with the property that

$$w(c) < p$$
,

for all $c \in C$.

» Let \overline{G} be the induced action of G on its unique complete block system.

Theorem (Behajaina, Maleki, R., 2022)

Let $G \leq \text{Sym}(\Omega)$ be an imprimitive group admitting a $[q^p]$ -block system and $\ker(G \to \overline{G}) \neq 1$. Then, $\rho(G) = q$ if and only if there exists a cyclic $[p, k]_q$ code C with the property that

$$w(c) < p$$
,

for all $c \in C$.

Question

Does \mathcal{I}_{pq} contain proper rational number?

» Let \overline{G} be the induced action of G on its unique complete block system.

Theorem (Behajaina, Maleki, R., 2022)

Let $G \leq \text{Sym}(\Omega)$ be an imprimitive group admitting a $[q^p]$ -block system and $\ker(G \to \overline{G}) \neq 1$. Then, $\rho(G) = q$ if and only if there exists a cyclic $[p, k]_q$ code C with the property that

$$w(c) < p$$
,

for all $c \in C$. Question Does \mathcal{I}_{pq} contain proper rational number? Theorem (Behajaina, Maleki, R., 2022) If $p = \frac{q^k - 1}{q - 1}$ is a prime such that k < q < p, then there exists a transitive group of degree pq such that $\rho(G) = \frac{q}{k}$.

» We used certain permutation automorphism in PAut(C).

» Let \overline{G} be the induced action of G on its unique complete block system.

- » Let \overline{G} be the induced action of G on its unique complete block system.
- » If $\ker(G \to \overline{G}) = 1$, then G is quasiprimitive and $G \cong \overline{G}$. Is it true that $\rho(G) = 1$?

- » Let \overline{G} be the induced action of G on its unique complete block system.
- » If $\ker(G \to \overline{G}) = 1$, then G is quasiprimitive and $G \cong \overline{G}$. Is it true that $\rho(G) = 1$?

 $\mathsf{PSL}_d(r) \leq G$ admitting an action of degree p and pq.

- » Let \overline{G} be the induced action of G on its unique complete block system.
- » If $\ker(G \to \overline{G}) = 1$, then G is quasiprimitive and $G \cong \overline{G}$. Is it true that $\rho(G) = 1$?

 $PSL_d(r) \leq G$ admitting an action of degree p and pq.

- » If $\ker(G \to \overline{G}) \neq 1$, then G is genuinely imprimitive.
 - * If $N \leq \ker(G \to \overline{G})$ is a non-abelian minimal normal subgroup of G, then $\rho(G) = 1$.

- » Let \overline{G} be the induced action of G on its unique complete block system.
- » If $\ker(G \to \overline{G}) = 1$, then G is quasiprimitive and $G \cong \overline{G}$. Is it true that $\rho(G) = 1$?

 $\mathsf{PSL}_d(r) \leq G$ admitting an action of degree p and pq.

- » If $\ker(G \to \overline{G}) \neq 1$, then G is genuinely imprimitive.
 - * If $N \leq \ker(G \to \overline{G})$ is a non-abelian minimal normal subgroup of G, then $\rho(G) = 1$.
 - * If $N \leq \ker(G \to \overline{G})$ is a minimal normal subgroup which is an elementary abelian q-group containing a derangement, then $\rho(G) = 1$.

- » Let \overline{G} be the induced action of G on its unique complete block system.
- » If $\ker(G \to \overline{G}) = 1$, then G is quasiprimitive and $G \cong \overline{G}$. Is it true that $\rho(G) = 1$?

 $\mathsf{PSL}_d(r) \leq G$ admitting an action of degree p and pq.

- » If $\ker(G \to \overline{G}) \neq 1$, then G is genuinely imprimitive.
 - * If $N \leq \ker(G \to \overline{G})$ is a non-abelian minimal normal subgroup of G, then $\rho(G) = 1$.
 - * If $N \leq \ker(G \to \overline{G})$ is a minimal normal subgroup which is an elementary abelian q-group containing a derangement, then $\rho(G) = 1$.
 - * Any minimal normal subgroup $N \leq \ker(G \to \overline{G})$ is a derangement-free elementary abelian *q*-group.

- » Let \overline{G} be the induced action of G on its unique complete block system.
- » If $\ker(G \to \overline{G}) = 1$, then G is quasiprimitive and $G \cong \overline{G}$. Is it true that $\rho(G) = 1$?

 $PSL_d(r) \leq G$ admitting an action of degree p and pq.

- » If $\ker(G \to \overline{G}) \neq 1$, then G is genuinely imprimitive.
 - * If $N \leq \ker(G \to \overline{G})$ is a non-abelian minimal normal subgroup of G, then $\rho(G) = 1$.
 - * If $N \leq \ker(G \to \overline{G})$ is a minimal normal subgroup which is an elementary abelian q-group containing a derangement, then $\rho(G) = 1$.
 - * Any minimal normal subgroup $N \leq \ker(G \to \overline{G})$ is a derangement-free elementary abelian q-group.

† If \overline{G} is 2-transitive, then is ho(G)=1?

- » Let \overline{G} be the induced action of G on its unique complete block system.
- » If $\ker(G \to \overline{G}) = 1$, then G is quasiprimitive and $G \cong \overline{G}$. Is it true that $\rho(G) = 1$?

 $\mathsf{PSL}_d(r) \leq G$ admitting an action of degree p and pq.

- » If $\ker(G \to \overline{G}) \neq 1$, then G is genuinely imprimitive.
 - * If $N \leq \ker(G \to \overline{G})$ is a non-abelian minimal normal subgroup of G, then $\rho(G) = 1$.
 - * If $N \leq \ker(G \to \overline{G})$ is a minimal normal subgroup which is an elementary abelian q-group containing a derangement, then $\rho(G) = 1$.
 - * Any minimal normal subgroup $N \leq \ker(G \to \overline{G})$ is a derangement-free elementary abelian *q*-group.

† If
$$\overline{G}$$
 is 2-transitive, then is $\rho(G) = 1$?
† Is it true that if $\overline{G} < AGL_1(p)$, then
 $\rho(G) \in \{\frac{q}{k} : k \mid (p-1) \text{ and } k < q\}$?

What are the intersection density of the other socles of primitive groups?

- » $P\Omega_{2d}^{\varepsilon}(2)$ acting on the singular 1-spaces.
 - * $\varepsilon = +$ and d is a Fermat prime.
 - * $\varepsilon = -$ and d 1 is a Mersenne prime.
- » $PSL_2(p)$ acting on 2-subsets of $PG_1(p)$, where $p \equiv 1 \pmod{4}$.
- » $\mathsf{PSL}_2(q^2)$ acting on cosets of $\mathsf{PGL}_2(q)$ (or sublines).
- > $PSL_2(61)$ acting on cosets of Alt(5).

