Another generalization for measure of fault tolerance in hypercubes

Rijeka Conference on Combinatorial Objects and Their
Applications- 3-7 July, 2023

Amruta Shinde
Joined work with: Uday Jagadale
July 6, 2023
Savitribai Phule Pune University
(University of Pune),
Pune, India.

Introduction

What is an interconnection network?

A multiprocessor system is the collection of processors and memory units joined by the links in a particular fashion.

This network is known as an interconnection network.

Introduction

What is an interconnection network?

A multiprocessor system is the collection of processors and memory units joined by the links in a particular fashion.

This network is known as an interconnection network.

Any interconnection network can be modeled into a graph in which vertices and edges represent processors and communication links, respectively.

Introduction

What is an interconnection network?

A multiprocessor system is the collection of processors and memory units joined by the links in a particular fashion.

This network is known as an interconnection network.

Any interconnection network can be modeled into a graph in which vertices and edges represent processors and communication links, respectively.

Hypercubes, Augmented cubes and Multidimensional torus are some examples of interconnection networks.

We mainly focus on Hypercubes.

n-dimensional hypercube Q_{n}

n-dimensional hypercube Q_{n}

n-dimensional hypercube Q_{n}

Partition of hypercube Q_{4} into Q_{2}

$$
Q_{4}=Q_{2} \square Q_{2}
$$

Properties of hypercubes

Properties	Q_{n}
Order	2^{n}
Size	$n 2^{n-1}$
Regularity	n
Connectedness	n
Cycles	Bipancyclic
Diameter	n

Connectivity of graphs

- The connectivity of a graph measures the fault tolerance capacity and robustness of the network.
- For practical applications, a network having high fault tolerance capacity is usually preferred, and so, the underlying graph of the network is expected to have good connectivity.
- In traditional connectivities of a graph, isolation of a vertex from other vertices is allowed. However, in a practical situation, the failure of all the links incident to a node in an interconnection network is highly unlikely.
- To overcome this limitation, Harary [3] (1983) defined the conditional connectivity of a graph. This connectivity requires the components of the disconnected graph to satisfy certain properties.

1. Conditional connectivity

A conditional h-vertex cut of a graph G is a set F of vertices of G such that the graph $G-F$ is disconnected, and each component of it has a minimum degree at least h. The conditional h-vertex connectivity of G, denoted by $\kappa^{h}(G)$, is the minimum cardinality of a conditional h-vertex cut of G.

1. Conditional connectivity

A conditional h-vertex cut of a graph G is a set F of vertices of G such that the graph $G-F$ is disconnected, and each component of it has a minimum degree at least h. The conditional h-vertex connectivity of G, denoted by $\kappa^{h}(G)$, is the minimum cardinality of a conditional h-vertex cut of G.
Oh et al. [6] and Wu et al.[9] independently determined the conditional h-connectivity of hypercube:

Theorem: For any h in $0 \leq h \leq n-2, \kappa^{h}\left(Q_{n}\right)=2^{h}(n-h)$.

2. Component connectivity

The component connectivity is introduced by Sampathkumar [7] (1984). An r-component cut of G is a set of vertices whose deletion results in a graph with at least r components. The r-component connectivity $c \kappa_{r}(G)$ of a graph G is the size of the smallest r-component cut of G.

2. Component connectivity

The component connectivity is introduced by Sampathkumar [7] (1984). An r-component cut of G is a set of vertices whose deletion results in a graph with at least r components. The r-component connectivity $c \kappa_{r}(G)$ of a graph G is the size of the smallest r-component cut of G. Result is due to Hsu et al. [4]

$$
\begin{aligned}
& \text { For } n \geq 2 \text {, and } 1 \leq r \leq n \text {, the }(r+1) \text {-component } \\
& \text { connectivity of hypercube is } r n-\frac{r(r+1)}{2}+1
\end{aligned}
$$

3. Structure connectivity

A set F of connected subgraphs of G is a subgraph-cut of G if $G-V(F)$ is a disconnected or trivial graph. Let H be a connected subgraph of G. Then F is an H-structure-cut if F is a subgraph-cut, and every element in F is isomorphic to H. The H-structure-connectivity of G, denoted by $\kappa(G ; H)$, to be the minimum cardinality of all H-structure-cuts of G.

Previous results on structure connectivity of hypercubes

- By Lin et al.(2016), for $n \geq 3$, then $\kappa_{s}\left(Q_{n}, K_{1,1}\right)=n-1$, and $\kappa_{s}\left(Q_{n}, K_{1,2}\right)=\frac{\lceil n\rceil}{2}$.
- Sabir and Meng (2018), $H \in\left\{K_{1,1}, K_{1,2}, K_{1,3}, C_{4}\right\}$
- Mane (2018), $H \in\left\{Q_{m} \subseteq Q_{n}: 1 \leq m \leq n-1\right\}$.

Combined connectivity

We introduce a type of connectivity which combines conditional [3], component [1,7] and structure [5] connectivities.

Let G be a connected graph and $r \geq 2, h \geq 0$ be integers. Let S be a set of connected subgraphs of G such that every member of S is isomorphic to a connected subgraph H of G. Then S is called an h-conditional r-component H-structure cut of G, if there are at least r connected components in $G-V(S)$ and each component has minimum degree at least h. The h-conditional r-component H-structure connectivity of G is the minimum $|S|$ overall h-conditional r-component H-structure cut of G.

Our result for hypercube

Let m, n and r be integers with $2 \leq r<m<n$.
Then $c \kappa_{r+1, m}\left(Q_{n}, Q_{m}\right)$ is

$$
r(n-m)-\frac{r(r+1)}{2}+1 \text { for } 1 \leq r \leq n-m \text {. }
$$

Upper bound on the result

$$
Q_{n}=Q_{n-2} \square Q_{2}
$$

Upper bound on the result

$$
Q_{n}=Q_{n-2} \square Q_{2}
$$

References i

围 G．Chartrand，S．Kapoor，L．Lesniak，D．Lick，Generalized connectivity in graphs，Bull．Bombay Math．Colloq． 2 （1984）1－6．

䡒 A．H．Esfahanian，Generalized measures of fault tolerance with application to n－cube networks，IEEE Trans．Comput． 38 （11） （1989）1586－1591．
圊 F．Harary，Conditional connectivity，Networks 13 （3）（1983）347－357．
囯 L－H．Hsu，E．Cheng，L．Lipták，J．J．M．Tan，C．－Kuan Lin and T．－Y． Ho，Component connectivity of the hypercubes，Int．J．Comput． Maths． 89 （2）， 2012.

㞘 C．－K．Lin，L．Zhang，J．Fan and D．Wang，Structure connectivity and substructure connectivity of hypercubes，Theoret．Comput．Sci． 634 （2016）97－107．

References ii

國 A.D. Oh and H.A. Choi, Generalized measures of fault tolerance in n-cube networks, IEEE Trans. Parallel Distrib., 4 (6) (1993) 702-703.
E. Sampathkumar, Connectivity of a graph - a generalization, J. Comb. Inf. Syst. Sci. 9 (1984) 71-78.

比 S. Zhao, W. Yang and S. Zhang, Note component connectivity of hypercubes, Theoret. Comput. Sci. 640 (2016) 115-118.

Thank You!

