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Introduction

What is an interconnection network?
A multiprocessor system is the collection of processors and
memory units joined by the links in a particular fashion.

This network is known as an interconnection network.

Any interconnection network can be modeled into a graph in which
vertices and edges represent processors and communication links,
respectively.

Hypercubes, Augmented cubes and Multidimensional torus are some
examples of interconnection networks.

We mainly focus on Hypercubes.
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Properties of hypercubes

Properties Qn

Order 2m

Size n2n1
Regularity n
Connectedness n

Cycles Bipancyclic
Diameter n




Connectivity of graphs

e The connectivity of a graph measures the fault tolerance capacity
and robustness of the network.

e For practical applications, a network having high fault tolerance
capacity is usually preferred, and so, the underlying graph of the
network is expected to have good connectivity.

e In traditional connectivities of a graph, isolation of a vertex from
other vertices is allowed. However, in a practical situation, the
failure of all the links incident to a node in an interconnection
network is highly unlikely.

e To overcome this limitation, Harary [3] (1983) defined the
conditional connectivity of a graph. This connectivity requires the
components of the disconnected graph to satisfy certain properties.



1. Conditional connectivity

A conditional h-vertex cut of a graph G is a set F' of vertices of G such
that the graph G — F' is disconnected, and each component of it has a

minimum degree at least h. The conditional h-vertex connectivity of G,
denoted by k" (@), is the minimum cardinality of a conditional h-vertex
cut of G.
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Oh et al. [6] and Wu et al.[9] independently determined the conditional
h-connectivity of hypercube:

Theorem: Forany hin 0 < h <n —2, K"(Q,) = 2"(n — h).



2. Component connectivity

The component connectivity is introduced by Sampathkumar [7] (1984).

An r-component cut of G is a set of vertices whose deletion results in a
graph with at least  components. The r-component connectivity ¢k, (G)
of a graph G is the size of the smallest 7-component cut of G.



2. Component connectivity

The component connectivity is introduced by Sampathkumar [7] (1984).

An r-component cut of G is a set of vertices whose deletion results in a
graph with at least  components. The r-component connectivity ¢k, (G)
of a graph G is the size of the smallest r-component cut of G.

Result is due to Hsu et al. [4]

For n > 2, and 1 < r < n, the (r + 1)-component

r(r+1)
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3. Structure connectivity

A set F' of connected subgraphs of G is a subgraph-cut of G if G — V(F)
is a disconnected or trivial graph. Let H be a connected subgraph of G.

Then F'is an H-structure-cut if F' is a subgraph-cut, and every element

in Fis isomorphic to H. The H-structure-connectivity of (G, denoted by

k(G; H), to be the minimum cardinality of all H-structure-cuts of G.



Previous results on structure connectivity of hypercubes

e By Lin et al.(2016), for n > 3, then ks(Qn, K11) =n — 1, and
n
Hs(QnaK1,2) - ’—2—| .

e Sabir and Meng (2018), H € {K;1,K1,2,K1,3,Cs}
e Mane (2018), H € {Qmn, C Qn: 1 <m <n-—1}



Combined connectivity

We introduce a type of connectivity which combines conditional [3],
component [1,7] and structure [5] connectivities.

Let G be a connected graph and > 2, h > 0 be integers. Let S be a set
of connected subgraphs of GG such that every member of S is isomorphic
to a connected subgraph H of G. Then S is called an h-conditional
r-component H-structure cut of G, if there are at least r connected
components in G — V(.S) and each component has minimum degree at
least h. The h-conditional r-component H-structure connectivity of G is
the minimum |S| overall h-conditional r-component H-structure cut of

G.
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Our result for hypercube

Let m,n and 7 be integers with 2 < r < m < n.

Then ckri1,m(@Qn, Q) is

_r(r+1)

r(n —m) +1forl<r<n-—m.

11



Upper bound on the result
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