
Another generalization for measure of fault

tolerance in hypercubes

Rijeka Conference on Combinatorial Objects and Their

Applications- 3-7 July, 2023

Amruta Shinde
Joined work with: Uday Jagadale

July 6, 2023

Savitribai Phule Pune University

(University of Pune),

Pune, India.



Introduction

What is an interconnection network?

A multiprocessor system is the collection of processors and

memory units joined by the links in a particular fashion.

This network is known as an interconnection network.

Any interconnection network can be modeled into a graph in which

vertices and edges represent processors and communication links,

respectively.

Hypercubes, Augmented cubes and Multidimensional torus are some

examples of interconnection networks.

We mainly focus on Hypercubes.
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Partition of hypercube Q4 into Q2
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Properties of hypercubes

Properties Qn

Order 2n

Size n2n−1

Regularity n

Connectedness n

Cycles Bipancyclic

Diameter n
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Connectivity of graphs

• The connectivity of a graph measures the fault tolerance capacity

and robustness of the network.

• For practical applications, a network having high fault tolerance

capacity is usually preferred, and so, the underlying graph of the

network is expected to have good connectivity.

• In traditional connectivities of a graph, isolation of a vertex from

other vertices is allowed. However, in a practical situation, the

failure of all the links incident to a node in an interconnection

network is highly unlikely.

• To overcome this limitation, Harary [3] (1983) defined the

conditional connectivity of a graph. This connectivity requires the

components of the disconnected graph to satisfy certain properties.
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1. Conditional connectivity

A conditional h-vertex cut of a graph G is a set F of vertices of G such

that the graph G− F is disconnected, and each component of it has a

minimum degree at least h. The conditional h-vertex connectivity of G,

denoted by κh(G), is the minimum cardinality of a conditional h-vertex

cut of G.

Oh et al. [6] and Wu et al.[9] independently determined the conditional

h-connectivity of hypercube:

Theorem: For any h in 0 ≤ h ≤ n− 2, κh(Qn) = 2h(n− h).
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2. Component connectivity

The component connectivity is introduced by Sampathkumar [7] (1984).

An r-component cut of G is a set of vertices whose deletion results in a

graph with at least r components. The r-component connectivity cκr(G)

of a graph G is the size of the smallest r-component cut of G.

Result is due to Hsu et al. [4]

For n ≥ 2, and 1 ≤ r ≤ n, the (r + 1)-component

connectivity of hypercube is rn− r(r + 1)

2
+ 1.
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3. Structure connectivity

A set F of connected subgraphs of G is a subgraph-cut of G if G− V (F )

is a disconnected or trivial graph. Let H be a connected subgraph of G.

Then F is an H-structure-cut if F is a subgraph-cut, and every element

in F is isomorphic to H. The H-structure-connectivity of G, denoted by

κ(G;H), to be the minimum cardinality of all H-structure-cuts of G.
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Previous results on structure connectivity of hypercubes

• By Lin et al.(2016), for n ≥ 3, then κs(Qn,K1,1) = n− 1, and

κs(Qn,K1,2) =
⌈n⌉
2

.

• Sabir and Meng (2018), H ∈ {K1,1,K1,2,K1,3, C4}
• Mane (2018), H ∈ {Qm ⊆ Qn : 1 ≤ m ≤ n− 1}.
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Combined connectivity

We introduce a type of connectivity which combines conditional [3],

component [1, 7] and structure [5] connectivities.

Let G be a connected graph and r ≥ 2, h ≥ 0 be integers. Let S be a set

of connected subgraphs of G such that every member of S is isomorphic

to a connected subgraph H of G. Then S is called an h-conditional

r-component H-structure cut of G, if there are at least r connected

components in G− V (S) and each component has minimum degree at

least h. The h-conditional r-component H-structure connectivity of G is

the minimum |S| overall h-conditional r-component H-structure cut of

G.
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Our result for hypercube

Let m,n and r be integers with 2 ≤ r < m < n.

Then cκr+1,m(Qn, Qm) is

r(n−m)− r(r + 1)

2
+ 1 for 1 ≤ r ≤ n−m.
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Upper bound on the result
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Qn = Qn−22Q2
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Thank You!
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