

Minimum weight of the code from intersecting lines in PG(3, q)

Robin Simoens

Ghent University and Polytechnic University of Catalonia

July 2023

Joint work with Sam Adriaensen, Mrinmoy Datta and Leo Storme

PG(3, q)

$$PG(3, q) \quad \longleftrightarrow \quad subspaces of \mathbb{F}_q^4$$

2/27

$$(G)_{\ell_1\ell_2} = \begin{cases} 0 & \text{if } \ell_1 \cap \ell_2 = \emptyset, \\ 1 & \text{if } \ell_1 \cap \ell_2 \neq \emptyset. \end{cases}$$

3/27

Code from intersecting lines in PG(3, q)

$$G = \begin{pmatrix} \ell_1 & \ell_2 & \dots & \ell_n \\ & & \ell_1 \\ & & \ell_2 \\ & \vdots & & \\ & \vdots & \vdots & \ddots & \vdots \\ & & & \ell_n \\ & & & 1 \end{pmatrix} \implies \mathcal{C} = \operatorname{rowspan}_{\mathbb{F}_p}(G)$$

> n = # lines in PG(3, q) = $(q^2 + 1)(q^2 + q + 1)$

$$G = \begin{pmatrix} \ell_1 & \ell_2 & \dots & \ell_n \\ & \ell_1 & \begin{pmatrix} 1 & 0 & \dots & 1 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ & \ell_n & \begin{pmatrix} 1 & 0 & \dots & 1 \end{pmatrix} \end{pmatrix} \implies \mathcal{C} = \operatorname{rowspan}_{\mathbb{F}_p}(G)$$

Code from intersecting lines in PG(3, q)

$$G = \begin{pmatrix} \ell_1 & \ell_2 & \dots & \ell_n \\ & \ell_1 & \begin{pmatrix} 1 & 0 & \dots & 1 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ & \ell_n & \begin{pmatrix} 1 & 0 & \dots & 1 \end{pmatrix} \end{pmatrix} \implies \mathcal{C} = \operatorname{rowspan}_{\mathbb{F}_p}(G)$$

 $n = \# \text{ lines in PG}(3, q) = (q^2 + 1)(q^2 + q + 1)$ $k = \dim(\mathcal{C}) = {\binom{p+2}{3}}^h + 1$ [Goethals, Delsarte, 1968] d = ?

Theorem

Suppose q > 27.

 ▶ If q is even, then the minimum weight of C is q³ + q² + q + 1. Minimum weight codewords are (scalar multiples of) the characteristic functions of the absolute lines of a symplectic polar space W(3, q).

Code from points and lines

Code from points and lines in PG(2, 2)

 $C = \{0000000, 1110000, 1001100, 1000011, \\0101010, 0100101, 0011001, 0010110, \\1101001, 1100110, 1011010, 1010101, \\0111100, 0110011, 0001111, 1111111\}$

- $C = \{0000000, 1110000, 1001100, 1000011, \}$ $0101010, 0100101, 0011001, 0010110, \implies [7, 4, 3]_2$ -code 1101001, 1100110, 1011010, 1010101, 0111100, 0110011, 0001111, 1111111}

- $C = \{0000000, 1110000, 1001100, 1000011, \}$ $0101010, 0100101, 0011001, 0010110, \implies [7, 4, 3]_2$ -code 1101001, 1100110, 1011010, 1010101, 0111100, 0110011, 0001111, 1111111}
 - Fanocode

Code from points and lines in PG(2, q)

 $n = q^2 + q + 1$ $k = {\binom{p+1}{2}}^h + 1$ d = q + 1[Graham]
[Graham]
[Delsarte, Goethals]

[Graham, MacWilliams, 1966] [Delsarte, Goethals, MacWilliams, 1970]

Code from lines and points

$$q+1$$

Code from intersecting lines

$$\implies \mathcal{C} = \operatorname{rowspan}_{\mathbb{F}_p}(G)$$

11/27

Code from intersecting lines in PG(2, q)

$$G = \begin{array}{c} \ell_1 & \ell_2 & \dots & \ell_n \\ \ell_1 & 1 & 1 & \dots & 1 \\ \ell_2 & 1 & 1 & \dots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ \ell_n & 1 & 1 & \dots & 1 \end{array}$$

 $\implies \mathcal{C} = \{00 \dots 0, 11 \dots 1\}$

n = q² + q + 1
 k = 1
 d = q² + q + 1

Code from intersecting lines in PG(3, q)

$$G = \begin{pmatrix} \ell_1 & \ell_2 & \dots & \ell_n \\ & \ell_1 & \begin{pmatrix} 1 & 0 & \dots & 1 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ & \ell_n & \begin{pmatrix} 1 & 0 & \dots & 1 \end{pmatrix} \end{pmatrix} \implies C = \operatorname{rowspan}_{\mathbb{F}_p}(G)$$

 $n = \# \text{ lines in PG}(3, q) = (q^2 + 1)(q^2 + q + 1)$ $k = \dim(\mathcal{C}) = {\binom{p+2}{3}}^h + 1$ [Goethals, Delsarte, 1968] d = ?

Code from intersecting lines in PG(3, 2)

Code from intersecting lines in PG(3, 2)

If *S* is the set of lines in a plane π , then $c|_S$ is in the code from lines and points in π .

If *S* is the set of lines in a plane π , then $c|_S$ is in the code from lines and points in π .

Proof.

> Sufficient to prove this for "row codewords" χ_ℓ

If *S* is the set of lines in a plane π , then $c|_S$ is in the code from lines and points in π .

Proof.

> Sufficient to prove this for "row codewords" χ_{ℓ}

$$\blacktriangleright \ \ell \subseteq \pi \implies \chi_{\ell}|_{\pi} = \mathbb{1} \equiv \sum_{p} \chi_{p}$$

If *S* is the set of lines in a plane π , then $c|_S$ is in the code from lines and points in π .

Proof.

> Sufficient to prove this for "row codewords" χ_{ℓ}

$$\ell \subseteq \pi \implies \chi_{\ell}|_{\pi} = \mathbb{1} \equiv \sum_{p} \chi_{p}$$
$$\ell \cap \pi = \{p\} \implies \chi_{\ell}|_{\pi} = \chi_{p}$$

Let $c \in C$ and let S be the set of lines in a plane π . Then $c \cdot \chi_S \equiv c \cdot \mathbb{1}$.

$$c \cdot d = \sum_{\ell \in \mathcal{L}} c_\ell d_\ell$$

Let $c \in C$ and let S be the set of lines in a plane π . Then $c \cdot \chi_S \equiv c \cdot \mathbb{1}$.

$$c \cdot d = \sum_{\ell \in \mathcal{L}} c_\ell d_\ell$$

Proof.

> Sufficient to prove this for "row codewords" χ_{ℓ}

Let $c \in C$ and let S be the set of lines in a plane π . Then $c \cdot \chi_S \equiv c \cdot \mathbb{1}$.

$$c \cdot d = \sum_{\ell \in \mathcal{L}} c_\ell d_\ell$$

Proof.

Sufficient to prove this for "row codewords" χ_ℓ
 χ_ℓ · 1 = q³ + 2q + q + 1 ≡ 1

Let $c \in C$ and let S be the set of lines in a plane π . Then $c \cdot \chi_S \equiv c \cdot \mathbb{1}$.

$$c \cdot d = \sum_{\ell \in \mathcal{L}} c_\ell d_\ell$$

Proof.

Sufficient to prove this for "row codewords" χ_ℓ
χ_ℓ · 1 = q³ + 2q + q + 1 ≡ 1
ℓ ⊆ π ⇒ χ_ℓ · χ_S = q² + q + 1 ≡ 1

Let $c \in C$ and let S be the set of lines in a plane π . Then $c \cdot \chi_S \equiv c \cdot \mathbb{1}$.

$$c \cdot d = \sum_{\ell \in \mathcal{L}} c_\ell d_\ell$$

Proof.

Sufficient to prove this for "row codewords" χ_ℓ
χ_ℓ · 1 = q³ + 2q + q + 1 ≡ 1
ℓ ⊆ π ⇒ χ_ℓ · χ_S = q² + q + 1 ≡ 1
ℓ ∩ π = {p} ⇒ χ_ℓ · χ_S = q + 1 ≡ 1

Code from intersecting lines in PG(3, q)

Theorem

Suppose q > 27*. Then* $w(C) \ge q^3 + q^2 + q + 1$ *.*

Code from intersecting lines in PG(3, q)

Theorem

Suppose q > 27*. Then* $w(C) \ge q^3 + q^2 + q + 1$ *.*

$$\begin{array}{ll} \underline{\textit{Proof.}} & \text{Let } c \in \mathcal{C}. \\ \hline \bullet \ c \cdot \mathbb{1} \equiv 0 \implies w(c) > q^3 + 2q^2 + q + 1 \\ \bullet \ c \cdot \mathbb{1} \not\equiv 0 \implies w(c) \ge q^3 + q^2 + q + 1 \end{array}$$

Proof (continued).
$$c \cdot \mathbb{1} \equiv 0$$

Proof (continued).
$$c \cdot \mathbb{1} \equiv 0$$

Let *S* be the set of lines in a plane π $rightarrow c \cdot \chi_S \equiv 0$

Proof (continued).
$$c \cdot \mathbb{1} \equiv 0$$

$$\blacktriangleright c \cdot \chi_S \equiv 0$$

▶ $c|_S$ is in the code from lines and points in π and $c|_S \cdot \mathbb{1} \equiv 0$

Proof (continued).
$$c \cdot \mathbb{1} \equiv 0$$

 $\blacktriangleright c \cdot \chi_S \equiv 0$

▶ $c|_S$ is in the code from lines and points in π and $c|_S \cdot \mathbb{1} \equiv 0$

Theorem (Szőnyi, Weiner, 2018)

Suppose q > 27. Let $c \neq 0$ be a codeword of the code from lines and points in PG(2, q). Then one of the following holds:

Proof (continued).
$$c \cdot \mathbb{1} \equiv 0$$

 $\blacktriangleright c \cdot \chi_S \equiv 0$

▶ $c|_S$ is in the code from lines and points in π and $c|_S \cdot \mathbb{1} \equiv 0$

Theorem (Szőnyi, Weiner, 2018)

Suppose q > 27. Let $c \neq 0$ be a codeword of the code from lines and points in PG(2, q). Then one of the following holds:

$$w(c) = q + 1. \implies c \cdot 1 \neq 0$$

$$w(c) = 2q.$$

$$w(c) = 2q + 1. \implies c \cdot 1 \neq 0$$

$$w(c) \geq 3q - 3.$$

Proof (continued).
$$c \cdot \mathbb{1} \equiv 0$$

 $\blacktriangleright c \cdot \chi_S \equiv 0$

▶ $c|_S$ is in the code from lines and points in π and $c|_S \cdot \mathbb{1} \equiv 0$

▶
$$w(c|_{S}) = 0$$
 or $w(c|_{S}) = 2q$ or $w(c|_{S}) \ge 3q - 3$

Proof (continued).
$$c \cdot \mathbb{1} \equiv 0$$

 $\blacktriangleright c \cdot \chi_S \equiv 0$

▶ $c|_S$ is in the code from lines and points in π and $c|_S \cdot \mathbb{1} \equiv 0$

▶
$$w(c|_{S}) = 0$$
 or $w(c|_{S}) = 2q$ or $w(c|_{S}) \ge 3q - 3$

Each plane contains 0, 2q or $\geq 3q - 3$ lines of supp(c).

Proof (continued).
$$c \cdot \mathbb{1} \equiv 0$$

 $\blacktriangleright c \cdot \chi_S \equiv 0$

▶ $c|_S$ is in the code from lines and points in π and $c|_S \cdot \mathbb{1} \equiv 0$

▶
$$w(c|_{S}) = 0$$
 or $w(c|_{S}) = 2q$ or $w(c|_{S}) \ge 3q - 3$

► Each plane contains 0, 2q or ≥ 3q - 3 lines of supp(c).
► Dual: each point lies on 0, 2q or ≥ 3q - 3 lines of supp(c).

Proof (continued).
$$c \cdot \mathbb{1} \equiv 0$$

Proof (continued).
$$c \cdot \mathbb{1} \equiv 0$$

> at least $q^2(2q-2)$ other lines in supp(c)

Proof (continued).
$$c \cdot \mathbb{1} \equiv 0$$

at least q²(2q − 2) other lines in supp(c)
 w(c) ≥ q²(2q − 2) > q³ + 2q² + q + 1

Proof (continued).
$$c \cdot \mathbb{1} \equiv 0$$

at least q²(2q − 2) other lines in supp(c)
 w(c) ≥ q²(2q − 2) > q³ + 2q² + q + 1

Case 2: \forall plane contains 0 or $\geq 3q - 3$ lines of supp(*c*)

Proof (continued).
$$c \cdot \mathbb{1} \equiv 0$$

at least q²(2q − 2) other lines in supp(c)
 w(c) ≥ q²(2q − 2) > q³ + 2q² + q + 1

Case 2:
$$\forall$$
 plane contains 0 or $\geq 3q - 3$ lines of supp(*c*)

Theorem (Haemers, 1995)

A set S of lines in PG(2, q) covers at least
$$\frac{(q+1)^2|S|}{q+|S|}$$
 points.

Proof (continued).
$$c \cdot \mathbb{1} \equiv 0$$

at least q²(2q − 2) other lines in supp(c)
 w(c) ≥ q²(2q − 2) > q³ + 2q² + q + 1

Case 2:
$$\forall$$
 plane contains 0 or $\geq 3q - 3$ lines of supp(*c*)

Theorem (Haemers, 1995)

A set S of lines in PG(2, q) covers at least $\frac{(q+1)^2|S|}{q+|S|}$ points.

> supp(c) covers at least $\frac{3}{4}q^2$ points of a plane

Proof (continued).
$$c \cdot \mathbb{1} \equiv 0$$

at least q²(2q − 2) other lines in supp(c)
 w(c) ≥ q²(2q − 2) > q³ + 2q² + q + 1

Case 2: \forall plane contains 0 or $\geq 3q - 3$ lines of supp(*c*)

Theorem (Haemers, 1995)

A set S of lines in PG(2, q) covers at least $\frac{(q+1)^2|S|}{q+|S|}$ points.

> supp(c) covers at least ³/₄q² points of a plane
 > at least ³/₄q²(3q − 3 − (q + 1)) lines in supp(c)

Proof (continued).
$$c \cdot \mathbb{1} \equiv 0$$

at least q²(2q − 2) other lines in supp(c)
 w(c) ≥ q²(2q − 2) > q³ + 2q² + q + 1

Case 2: \forall plane contains 0 or $\geq 3q - 3$ lines of supp(*c*)

Theorem (Haemers, 1995)

A set S of lines in PG(2, q) covers at least $\frac{(q+1)^2|S|}{q+|S|}$ points.

Proof (continued). $c \cdot 1 \neq 0$

Proof (continued). $c \cdot 1 \neq 0$

Let *S* be the set of lines in a plane π $rightarrow c \cdot \chi_S \neq 0$

Proof (continued).
$$c \cdot \mathbb{1} \neq 0$$

- $\succ c \cdot \chi_S \not\equiv 0$
- ► $c|_S$ is in the code from lines and points in π and $c|_S \cdot \mathbb{1} \neq 0$

Proof (continued).
$$c \cdot \mathbb{1} \neq 0$$

- ► $c \cdot \chi_S \neq 0$
- ► $c|_S$ is in the code from lines and points in π and $c|_S \cdot \mathbb{1} \neq 0$
- ► $w(c|_S) \ge q+1$

Proof (continued).
$$c \cdot \mathbb{1} \neq 0$$

- $\succ c \cdot \chi_S \not\equiv 0$
- ► $c|_S$ is in the code from lines and points in π and $c|_S \cdot \mathbb{1} \neq 0$
- ► $w(c|_S) \ge q+1$

$$q+1$$

Count pairs (ℓ,π) in two ways $\implies w(c) \ge q^3 + q^2 + q + 1$

 $w(c) = q^3 + q^2 + q + 1 \implies c$ is (a scalar multiple of) the characteristic function of the absolute lines of a symplectic polar space W(3, q).

Lemma

 $w(c) = q^3 + q^2 + q + 1 \implies c$ is (a scalar multiple of) the characteristic function of the absolute lines of a symplectic polar space W(3, q).

Proof idea.

> each plane π contains q + 1 lines of supp(c) through a point $P(\pi)$

$$q+1$$

▶ $\pi \mapsto P(\pi)$ is the desired symplectic polarity

Lemma

The characteristic function of the absolute lines of a symplectic space W(3, q) is in the code of intersecting lines in $PG(3, q) \iff q$ is even.

Lemma

The characteristic function of the absolute lines of a symplectic space W(3, q) is in the code of intersecting lines in $PG(3, q) \iff q$ is even.

Theorem

Suppose q > 27.

▶ If q is even, then the minimum weight of C is $q^3 + q^2 + q + 1$. Minimum weight codewords are (scalar multiples of) the characteristic functions of the absolute lines of a symplectic polar space W(3, q).

► If q is odd, then the minimum weight of C is strictly greater than $q^3 + q^2 + q + 1$.

Recall: $> c \cdot \mathbb{1} \equiv 0 \implies w(c) > q^3 + 2q^2 + q + 1$

 $\implies c \cdot \mathbb{1} \not\equiv 0$ is the only interesting case

each plane pencil contains a line of supp(c)

> each plane pencil contains a line of supp(c)

 \blacktriangleright each plane pencil contains a line of supp(c)

 $c \cdot \mathbb{1} \not\equiv 0$

 \succ each plane pencil contains a line of supp(c)

Klein correspondence

 $PG(3,q) \quad \longleftrightarrow \quad Q^+(5,q)$

line point inctersecting lines collinear points

Klein correspondence

 $PG(3,q) \iff Q^+(5,q)$

line inctersecting lines plane pencil

point collinear points line

$$\cdot \, \mathbb{1}
eq 0$$

С

each plane pencil contains a line of supp(c)

line inctersecting lines plane pencil

blocking set of $Q^+(5, q)$

each plane pencil contains a line of supp(c)

point collinear points line

 $PG(3,q) \iff Q^+(5,q)$

 $c\cdot\mathbb{1}\not\equiv 0$

Theorem

Suppose q > 27.

- ► If q is even, then the minimum weight of C is $q^3 + q^2 + q + 1$. Minimum weight codewords are (scalar multiples of) the characteristic functions of the absolute lines of a symplectic polar space W(3, q). The second smallest codewords have weight $q^3 + 2q^2 + q + 1$.
- ► If q is odd, then the minimum weight of C is strictly greater than $q^3 + q^2 + q + 1$.

Theorem

Suppose q > 27.

 If q is even, then the minimum weight of C is q³ + q² + q + 1. Minimum weight codewords are (scalar multiples of) the characteristic functions of the absolute lines of a symplectic polar space W(3, q). The second smallest codewords have weight q³ + 2q² + q + 1. Are they (scalar multiples of) characteristic vectors of lines intersecting a given line?

► If q is odd, then the minimum weight of C is strictly greater than q³ + q² + q + 1. Is it equal to q³ + 2q² + q + 1? Are the minimum weight codewords (scalar multiples of) characteristic vectors of lines intersecting a given line?

Thank you for listening!