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Intro

Code from intersecting lines in PG(3, q)

(G)ℓ1ℓ2 =

{
0 if ℓ1 ∩ ℓ2 = ∅,
1 if ℓ1 ∩ ℓ2 ̸= ∅.

G =

1 0 · · · 1

0 1 · · · 0

...
...

. . .
...

1 0 · · · 1





ℓ1 ℓ2 · · · ℓn

ℓ1

ℓ2

...

ℓn

=⇒ C = rowspanFp
(G)
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Intro

Theorem

Suppose q > 27.

➤ If q is even, then the minimum weight of C is q3 + q2 + q + 1.
Minimum weight codewords are (scalar multiples of) the
characteristic functions of the absolute lines of a symplectic polar
space W (3, q).

➤ If q is odd, then the minimum weight of C is strictly greater than
q3 + q2 + q + 1.
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Incidence codes

Code from points and lines

G =

1 1 · · · 0

0 1 · · · 1

...
...

. . .
...

1 0 · · · 0





p1 p2 · · · pn

ℓ1

ℓ2

...

ℓn
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Incidence codes

Code from points and lines in PG(2, 2)

1 1 1 0 0 0 0
1 0 0 1 1 0 0
1 0 0 0 0 1 1
0 1 0 1 0 1 0
0 1 0 0 1 0 1
0 0 1 1 0 0 1
0 0 1 0 1 1 0





p1 p2 p3 p4 p5 p6 p7

ℓ1
ℓ2
ℓ3
ℓ4
ℓ5
ℓ6
ℓ7

C = {0000000, 1110000, 1001100, 1000011,
0101010, 0100101, 0011001, 0010110,

=⇒ [7, 4, 3]2-code

1101001, 1100110, 1011010, 1010101,

Fanocode

0111100, 0110011, 0001111, 1111111}
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Incidence codes

Code from points and lines in PG(2, q)

G =

1 1 · · · 0

0 1 · · · 1

...
...

. . .
...

1 0 · · · 0





p1 p2 · · · pn

ℓ1

ℓ2

...

ℓn

➤ n = q2 + q + 1
➤ k =

(p+1
2

)h
+ 1 [Graham, MacWilliams, 1966]

➤ d = q + 1 [Delsarte, Goethals, MacWilliams, 1970]
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Incidence codes

Theorem (Szőnyi, Weiner, 2018)

Suppose q > 27. Let c ̸= 0 be a codeword of the code from points and
lines in PG(2, q). Then one of the following holds:

➤ w(c) = q + 1.

➤ w(c) = 2q.

➤ w(c) = 2q + 1.

➤ w(c) ≥ 3q − 3.

q + 1 2q 2q + 1 3q − 3
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Incidence codes

Code from lines and points

G =

1 0 · · · 1

0 1 · · · 0

...
...

. . .
...

1 0 · · · 1





ℓ1 ℓ2 · · · ℓn

p1

p2

...

pn
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Code from intersecting lines

G =

1 0 · · · 1

0 1 · · · 0

...
...

. . .
...

1 0 · · · 1





ℓ1 ℓ2 · · · ℓn

ℓ1

ℓ2

...

ℓn

=⇒ C = rowspanFp
(G)

➤ n = q2 + q + 1
➤ k = 1
➤ d = q2 + q + 1
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Code from intersecting lines in PG(2, q)

G =

1 1 · · · 1

1 1 · · · 1

...
...

. . .
...

1 1 · · · 1





ℓ1 ℓ2 · · · ℓn

ℓ1

ℓ2

...

ℓn

=⇒ C = {00 . . . 0, 11 . . . 1}

➤ n = q2 + q + 1
➤ k = 1
➤ d = q2 + q + 1
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Code from intersecting lines in PG(3, q)

G =

1 0 · · · 1

0 1 · · · 0

...
...

. . .
...

1 0 · · · 1





ℓ1 ℓ2 · · · ℓn

ℓ1

ℓ2

...

ℓn

=⇒ C = rowspanFp
(G)

➤ n = # lines in PG(3, q) = (q2 + 1)(q2 + q + 1)
➤ k = dim(C) =

(p+2
3

)h
+ 1 [Goethals, Delsarte, 1968]

➤ d = ?
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Code from intersecting lines in PG(3, 2)

➤ [35, 7, 15]2-code
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Code from intersecting lines in PG(3, 2)

➤ [35, 7, 15]2-code
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Code from intersecting lines in PG(3, q)

Lemma

If S is the set of lines in a plane π, then c|S is in the code from lines and
points in π.

Proof.

➤ Sufficient to prove this for “row codewords” χℓ

➤ ℓ ⊆ π =⇒ χℓ|π = 1 ≡
∑

p χp

➤ ℓ ∩ π = {p} =⇒ χℓ|π = χp
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Code from intersecting lines in PG(3, q)

Lemma

Let c ∈ C and let S be the set of lines in a plane π. Then c · χS ≡ c · 1.

c · d =
∑
ℓ∈L

cℓdℓ

Proof.

➤ Sufficient to prove this for “row codewords” χℓ

➤ χℓ · 1 = q3 + 2q + q + 1 ≡ 1
➤ ℓ ⊆ π =⇒ χℓ · χS = q2 + q + 1 ≡ 1
➤ ℓ ∩ π = {p} =⇒ χℓ · χS = q + 1 ≡ 1
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Code from intersecting lines in PG(3, q)

Theorem

Suppose q > 27. Then w(C) ≥ q3 + q2 + q + 1.

Proof. Let c ∈ C.
c · 1 ≡ 0 =⇒ w(c) > q3 + 2q2 + q + 1

c · 1 ̸≡ 0 =⇒ w(c) ≥ q3 + q2 + q + 1
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Code from intersecting lines in PG(3, q)

Proof (continued). c · 1 ≡ 0

Let S be the set of lines in a plane π
➤ c · χS ≡ 0
➤ c|S is in the code from lines and points in π and c|S · 1 ≡ 0

Theorem (Szőnyi, Weiner, 2018)

Suppose q > 27. Let c ̸= 0 be a codeword of the code from lines and
points in PG(2, q). Then one of the following holds:

➤ w(c) = q + 1.

➤ w(c) = 2q.

➤ w(c) = 2q + 1.

➤ w(c) ≥ 3q − 3.
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➤ Each plane contains 0, 2q or ≥ 3q − 3 lines of supp(c).
➤ Dual: each point lies on 0, 2q or ≥ 3q − 3 lines of supp(c).
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Code from intersecting lines in PG(3, q)

Proof (continued). c · 1 ≡ 0

Case 1: ∃ plane containing 2q lines of supp(c)

2q

➤ at least q2(2q − 2) other lines in supp(c)
➤ w(c) ≥ q2(2q − 2) > q3 + 2q2 + q + 1

Case 2: ∀ plane contains 0 or ≥ 3q − 3 lines of supp(c)

Theorem (Haemers, 1995)

A set S of lines in PG(2, q) covers at least (q+1)2|S|
q+|S| points.

➤ supp(c) covers at least 3
4q

2 points of a plane
➤ at least 3

4q
2(3q − 3− (q + 1)) lines in supp(c)

➤ w(c) > q3 + 2q2 + q + 1
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Code from intersecting lines in PG(3, q)

Proof (continued). c · 1 ̸≡ 0

Let S be the set of lines in a plane π
➤ c · χS ̸≡ 0
➤ c|S is in the code from lines and points in π and c|S · 1 ̸≡ 0
➤ w(c|S) ≥ q + 1

q + 1

Count pairs (ℓ, π) in two ways =⇒ w(c) ≥ q3 + q2 + q + 1



20/27

Code from intersecting lines in PG(3, q)

Proof (continued). c · 1 ̸≡ 0

Let S be the set of lines in a plane π
➤ c · χS ̸≡ 0

➤ c|S is in the code from lines and points in π and c|S · 1 ̸≡ 0
➤ w(c|S) ≥ q + 1

q + 1

Count pairs (ℓ, π) in two ways =⇒ w(c) ≥ q3 + q2 + q + 1



20/27

Code from intersecting lines in PG(3, q)

Proof (continued). c · 1 ̸≡ 0

Let S be the set of lines in a plane π
➤ c · χS ̸≡ 0
➤ c|S is in the code from lines and points in π and c|S · 1 ̸≡ 0

➤ w(c|S) ≥ q + 1

q + 1

Count pairs (ℓ, π) in two ways =⇒ w(c) ≥ q3 + q2 + q + 1



20/27

Code from intersecting lines in PG(3, q)

Proof (continued). c · 1 ̸≡ 0

Let S be the set of lines in a plane π
➤ c · χS ̸≡ 0
➤ c|S is in the code from lines and points in π and c|S · 1 ̸≡ 0
➤ w(c|S) ≥ q + 1

q + 1

Count pairs (ℓ, π) in two ways =⇒ w(c) ≥ q3 + q2 + q + 1



20/27

Code from intersecting lines in PG(3, q)

Proof (continued). c · 1 ̸≡ 0

Let S be the set of lines in a plane π
➤ c · χS ̸≡ 0
➤ c|S is in the code from lines and points in π and c|S · 1 ̸≡ 0
➤ w(c|S) ≥ q + 1

q + 1

Count pairs (ℓ, π) in two ways =⇒ w(c) ≥ q3 + q2 + q + 1



21/27

Code from intersecting lines in PG(3, q)

Lemma

w(c) = q3 + q2 + q + 1 =⇒ c is (a scalar multiple of) the
characteristic function of the absolute lines of a symplectic polar space
W (3, q).

Proof idea.

➤ each plane π contains q+ 1 lines of supp(c) through a point P(π)

q + 1

➤ π 7→ P(π) is the desired symplectic polarity
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Code from intersecting lines in PG(3, q)

Lemma

The characteristic function of the absolute lines of a symplectic space
W (3, q) is in the code of intersecting lines in PG(3, q)⇐⇒ q is even.

Theorem

Suppose q > 27.

➤ If q is even, then the minimum weight of C is q3 + q2 + q + 1.
Minimum weight codewords are (scalar multiples of) the
characteristic functions of the absolute lines of a symplectic polar
space W (3, q).

➤ If q is odd, then the minimum weight of C is strictly greater than
q3 + q2 + q + 1.
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What about odd q?

Recall:
➤ c · 1 ≡ 0 =⇒ w(c) > q3 + 2q2 + q + 1

➤ has weight q3 + 2q2 + q + 1

=⇒ c · 1 ̸≡ 0 is the only interesting case
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What about odd q?

c · 1 ̸≡ 0

➤ each plane pencil contains a line of supp(c)

Klein correspondence

PG(3, q) ←→ Q+(5, q)

line point
inctersecting lines collinear points
plane pencil line

➤ blocking set of Q+(5, q)
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What about odd q?

Theorem (Metsch, 2000)

A blocking set of Q+(5, q) with at most q3 + 2q2 + q points contains a
blocking set that is contained in a hyperplane.

Q(4, q)

q3 + q2 + q + 1

or

pQ+(3, q)

p

q3 + 2q2 + q
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What about odd q?

Theorem

Suppose q > 27.

➤ If q is even, then the minimum weight of C is q3 + q2 + q + 1.
Minimum weight codewords are (scalar multiples of) the
characteristic functions of the absolute lines of a symplectic polar
space W (3, q). The second smallest codewords have weight
q3 + 2q2 + q + 1.

➤ If q is odd, then the minimum weight of C is strictly greater than
q3 + q2 + q + 1.
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Theorem

Suppose q > 27.

➤ If q is even, then the minimum weight of C is q3 + q2 + q + 1.
Minimum weight codewords are (scalar multiples of) the
characteristic functions of the absolute lines of a symplectic polar
space W (3, q). The second smallest codewords have weight
q3 + 2q2 + q + 1. Are they (scalar multiples of) characteristic
vectors of lines intersecting a given line?

➤ If q is odd, then the minimum weight of C is strictly greater than
q3 + q2 + q + 1. Is it equal to q3 + 2q2 + q + 1? Are the
minimum weight codewords (scalar multiples of) characteristic
vectors of lines intersecting a given line?
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Thank you for listening!
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