Minimum weight of the code from intersecting lines in PG $(3, q)$

Robin Simoens

Ghent University and Polytechnic University of Catalonia

$$
\text { July } 2023
$$

Joint work with Sam Adriaensen, Mrinmoy Datta and Leo Storme

GHENT
UNIVERSITY
$\operatorname{PG}(3, q)$

GHENT
$\operatorname{PG}(3, q)$

subspaces of \mathbb{F}_{q}^{4}
$\operatorname{PG}(3, q)$

subspaces of \mathbb{F}_{q}^{4}
points
vector lines

$\operatorname{PG}(3, q)$

subspaces of \mathbb{F}_{q}^{4}
vector lines
vector planes
lines

806
UPC

Code from intersecting lines in $\operatorname{PG}(3, q)$

$$
(G)_{\ell_{1} \ell_{2}}= \begin{cases}0 & \text { if } \ell_{1} \cap \ell_{2}=\emptyset \\ 1 & \text { if } \ell_{1} \cap \ell_{2} \neq \emptyset\end{cases}
$$

808
088
UPC

Code from intersecting lines in $\operatorname{PG}(3, q)$

$$
G=\begin{gathered}
\ell_{1} \\
\ell_{2}\left(\begin{array}{cccc}
1 & 0 & \cdots & 1 \\
\ell_{1} & \ell_{2} & \cdots & \ell_{n} \\
0 & 1 & \cdots & 0 \\
\ell_{n} \\
\vdots & \vdots & \ddots & \vdots \\
1 & 0 & \cdots & 1
\end{array}\right)
\end{gathered}
$$

쿨

Code from intersecting lines in $\operatorname{PG}(3, q)$

$$
\begin{aligned}
& _{\ell_{1}} \ell_{2} \ldots \ldots \ell_{n} \\
& G=\begin{array}{c}
\ell_{1} \\
\ell_{2} \\
\vdots \\
\ell_{n}
\end{array}\left(\begin{array}{cccc}
1 & 0 & \cdots & 1 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 0 & \cdots & 1
\end{array}\right) \\
& \Longrightarrow \mathcal{C}=\operatorname{rowspan}_{\mathbb{F}_{p}}(G)
\end{aligned}
$$

Code from intersecting lines in $\operatorname{PG}(3, q)$

Code from intersecting lines in $\operatorname{PG}(3, q)$

$$
\begin{aligned}
& _{\ell_{1}} \ell_{2} \ldots \ldots \ell_{n} \\
& G=\begin{array}{c}
\ell_{1} \\
\ell_{2} \\
\vdots \\
\ell_{n}
\end{array}\left(\begin{array}{cccc}
1 & 0 & \cdots & 1 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 0 & \cdots & 1
\end{array}\right) \\
& \Longrightarrow \mathcal{C}=\text { rowspan }_{\mathbb{F}_{p}}(G)
\end{aligned}
$$

$>n=\#$ lines in $\operatorname{PG}(3, q)=\left(q^{2}+1\right)\left(q^{2}+q+1\right)$

Code from intersecting lines in $\operatorname{PG}(3, q)$

$$
\begin{aligned}
& \varliminf_{\ell_{1}} \ell_{2} \ldots \ldots \ell_{n} \\
& G=\begin{array}{c}
\ell_{1} \\
\ell_{2} \\
\vdots \\
\ell_{n}
\end{array}\left(\begin{array}{cccc}
1 & 0 & \cdots & 1 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 0 & \cdots & 1
\end{array}\right) \\
& \Longrightarrow \mathcal{C}=\text { rowspan }_{\mathfrak{F}_{p}}(G)
\end{aligned}
$$

$>n=\#$ lines in $\operatorname{PG}(3, q)=\left(q^{2}+1\right)\left(q^{2}+q+1\right)$
$>k=\operatorname{dim}(\mathcal{C})=\binom{p+2}{3}^{h}+1 \quad$ [Goethals, Delsarte, 1968]

Code from intersecting lines in $\operatorname{PG}(3, q)$

$$
\begin{aligned}
& _{\ell_{1}} \ell_{2} \ldots \ldots \ell_{n} \\
& G=\begin{array}{c}
\ell_{1} \\
\ell_{2} \\
\vdots \\
\ell_{n}
\end{array}\left(\begin{array}{cccc}
1 & 0 & \cdots & 1 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 0 & \cdots & 1
\end{array}\right) \\
& \Longrightarrow \mathcal{C}=\text { rowspan }_{\mathbb{F}_{p}}(G)
\end{aligned}
$$

$>n=\#$ lines in $\operatorname{PG}(3, q)=\left(q^{2}+1\right)\left(q^{2}+q+1\right)$
$>k=\operatorname{dim}(\mathcal{C})=\binom{p+2}{3}^{h}+1 \quad$ [Goethals, Delsarte, 1968]
$>d=$?

Theorem

Suppose $q>27$.
$>$ If q is even, then the minimum weight of \mathcal{C} is $q^{3}+q^{2}+q+1$. Minimum weight codewords are (scalar multiples of) the characteristic functions of the absolute lines of a symplectic polar space $W(3, q)$.
$>$ If q is odd, then the minimum weight of \mathcal{C} is strictly greater than $q^{3}+q^{2}+q+1$.

Incidence codes

888
888
UPC

Code from points and lines

$$
G=\begin{gathered}
\\
\ell_{1} \\
\ell_{2}\left(\begin{array}{cccc}
p_{1} & p_{2} & \cdots & p_{n} \\
1 & 1 & \cdots & 0 \\
0 & 1 & \cdots & 1 \\
\ell_{n}
\end{array}\left(\begin{array}{cccc}
\\
\vdots & \vdots & \ddots & \vdots \\
1 & 0 & \cdots & 0
\end{array}\right) ~\right.
\end{gathered}
$$

Incidence codes

Code from points and lines in $\operatorname{PG}(2,2)$

Incidence codes

Code from points and lines in $\operatorname{PG}(2,2)$

Incidence codes

Code from points and lines in $\operatorname{PG}(2,2)$

$$
\begin{aligned}
& \begin{array}{lllllll}
p_{1} & p_{2} & p_{3} & p_{4} & p_{5} & p_{6} & p_{7}
\end{array} \\
& =\begin{array}{r}
\ell_{1} \\
\ell_{2} \\
\ell_{3} \\
\ell_{4} \\
\ell_{5} \\
\ell_{6} \\
\ell_{7}
\end{array}\left(\begin{array}{lllllll}
1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0
\end{array}\right)
\end{aligned}
$$

$C=\{0000000,1110000,1001100,1000011$, 0101010, 0100101, 0011001, 0010110, 1101001, 1100110, 1011010, 1010101, $0111100,0110011,0001111,1111111\}$

Incidence codes

Code from points and lines in $\operatorname{PG}(2,2)$
 $\begin{array}{lllllll}p_{1} & p_{2} & p_{3} & p_{4} & p_{5} & p_{6} & p_{7}\end{array}$

$=$| ℓ_{1} |
| ---: |
| ℓ_{2} |
| ℓ_{3} |
| ℓ_{4} |
| ℓ_{5} |
| ℓ_{6} |
| ℓ_{7} |\(\left(\begin{array}{lllllll}1 \& 1 \& 1 \& 0 \& 0 \& 0 \& 0

1 \& 0 \& 0 \& 1 \& 1 \& 0 \& 0

1 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1

0 \& 1 \& 0 \& 1 \& 0 \& 1 \& 0

0 \& 1 \& 0 \& 0 \& 1 \& 0 \& 1

0 \& 0 \& 1 \& 1 \& 0 \& 0 \& 1

0 \& 0 \& 1 \& 0 \& 1 \& 1 \& 0\end{array}\right)\)
$C=\{0000000,1110000,1001100,1000011$,
0101010, 0100101, 0011001, 0010110,
$\Longrightarrow[7,4,3]_{2}$-code 1101001, 1100110, 1011010, 1010101, $0111100,0110011,0001111,1111111\}$

Incidence codes

Code from points and lines in $\operatorname{PG}(2,2)$

$C=\{0000000,1110000,1001100,1000011$,
0101010, 0100101, 0011001, 0010110,
$\Longrightarrow[7,4,3]_{2}$-code
Fanocode $0111100,0110011,0001111,111111\}$

Incidence codes

Code from points and lines in $\operatorname{PG}(2, q)$

$$
G=\begin{gathered}
\begin{array}{c}
\bullet \\
\ell_{1} \\
\ell_{1} \\
\ell_{2}
\end{array}\left(\begin{array}{cccc}
1 & 1 & \cdots & 0 \\
0 & 1 & \cdots & 1 \\
\vdots \\
\ell_{n}
\end{array}\left(\begin{array}{cccc}
\bullet \\
\vdots & \vdots & \ddots & \vdots \\
1 & 0 & \cdots & 0
\end{array}\right) ~\right.
\end{gathered}
$$

$>n=q^{2}+q+1$
$>k=\binom{p+1}{2}^{h}+1$
[Graham, MacWilliams, 1966]
$>d=q+1$
[Delsarte, Goethals, MacWilliams, 1970]

Incidence codes

©

Theorem (Szőnyi, Weiner, 2018)

Suppose $q>27$. Let $c \neq 0$ be a codeword of the code from points and lines in $\mathrm{PG}(2, q)$. Then one of the following holds:
$>w(c)=q+1$.
$>w(c)=2 q$.
$>w(c)=2 q+1$.
$>w(c) \geq 3 q-3$.

Incidence codes

쿨

Theorem (Szőnyi, Weiner, 2018)

Suppose $q>27$. Let $c \neq 0$ be a codeword of the code from points and lines in $\operatorname{PG}(2, q)$. Then one of the following holds:
$>w(c)=q+1$.
$>w(c)=2 q$.
$>w(c)=2 q+1$.
$>w(c) \geq 3 q-3$.

$$
q+1
$$

Incidence codes

Theorem (Szőnyi, Weiner, 2018)

Suppose $q>27$. Let $c \neq 0$ be a codeword of the code from points and lines in $\operatorname{PG}(2, q)$. Then one of the following holds:
$>w(c)=q+1$.
$>w(c)=2 q$.
$>w(c)=2 q+1$.
$>w(c) \geq 3 q-3$.

$$
q+1
$$

Incidence codes

Theorem (Szőnyi, Weiner, 2018)

Suppose $q>27$. Let $c \neq 0$ be a codeword of the code from points and lines in $\operatorname{PG}(2, q)$. Then one of the following holds:

$$
\begin{aligned}
& >w(c)=q+1 . \\
& >w(c)=2 q . \\
& >w(c)=2 q+1 . \\
& >w(c) \geq 3 q-3 .
\end{aligned}
$$

Incidence codes

Theorem (Szőnyi, Weiner, 2018)

Suppose $q>27$. Let $c \neq 0$ be a codeword of the code from points and lines in $\operatorname{PG}(2, q)$. Then one of the following holds:

$$
\begin{aligned}
& >w(c)=q+1 . \\
& >w(c)=2 q . \\
& >w(c)=2 q+1 . \\
& >w(c) \geq 3 q-3 .
\end{aligned}
$$

Incidence codes

Code from lines and points

$$
G=\begin{gathered}
\ell_{1} \\
\bullet \\
\bullet \\
\bullet \\
l_{1} \\
\\
\bullet \\
p_{2} \\
p_{n}
\end{gathered}\left(\begin{array}{cccc}
1 & 0 & \cdots & 1 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 0 & \cdots & 1
\end{array}\right)
$$

Incidence codes

Theorem (Szőnyi, Weiner, 2018)

Suppose $q>27$. Let $c \neq 0$ be a codeword of the code from lines and points in $\operatorname{PG}(2, q)$. Then one of the following holds:
$>w(c)=q+1$.
$>w(c)=2 q$.
$>w(c)=2 q+1$.
$>w(c) \geq 3 q-3$.

Incidence codes

Theorem (Szőnyi, Weiner, 2018)

Suppose $q>27$. Let $c \neq 0$ be a codeword of the code from lines and points in $\operatorname{PG}(2, q)$. Then one of the following holds:

$$
\begin{aligned}
& >w(c)=q+1 . \\
& >w(c)=2 q . \\
& >w(c)=2 q+1 . \\
& w(c) \geq 3 q-3 .
\end{aligned}
$$

$$
q+1
$$

Incidence codes

Theorem (Szőnyi, Weiner, 2018)

Suppose $q>27$. Let $c \neq 0$ be a codeword of the code from lines and points in $\operatorname{PG}(2, q)$. Then one of the following holds:

$$
\begin{aligned}
& >w(c)=q+1 . \\
& >w(c)=2 q . \\
& >w(c)=2 q+1 . \\
& >w(c) \geq 3 q-3 .
\end{aligned}
$$

$q+1$

$2 q$

Incidence codes

Theorem (Szőnyi, Weiner, 2018)

Suppose $q>27$. Let $c \neq 0$ be a codeword of the code from lines and points in $\mathrm{PG}(2, q)$. Then one of the following holds:

$$
\begin{aligned}
& >w(c)=q+1 . \\
& >w(c)=2 q . \\
& >w(c)=2 q+1 . \\
& >w(c) \geq 3 q-3 .
\end{aligned}
$$

$q+1$

$2 q$

$2 q+1$

Incidence codes

Theorem (Szőnyi, Weiner, 2018)

Suppose $q>27$. Let $c \neq 0$ be a codeword of the code from lines and points in $\mathrm{PG}(2, q)$. Then one of the following holds:

$$
\begin{aligned}
& >w(c)=q+1 . \\
& >w(c)=2 q . \\
& >w(c)=2 q+1 . \\
& >w(c) \geq 3 q-3 .
\end{aligned}
$$

$q+1$

$2 q$

$2 q+1$

Code from intersecting lines

$$
\begin{aligned}
& \bigvee_{\ell_{1}} \quad \ell_{2} \ldots \ldots \ell_{n} \\
& G=\begin{array}{c}
\ell_{1} \\
\ell_{2} \\
\vdots \\
\ell_{n}
\end{array}\left(\begin{array}{cccc}
1 & 0 & \cdots & 1 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 0 & \cdots & 1
\end{array}\right) \\
& \Longrightarrow \mathcal{C}=\operatorname{rowspan}_{\mathbb{F}_{p}}(G)
\end{aligned}
$$

Code from intersecting lines in PG $(2, q)$

:

$$
G=\begin{array}{r}
\ell_{1} \\
\ell_{2} \\
\ell_{1} \\
\ell_{n} \\
\ell_{2} \\
\ell_{1}
\end{array}\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
1 & 1 & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \cdots & 1
\end{array}\right)
$$

Code from intersecting lines in $\operatorname{PG}(2, q)$

$$
G=\begin{gathered}
\backslash \\
\ell_{1} \\
\ell_{2} \\
\ell_{n} \\
\ell_{n} \\
\ell_{2} \\
1
\end{gathered}\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
1 & 1 & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \cdots & 1
\end{array}\right) \Longrightarrow \mathcal{C}=\{00 \ldots 0,11 \ldots 1\}
$$

Code from intersecting lines in $\operatorname{PG}(2, q)$

$$
\begin{aligned}
& \prod_{\ell_{1}} \quad \ell_{2} \ldots \ldots \ell_{n} \\
& G=\ell_{2}\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
1 & 1 & \cdots & 1 \\
\vdots & . & . & .
\end{array} \Longrightarrow \mathcal{C}=\{00 \ldots 0,11 \ldots 1\}\right. \\
& >n=q^{2}+q+1 \\
& >k=1 \\
& >d=q^{2}+q+1
\end{aligned}
$$

Code from intersecting lines in $\operatorname{PG}(3, q)$

$$
\begin{aligned}
& \bigvee_{\ell_{1}} \quad \ell_{2} \ldots \ldots \ell_{n} \\
& G=\begin{array}{c}
\ell_{1} \\
\ell_{2} \\
\vdots \\
\ell_{n}
\end{array}\left(\begin{array}{cccc}
1 & 0 & \cdots & 1 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 0 & \cdots & 1
\end{array}\right) \\
& \Longrightarrow \mathcal{C}=\operatorname{rowspan}_{\mathbb{F}_{p}}(G)
\end{aligned}
$$

$>n=\#$ lines in $\operatorname{PG}(3, q)=\left(q^{2}+1\right)\left(q^{2}+q+1\right)$
$>k=\operatorname{dim}(\mathcal{C})=\binom{p+2}{3}^{h}+1 \quad$ [Goethals, Delsarte, 1968]
$>d=$?

Code from intersecting lines in $\mathrm{PG}(3,2)$

GHENT
UNIVERSITY

Code from intersecting lines in $\mathrm{PG}(3,2)$

$>[35,7,15]_{2}$-code

Code from intersecting lines in PG $(3, q)$

Lemma

If S is the set of lines in a plane π, then $c \mid S$ is in the code from lines and points in π.

Code from intersecting lines in $\operatorname{PG}(3, q)$

Lemma

If S is the set of lines in a plane π, then $\left.c\right|_{S}$ is in the code from lines and points in π.

Proof.
$>$ Sufficient to prove this for "row codewords" χ_{ℓ}

Code from intersecting lines in $\operatorname{PG}(3, q)$

Lemma

If S is the set of lines in a plane π, then $\left.c\right|_{S}$ is in the code from lines and points in π.

Proof.
$>$ Sufficient to prove this for "row codewords" χ_{ℓ}
$>\left.\ell \subseteq \pi \Longrightarrow \chi_{\ell}\right|_{\pi}=\mathbb{1} \equiv \sum_{p} \chi_{p}$

Code from intersecting lines in $\operatorname{PG}(3, q)$

Lemma

If S is the set of lines in a plane π, then $\left.c\right|_{S}$ is in the code from lines and points in π.

Proof.
$>$ Sufficient to prove this for "row codewords" χ_{ℓ}
$>\left.\ell \subseteq \pi \Longrightarrow \chi_{\ell}\right|_{\pi}=\mathbb{1} \equiv \sum_{p} \chi_{p}$
$>\ell \cap \pi=\left.\{p\} \Longrightarrow \chi \ell\right|_{\pi}=\chi_{p}$

Code from intersecting lines in PG $(3, q)$

Lemma

Let $c \in \mathcal{C}$ and let S be the set of lines in a plane π. Then $c \cdot \chi_{S} \equiv c \cdot \mathbb{1}$.

$$
c \cdot d=\sum_{\ell \in \mathcal{L}} c_{\ell} d_{\ell}
$$

Code from intersecting lines in $\operatorname{PG}(3, q)$

Lemma

Let $c \in \mathcal{C}$ and let S be the set of lines in a plane π. Then $c \cdot \chi_{S} \equiv c \cdot \mathbb{1}$.

$$
c \cdot d=\sum_{\ell \in \mathcal{L}} c_{\ell} d_{\ell}
$$

Proof.

$>$ Sufficient to prove this for "row codewords" χ_{ℓ}

Code from intersecting lines in PG $(3, q)$

Lemma

Let $c \in \mathcal{C}$ and let S be the set of lines in a plane π. Then $c \cdot \chi_{S} \equiv c \cdot \mathbb{1}$.

$$
c \cdot d=\sum_{\ell \in \mathcal{L}} c_{\ell} d_{\ell}
$$

Proof.

$>$ Sufficient to prove this for "row codewords" χ_{ℓ}
$>\chi_{\ell} \cdot \mathbb{1}=q^{3}+2 q+q+1 \equiv 1$

Code from intersecting lines in PG $(3, q)$

Lemma

Let $c \in \mathcal{C}$ and let S be the set of lines in a plane π. Then $c \cdot \chi_{S} \equiv c \cdot \mathbb{1}$.

$$
c \cdot d=\sum_{\ell \in \mathcal{L}} c_{\ell} d_{\ell}
$$

Proof.

$>$ Sufficient to prove this for "row codewords" χ_{ℓ}
$>\chi_{\ell} \cdot \mathbb{1}=q^{3}+2 q+q+1 \equiv 1$
$>\ell \subseteq \pi \Longrightarrow \chi_{\ell} \cdot \chi_{S}=q^{2}+q+1 \equiv 1$

Code from intersecting lines in PG $(3, q)$

Lemma

Let $c \in \mathcal{C}$ and let S be the set of lines in a plane π. Then $c \cdot \chi_{S} \equiv c \cdot \mathbb{1}$.

$$
c \cdot d=\sum_{\ell \in \mathcal{L}} c_{\ell} d_{\ell}
$$

Proof.

$>$ Sufficient to prove this for "row codewords" χ_{ℓ}
$>\chi_{\ell} \cdot \mathbb{1}=q^{3}+2 q+q+1 \equiv 1$
$>\ell \subseteq \pi \Longrightarrow \chi_{\ell} \cdot \chi_{S}=q^{2}+q+1 \equiv 1$
$>\ell \cap \pi=\{p\} \Longrightarrow \chi_{\ell} \cdot \chi_{s}=q+1 \equiv 1$

Code from intersecting lines in $\mathrm{PG}(3, q)$

Code from intersecting lines in PG $(3, q)$

Theorem

Suppose $q>27$. Then $w(\mathcal{C}) \geq q^{3}+q^{2}+q+1$.
Proof. Let $c \in \mathcal{C}$.
■ $c \cdot \mathbb{1} \equiv 0 \Longrightarrow w(c)>q^{3}+2 q^{2}+q+1$
$■ c \cdot \mathbb{1} \not \equiv 0 \Longrightarrow w(c) \geq q^{3}+q^{2}+q+1$

Code from intersecting lines in $\mathrm{PG}(3, q)$

$$
\text { Proof (continued). } c \cdot \mathbb{1} \equiv 0
$$

Code from intersecting lines in $\mathrm{PG}(3, q)$

Proof (continued). $c \cdot \mathbb{1} \equiv 0$
Let S be the set of lines in a plane π
$>c \cdot \chi_{S} \equiv 0$

Code from intersecting lines in $\operatorname{PG}(3, q)$

$$
\text { Proof (continued). } c \cdot \mathbb{1} \equiv 0
$$

Let S be the set of lines in a plane π
$>c \cdot \chi_{s} \equiv 0$
$>\left.c\right|_{S}$ is in the code from lines and points in π and $\left.c\right|_{S} \cdot \mathbb{1} \equiv 0$

Code from intersecting lines in $\operatorname{PG}(3, q)$

Proof (continued). $c \cdot \mathbb{1} \equiv 0$

Let S be the set of lines in a plane π
$>c \cdot \chi_{s} \equiv 0$
$>\left.c\right|_{S}$ is in the code from lines and points in π and $\left.c\right|_{S} \cdot \mathbb{1} \equiv 0$

Theorem (Szőnyi, Weiner, 2018)

Suppose $q>27$. Let $c \neq 0$ be a codeword of the code from lines and points in $\mathrm{PG}(2, q)$. Then one of the following holds:
$>w(c)=q+1$.
$>w(c)=2 q$.
$>w(c)=2 q+1$.
$>w(c) \geq 3 q-3$.

Code from intersecting lines in PG $(3, q)$

Proof (continued). $c \cdot \mathbb{1} \equiv 0$

Let S be the set of lines in a plane π
$>c \cdot \chi_{s} \equiv 0$
$>\left.c\right|_{S}$ is in the code from lines and points in π and $\left.c\right|_{S} \cdot \mathbb{1} \equiv 0$

Theorem (Szőnyi, Weiner, 2018)

Suppose $q>27$. Let $c \neq 0$ be a codeword of the code from lines and points in $\mathrm{PG}(2, q)$. Then one of the following holds:
$>w(c)=q+1 . \Longrightarrow c \cdot \mathbb{1} \not \equiv 0$
$>w(c)=2 q$.
$>w(c)=2 q+1 . \Longrightarrow c \cdot \mathbb{1} \not \equiv 0$
$>w(c) \geq 3 q-3$.

Code from intersecting lines in $\operatorname{PG}(3, q)$

Proof (continued). $c \cdot \mathbb{1} \equiv 0$

Let S be the set of lines in a plane π
$>c \cdot \chi_{S} \equiv 0$
$>\left.c\right|_{S}$ is in the code from lines and points in π and $\left.c\right|_{S} \cdot \mathbb{1} \equiv 0$
$>w\left(\left.c\right|_{S}\right)=0$ or $w\left(\left.c\right|_{S}\right)=2 q$ or $w\left(\left.c\right|_{S}\right) \geq 3 q-3$

Code from intersecting lines in PG $(3, q)$

Proof (continued). $c \cdot \mathbb{1} \equiv 0$

Let S be the set of lines in a plane π
$>c \cdot \chi_{S} \equiv 0$
$>\left.c\right|_{S}$ is in the code from lines and points in π and $\left.c\right|_{S} \cdot \mathbb{1} \equiv 0$
$>w(c \mid S)=0$ or $w\left(\left.c\right|_{S}\right)=2 q$ or $w(c \mid s) \geq 3 q-3$

$>$ Each plane contains $0,2 q$ or $\geq 3 q-3$ lines of $\operatorname{supp}(c)$.

Code from intersecting lines in $\mathrm{PG}(3, q)$

Proof (continued). $c \cdot \mathbb{1} \equiv 0$
Let S be the set of lines in a plane π
$>c \cdot \chi_{S} \equiv 0$
$>\left.c\right|_{S}$ is in the code from lines and points in π and $\left.c\right|_{S} \cdot \mathbb{1} \equiv 0$
$>w\left(\left.c\right|_{S}\right)=0$ or $w\left(\left.c\right|_{S}\right)=2 q$ or $w\left(\left.c\right|_{S}\right) \geq 3 q-3$

$>$ Each plane contains $0,2 q$ or $\geq 3 q-3$ lines of $\operatorname{supp}(c)$.
$>$ Dual: each point lies on $0,2 q$ or $\geq 3 q-3$ lines of $\operatorname{supp}(c)$.

Code from intersecting lines in $\operatorname{PG}(3, q)$

Proof (continued). $c \cdot \mathbb{1} \equiv 0$
Case 1: \exists plane containing $2 q$ lines of $\operatorname{supp}(c)$

Code from intersecting lines in $\operatorname{PG}(3, q)$

Proof (continued). $c \cdot \mathbb{1} \equiv 0$
Case 1: \exists plane containing $2 q$ lines of $\operatorname{supp}(c)$
$>$ at least $q^{2}(2 q-2)$ other lines in $\operatorname{supp}(c)$

Code from intersecting lines in $\operatorname{PG}(3, q)$

Proof (continued). $c \cdot \mathbb{1} \equiv 0$
Case 1: \exists plane containing $2 q$ lines of supp (c)
$>$ at least $q^{2}(2 q-2)$ other lines in $\operatorname{supp}(c)$

$>w(c) \geq q^{2}(2 q-2)>q^{3}+2 q^{2}+q+1$

Code from intersecting lines in $\operatorname{PG}(3, q)$

Proof (continued). $c \cdot \mathbb{1} \equiv 0$
Case 1: \exists plane containing $2 q$ lines of $\operatorname{supp}(c)$
$>$ at least $q^{2}(2 q-2)$ other lines in $\operatorname{supp}(c)$
$2 q$
$>w(c) \geq q^{2}(2 q-2)>q^{3}+2 q^{2}+q+1$
Case 2: \forall plane contains 0 or $\geq 3 q-3$ lines of $\operatorname{supp}(c)$

Code from intersecting lines in PG $(3, q)$

Proof (continued). $c \cdot \mathbb{1} \equiv 0$
Case 1: \exists plane containing $2 q$ lines of $\operatorname{supp}(c)$
$>$ at least $q^{2}(2 q-2)$ other lines in $\operatorname{supp}(c)$
$>w(c) \geq q^{2}(2 q-2)>q^{3}+2 q^{2}+q+1$

Case 2: \forall plane contains 0 or $\geq 3 q-3$ lines of $\operatorname{supp}(c)$
Theorem (Haemers, 1995)
A set S of lines in $\mathrm{PG}(2, q)$ covers at least $\frac{(q+1)^{2}|S|}{q+|S|}$ points.

Code from intersecting lines in $\operatorname{PG}(3, q)$

Proof (continued). $c \cdot \mathbb{1} \equiv 0$
Case 1: \exists plane containing $2 q$ lines of $\operatorname{supp}(c)$
$>$ at least $q^{2}(2 q-2)$ other lines in $\operatorname{supp}(c)$
$>w(c) \geq q^{2}(2 q-2)>q^{3}+2 q^{2}+q+1$

Case 2: \forall plane contains 0 or $\geq 3 q-3$ lines of $\operatorname{supp}(c)$

Theorem (Haemers, 1995)

A set S of lines in $\mathrm{PG}(2, q)$ covers at least $\frac{(q+1)^{2}|S|}{q+|S|}$ points.
$>\operatorname{supp}(c)$ covers at least $\frac{3}{4} q^{2}$ points of a plane

Code from intersecting lines in PG $(3, q)$

Proof (continued). $c \cdot \mathbb{1} \equiv 0$
Case 1: \exists plane containing $2 q$ lines of $\operatorname{supp}(c)$
$>$ at least $q^{2}(2 q-2)$ other lines in $\operatorname{supp}(c)$
$>w(c) \geq q^{2}(2 q-2)>q^{3}+2 q^{2}+q+1$

Case 2: \forall plane contains 0 or $\geq 3 q-3$ lines of $\operatorname{supp}(c)$

Theorem (Haemers, 1995)

A set S of lines in $\mathrm{PG}(2, q)$ covers at least $\frac{(q+1)^{2}|S|}{q+|S|}$ points.
$>\operatorname{supp}(c)$ covers at least $\frac{3}{4} q^{2}$ points of a plane
$>$ at least $\frac{3}{4} q^{2}(3 q-3-(q+1))$ lines in $\operatorname{supp}(c)$

Code from intersecting lines in PG $(3, q)$

Proof (continued). $c \cdot \mathbb{1} \equiv 0$
Case 1: \exists plane containing $2 q$ lines of $\operatorname{supp}(c)$
$>$ at least $q^{2}(2 q-2)$ other lines in $\operatorname{supp}(c)$
$>w(c) \geq q^{2}(2 q-2)>q^{3}+2 q^{2}+q+1$

Case 2: \forall plane contains 0 or $\geq 3 q-3$ lines of $\operatorname{supp}(c)$

Theorem (Haemers, 1995)

A set S of lines in $\mathrm{PG}(2, q)$ covers at least $\frac{(q+1)^{2}|S|}{q+|S|}$ points.
$>\operatorname{supp}(c)$ covers at least $\frac{3}{4} q^{2}$ points of a plane
$>$ at least $\frac{3}{4} q^{2}(3 q-3-(q+1))$ lines in $\operatorname{supp}(c)$
$>w(c)>q^{3}+2 q^{2}+q+1$

Code from intersecting lines in $\mathrm{PG}(3, q)$

GHENT

Proof (continued). $c \cdot \mathbb{1} \not \equiv 0$

Code from intersecting lines in $\mathrm{PG}(3, q)$

Proof (continued). $c \cdot \mathbb{1} \not \equiv 0$
Let S be the set of lines in a plane π
$>c \cdot \chi_{s} \not \equiv 0$

Code from intersecting lines in PG $(3, q)$

Proof (continued). $c \cdot \mathbb{1} \not \equiv 0$
Let S be the set of lines in a plane π
$>c \cdot \chi_{s} \not \equiv 0$
$>\left.c\right|_{S}$ is in the code from lines and points in π and $\left.c\right|_{S} \cdot \mathbb{1} \not \equiv 0$

Code from intersecting lines in $\operatorname{PG}(3, q)$

Proof (continued). $c \cdot \mathbb{1} \not \equiv 0$
Let S be the set of lines in a plane π
$>c \cdot \chi_{S} \not \equiv 0$
$>\left.c\right|_{S}$ is in the code from lines and points in π and $\left.c\right|_{S} \cdot \mathbb{1} \not \equiv 0$
$>w\left(\left.c\right|_{S}\right) \geq q+1$

Code from intersecting lines in $\operatorname{PG}(3, q)$

Proof (continued). $c \cdot \mathbb{1} \not \equiv 0$
Let S be the set of lines in a plane π
$>c \cdot \chi_{s} \not \equiv 0$
$>\left.c\right|_{S}$ is in the code from lines and points in π and $\left.c\right|_{S} \cdot \mathbb{1} \not \equiv 0$
$>w\left(\left.c\right|_{S}\right) \geq q+1$

Count pairs (ℓ, π) in two ways $\Longrightarrow w(c) \geq q^{3}+q^{2}+q+1$

Code from intersecting lines in PG $(3, q)$

Lemma

$w(c)=q^{3}+q^{2}+q+1 \Longrightarrow c$ is (a scalar multiple of) the characteristic function of the absolute lines of a symplectic polar space $W(3, q)$.

Code from intersecting lines in $\operatorname{PG}(3, q)$

Lemma

$w(c)=q^{3}+q^{2}+q+1 \Longrightarrow c$ is (a scalar multiple of) the characteristic function of the absolute lines of a symplectic polar space $W(3, q)$.

Proof idea.
$>$ each plane π contains $q+1$ lines of $\operatorname{supp}(c)$ through a point $P(\pi)$

$>\pi \mapsto P(\pi)$ is the desired symplectic polarity

Code from intersecting lines in $\operatorname{PG}(3, q)$

Lemma

The characteristic function of the absolute lines of a symplectic space $W(3, q)$ is in the code of intersecting lines in $\mathrm{PG}(3, q) \Longleftrightarrow q$ is even.

Code from intersecting lines in $\mathrm{PG}(3, q)$

Lemma

The characteristic function of the absolute lines of a symplectic space $W(3, q)$ is in the code of intersecting lines in $\mathrm{PG}(3, q) \Longleftrightarrow q$ is even.

Theorem

Suppose $q>27$.
>If q is even, then the minimum weight of \mathcal{C} is $q^{3}+q^{2}+q+1$. Minimum weight codewords are (scalar multiples of) the characteristic functions of the absolute lines of a symplectic polar space $W(3, q)$.
$>$ If q is odd, then the minimum weight of \mathcal{C} is strictly greater than $q^{3}+q^{2}+q+1$.

What about odd q ?

쿨

Recall:
$>c \cdot \mathbb{1} \equiv 0 \Longrightarrow w(c)>q^{3}+2 q^{2}+q+1$

What about odd q ?

808
808
UPC

Recall:
$>c \cdot \mathbb{1} \equiv 0 \Longrightarrow w(c)>q^{3}+2 q^{2}+q+1$

has weight $q^{3}+2 q^{2}+q+1$

Recall:
$>c \cdot \mathbb{1} \equiv 0 \Longrightarrow w(c)>q^{3}+2 q^{2}+q+1$

has weight $q^{3}+2 q^{2}+q+1$
$\Longrightarrow c \cdot \mathbb{1} \not \equiv 0$ is the only interesting case

What about odd q ?

$$
c \cdot \mathbb{1} \not \equiv 0
$$

$>$ each plane pencil contains a line of $\operatorname{supp}(c)$

$$
c \cdot \mathbb{1} \not \equiv 0
$$

$>$ each plane pencil contains a line of $\operatorname{supp}(c)$

Klein correspondence

$$
\mathrm{PG}(3, q) \quad \longleftrightarrow \quad Q^{+}(5, q)
$$

$$
c \cdot \mathbb{1} \not \equiv 0
$$

$>$ each plane pencil contains a line of $\operatorname{supp}(c)$

Klein correspondence $\operatorname{PG}(3, q) \quad \longleftrightarrow \quad Q^{+}(5, q)$
line

point

$$
c \cdot \mathbb{1} \not \equiv 0
$$

$>$ each plane pencil contains a line of $\operatorname{supp}(c)$

Klein correspondence $\operatorname{PG}(3, q) \quad \longleftrightarrow \quad Q^{+}(5, q)$
line
point inctersecting lines collinear points

$$
c \cdot \mathbb{1} \not \equiv 0
$$

$>$ each plane pencil contains a line of $\operatorname{supp}(c)$

Klein correspondence

$$
\operatorname{PG}(3, q) \quad \longleftrightarrow \quad Q^{+}(5, q)
$$

line inctersecting lines plane pencil
point
collinear points
line

$$
c \cdot \mathbb{1} \not \equiv 0
$$

$>$ each plane pencil contains a line of $\operatorname{supp}(c)$

Klein correspondence

$$
\mathrm{PG}(3, q) \quad \longleftrightarrow \quad Q^{+}(5, q)
$$

line inctersecting lines plane pencil

point
collinear points
line
$>$ blocking set of $Q^{+}(5, q)$

Theorem (Metsch, 2000)

A blocking set of $Q^{+}(5, q)$ with at most $q^{3}+2 q^{2}+q$ points contains a blocking set that is contained in a hyperplane.

What about odd q ?

Theorem (Metsch, 2000)

A blocking set of $Q^{+}(5, q)$ with at most $q^{3}+2 q^{2}+q$ points contains a blocking set that is contained in a hyperplane.

What about odd q ?

Theorem (Metsch, 2000)

A blocking set of $Q^{+}(5, q)$ with at most $q^{3}+2 q^{2}+q$ points contains a blocking set that is contained in a hyperplane.

$Q(4, q)$

$p Q^{+}(3, q)$

What about odd q ?

Theorem (Metsch, 2000)

A blocking set of $Q^{+}(5, q)$ with at most $q^{3}+2 q^{2}+q$ points contains a blocking set that is contained in a hyperplane.

$Q(4, q)$

$$
p Q^{+}(3, q) \backslash\{p\}
$$

What about odd q ?

Theorem (Metsch, 2000)

A blocking set of $Q^{+}(5, q)$ with at most $q^{3}+2 q^{2}+q$ points contains a blocking set that is contained in a hyperplane.

What about odd q ?

Theorem

Suppose $q>27$.
>If q is even, then the minimum weight of \mathcal{C} is $q^{3}+q^{2}+q+1$. Minimum weight codewords are (scalar multiples of) the characteristic functions of the absolute lines of a symplectic polar space $W(3, q)$. The second smallest codewords have weight $q^{3}+2 q^{2}+q+1$.
$>$ If q is odd, then the minimum weight of \mathcal{C} is strictly greater than $q^{3}+q^{2}+q+1$.

What about odd q ?

Theorem

Suppose $q>27$.
$>$ If q is even, then the minimum weight of \mathcal{C} is $q^{3}+q^{2}+q+1$. Minimum weight codewords are (scalar multiples of) the characteristic functions of the absolute lines of a symplectic polar space $W(3, q)$. The second smallest codewords have weight $q^{3}+2 q^{2}+q+1$. Are they (scalar multiples of) characteristic vectors of lines intersecting a given line?
$>$ If q is odd, then the minimum weight of \mathcal{C} is strictly greater than $q^{3}+q^{2}+q+1$. Is it equal to $q^{3}+2 q^{2}+q+1$? Are the minimum weight codewords (scalar multiples of) characteristic vectors of lines intersecting a given line?

Thank you for listening!

