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m-regular systems
Finite classical polar spaces

Let P be a finite classical polar space. Hence P is a member of
one of the following classes: a symplectic space W (2n + 1, q), a
parabolic quadric Q(2n, q), an hyperbolic quadric Q+(2n + 1, q),
an elliptic quadric Q−(2n + 1, q) or an Hermitian variety H(n, q)
(q a square). A projective subspace of maximal dimension
contained in P is called a generator of P. The vector dimension of
a generator of P is called the rank of P. Pd ,e will denote a polar
space of rank d ≥ 2 as follows:

Pd,e Q+(2d − 1, q) H(2d − 1, q) W (2d − 1, q) Q(2d, q) H(2d, q) Q−(2d + 1, q)

e 0 1/2 1 1 3/2 2

MPd,e
will denote the set of generators of the polar space Pd ,e ,

while |MPd−k,e
| will denote the number of generators passing

through a (k − 1)-space.
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m-regular systems
Historical background

Definition

An m-regular system on a polar space Pd ,e is a set R of generators
such that every point of Pd ,e lies on exactly m generators in R,
0 ≤ m ≤ |MPd−1,e

|.

m-regular systems were introduced on Hermitian varieties in 1965
by Beniamino Segre in Forme e geometrie hermitiane, con
particolare riguardo al caso finito. In that article Segre proved the
following theorem on Hermitian surfaces H(3, q2), whose
generators are lines, and each point lies on n = q + 1 of them.

Theorem (Segre’s Theorem)

Let H = H(3, q2) be an Hermitian surface. If q is odd, all the
m-regular systems on H are hemistystems, i.e. m = n

2 = q+1
2 .
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m-regular systems
Known facts on regular systems

Proposition

Let A and B be an m-regular system and an m′-regular system of
Pd ,e , respectively, then:

1 |A| = m(qd+e−1 + 1), |B| = m′(qd+e−1 + 1);

2 MPd,e
\ A is also a m̃-regular system, m̃ = |MPd−1,e

| −m
(and analogously for B);

3 if A ⊆ B, then B \ A is an (m′ −m)-regular system;

4 if A and B are disjoint, then A ∪ B is an (m +m′)-regular
system;

5 the empty set and MPd,e
are trivial examples of regular

systems, m = 0, |MPd−1,e
|, respectively.
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m-regular systems arising from field reduction
Field reduction map

Let K = GF (q) and L = GF (q2). All elements of L are seen as
2-dimensional vectors over K . Taking ω ∈ L \ K , the set {1, ω} is
a basis of L over K , and for λ ∈ L:

λ = λ1 + ωλ2

with λ1, λ2 ∈ K .
The image under the field reduction map ϕ of an r -dimensional
vector space over GF (q2) is a 2r -dimensional vector space over
GF (q), and the image of a projective space PG (r − 1, q2) is the
projective space PG (2r − 1, q).
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m-regular systems arising from field reduction
Group embedding

Theorem

In odd characteristic, via field reduction we get:

1 from an Hermitian variety H(2n− 1, q2) an hyperbolic quadric
Q+(4n − 1, q);

2 from an Hermitian variety H(2n, q2) an elliptic quadric
Q−(4n + 1, q).

Moreover, we can define the following group inclusions:

1 PGU(2n, q) ≤ PGO+(4n, q);

2 PGU(2n + 1, q) ≤ PGO−(4n + 2, q).
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m-regular systems arising from field reduction
Group embedding

The image under the field reduction map ϕ of an unitary
transformation M = (aij) ∈ GU(2n, q), is represented by the matrix

M = (Aij) =

(
bij αcij
cij bij + cij

)
∈ ϕ[GU(2n, q)] ≤ GO+(4n, q),

where aij = bij + ωcij and ω2 = ω + α, α ∈ GF (q).
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m-regular systems arising from field reduction
Orbits on generators of hyperbolic quadrics

Theorem

The group ϕ[PGU(2n, q)] ≤ PGO+(4n, q) has n + 1 orbits, say
On,i , 0 ≤ i ≤ n, on generators of Q+(4n − 1, q), where

|On,0| = qn
2−n

n∏
j=1

(q2j−1 + 1), |On,n| =
n∏

j=1

(q2j−1 + 1),

|On,i | = q(n−i)(n−i−1)

∏n
j=n−i+1(q

2j − 1)∏i
j=1(q

2j − 1)

n∏
j=1

(q2j−1 + 1),

1 ≤ i ≤ n − 1.
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m-regular systems arising from field reduction
Orbits on generators of elliptic quadrics

Theorem

The group ϕ[PGU(2n + 1, q2)] ≤ PGO−(4n + 2, q) has n + 1

orbits, say Õn,i , 0 ≤ i ≤ n, on generators of Q−(4n + 1, q), where

|On,0| = qn
2+n

n+1∏
j=2

(q2j−1 + 1), |On,n| =
n+1∏
j=2

(q2j−1 + 1),

|On,i | = q(n−i)(n−i+1)

∏n
j=n−i+1(q

2j − 1)∏i
j=1(q

2j − 1)

n+1∏
j=2

(q2j−1 + 1),

1 ≤ i ≤ n − 1.
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m-regular systems arising from field reduction

Theorem

If G is a group of collineations of P acting transitively on points of
P and O is an orbit on the generators of P under the action of G ,
then through each point of P there will be a constant number of
elements of O, i.e., O is a regular system of P.

Corollary

Each one of the n+1 orbits On,i , 0 ≤ i ≤ n, of Q+(4n− 1, q); and

each one of the n+ 1 orbits Õn,i , 0 ≤ i ≤ n, of Q−(4n+ 1, q), is a
regular system of the related quadric.
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Hemisystems of elliptic quadrics

We now provide a costruction of hemisystems of the elliptic
quadrics Q−(2n + 1, q), q odd, by partitioning the generators into
generators of an hyperbolic section Q+(2n − 1, q).

Proposition

Let L be a set of (qn+1)(qn+1+1)
2(q+1) lines external to Q−(2n + 1, q)

such that

|⟨r , r ′⟩ ∩ Q−(2n + 1, q)| ≠

{
1 if |r ∩ r ′| = 1,

q + 1 if |r ∩ r ′| = 0,

for each r , r ′ ∈ L, r ̸= r ′. Then there exists a partition of the
generators of Q−(2n + 1, q) into generators of a Q+(2n − 1, q).
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Hemisystems of elliptic quadrics

Theorem

Let P be a partition of the generators of the elliptic quadric
Q−(2n + 1, q), n ≥ 2, into generators of hyperbolic quadrics
Q+(2n − 1, q) embedded in Q−(2n + 1, q). Then q is odd and

2
(qn+1)(qn+1+1)

2(q+1) hemisystems of Q−(2n + 1, q) arise, by taking one
family from each of the Latin and Greek pairs in P, and forming
the union of these generators.
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m-regular systems arising from k-systems
k-systems

Definition

A k-system of a polar space P of rank d , 1 ≤ k ≤ d − 2, is a set
of k-spaces Πi such that no generator containing Πj has point in
common with

⋃
i ̸=j Πi .

Let S be a k-system of Pd ,e and let G be the set of generators of
Pd ,e containing an element of S.

Lemma

The set G is a |MPd−k−1,e
|-regular system of Pd ,e .
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m-regular systems arising from k-systems
Construction on Q(6, 3)

Let be Q(6, 3) the parabolic quadric of equation

x21 + x22 + x23 + x24 + x25 + x26 + x27 = 0. (1)

From the previous theorem, finding a 1-system of Q(6, 3) we get
also a regular system of the quadric.
The set of the 7 internal points {P1,P2, . . . ,P7} =

= {(1 : 0 : . . . : 0), (0 : 1 : . . . : 0), . . . , (0 : 0 : . . . : 1)}

is a self-polar simplex, i.e. ∀j : Pj = {Pi |i ̸= j}⊥.
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m-regular systems arising from k-systems
Construction on Q(6, 3)

Construction

Let π = ⟨P1,P2,P3⟩, and consider the following lines:
r1 = ⟨P1,P2⟩, r2 = ⟨P2,P3⟩, r3 = ⟨P1,P3⟩,
l1 = ⟨P4,P5⟩, l ′1 = ⟨P6,P7⟩, l2 = ⟨P4,P7⟩,
l ′2 = ⟨P5,P6⟩, l3 = ⟨P4,P6⟩, l ′3 = ⟨P5,P7⟩.
Let φ be a permutation of {1, 2, 3}.
Let Ri be one of the two reguli of the hyperbolic quadric
⟨ri , lφ(i)⟩ ∩ Q(6, 3),
R′

i be one of the two reguli of the hyperbolic quadric
⟨ri , l ′φ(i)⟩ ∩ Q(6, 3) and

R be one of the two reguli of the hyperbolic quadric π⊥ ∩ Q(6, 3).
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m-regular systems arising from k-systems
Construction on Q(6, 3)

Proposition

The set S = R∪
(⋃3

i=1(Ri ∪R′
i )
)
is a 1-system of the quadric

Q(6, 3).

Then the set of generators containing one line of S is a 4-regular
system of Q(6, 3).

Let S0 = R0 ∪
(⋃3

i=1(R0
i ∪R′0

i )
)
be the 1-system obtained using

the opposite regulus R0, R0
i and R′0

i of R, Ri and R′
i ,

respectively. Then the set of generators containing one line of
S ∪ S0 is an 8-regular system of Q(6, 3).
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m-regular systems w.r.t. (k − 1)-spaces of Pd ,e
Association schemes

Definition

Considered a set finite set A a (symmetric) association scheme is a
partition of the Cartesian product A× A into d + 1 associate
classes C0,C1, . . . ,Cd such that:

1 C0 = Diag(A) = {(α, α)|α ∈ A};
2 for all i in {0, 1, . . . , d}, Ci is symmetric, i.e. (α, β) ∈ Ci if

and only if (β, α) ∈ Ci ;

3 for all i , j , k in {0, 1, . . . , d} there exists an integer pkij such
that, for all (α, β) ∈ Ck :
|{γ ∈ A|(α, γ) ∈ Ci ∧ (γ, β) ∈ Cj}| = pkij .
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m-regular systems w.r.t. (k − 1)-spaces of Pd ,e
Distance regular graphs

Consider a graph G = (V (G ),E (G )). Let
Gi = {(x , y) ∈ (V (G )× V (G ))|d(x , y) = i}.

Definition

A graph is called distance regular if, for any two vertices v and w ,
the number of vertices u at distance j from u and distance k from
w depends only to j , k and i = d(v ,w).

Definition

A graph is distance regular if G0,G1, . . . ,Gd form an association
scheme on V (G ).
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m-regular systems w.r.t. (k − 1)-spaces of Pd ,e
Dual polar graph

Definition

The dual polar graph DPd,e
of Pd ,e , is the graph that has as

vertex set MPd,e
, and in which two vertices x and y are

adjacent if x ∩ y is a (d − 2)-space of Pd ,e .

The i-th distance graph Di
Pd,e

of Pd ,e , is the graph that has
as vertex set MPd,e

, and in which two vertices x and y are
adjacent if x ∩ y is a (d − 1− i)-space of Pd ,e .

Definition

An m-regular system w.r.t. (k − 1)-spaces on a polar space Pd ,e of
rank d is a set R of generators such that every (k − 1)-space of
Pd ,e lies on exactly m generators in R, 0 ≤ m ≤ |MPd−k,e

|.



Table of contents m-regular systems m-regular systems arising from field reduction Hemisystems of elliptic quadrics m-regular systems arising from k-systems m-regular systems w.r.t. (k − 1)-spaces of Pd,e

m-regular systems w.r.t. (k − 1)-spaces of Pd ,e
Eigenvalues of the dual polar graph

Theorem (F. Vanhove)

Di
Pd,e

has the following d + 1 eigenvalues, 0 ≤ j ≤ d :

∑
max(0,j−i)≤u≤min(d−i,j)

(−1)j+u

[
d − j

d − i − u

]
q

[
j
u

]
q

q
(u+i−j)(u+i−j+2e−1)

2
+

(j−u)(j−u−1)
2 .

(2)
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m-regular systems w.r.t. (k − 1)-spaces of Pd ,e
Hoffman’s ratio bound

Theorem (Hoffman’s ratio bound)

Let G be a k-regular graph with vertex set V (G ), largest and
smallest eigenvalues k and λ, respectively, and independence
number α(G ). Then

α(G ) ≤ −|V (G )|λ
k − λ

. (3)

Corollary

α(Di
Pd,e

) ≤ −
|MPd,e

|λi

ki−λi
, ki and λi from Equation (2).
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m-regular systems w.r.t. (k − 1)-spaces of Pd ,e
Non-existence results for 1-regular systems

We study the cases when R is a 1-regular system of a polar space
with rank 4 or 5.

Theorem

The polar spaces Q+(7, q), H(7, q), W (7, q), Q(8, q), H(8, q),
Q−(9, q) do not have a 1-regular system w.r.t. lines. The polar
spaces Q+(9, q), H(9, q), W (9, q), Q(10, q), H(10, q), Q−(11, q)
do not have a 1-regular system w.r.t. planes.

Problem

Find the smallest eigienvalue of Di
Pd,e

.



Table of contents m-regular systems m-regular systems arising from field reduction Hemisystems of elliptic quadrics m-regular systems arising from k-systems m-regular systems w.r.t. (k − 1)-spaces of Pd,e


	Table of contents
	m-regular systems
	m-regular systems arising from field reduction
	Hemisystems of elliptic quadrics
	m-regular systems arising from k-systems
	m-regular systems w.r.t. (k-1)-spaces of Pd,e

