On regular systems of finite classical polar spaces

Valentino Smaldore

Università degli Studi di Padova

Rijeka Conference on Combinatorial Objects and Their Applications

joint work with A. Cossidente, G. Marino and F. Pavese

July 3, 2023
(1) m-regular systems
(2) m-regular systems arising from field reduction
(3) Hemisystems of elliptic quadrics
(4) m-regular systems arising from k-systems
(5) m-regular systems w.r.t. $(k-1)$-spaces of $\mathcal{P}_{d, e}$

m-regular systems

Finite classical polar spaces

Let \mathcal{P} be a finite classical polar space. Hence \mathcal{P} is a member of one of the following classes: a symplectic space $W(2 n+1, q)$, a parabolic quadric $Q(2 n, q)$, an hyperbolic quadric $Q^{+}(2 n+1, q)$, an elliptic quadric $Q^{-}(2 n+1, q)$ or an Hermitian variety $H(n, q)$ (q a square). A projective subspace of maximal dimension contained in \mathcal{P} is called a generator of \mathcal{P}. The vector dimension of a generator of \mathcal{P} is called the rank of \mathcal{P}. $\mathcal{P}_{d, e}$ will denote a polar space of rank $d \geq 2$ as follows:

$\mathcal{P}_{d, e}$	$Q^{+}(2 d-1, q)$	$H(2 d-1, q)$	$W(2 d-1, q)$	$Q(2 d, q)$	$H(2 d, q)$	$Q^{-}(2 d+1, q)$
e	0	$1 / 2$	1	1	$3 / 2$	2

$\mathcal{M}_{\mathcal{P}_{d, e}}$ will denote the set of generators of the polar space $\mathcal{P}_{d, e}$, while $\left|\mathcal{M}_{\mathcal{P}_{d-k, e} \mid}\right|$ will denote the number of generators passing through a ($k-1$)-space.

m-regular systems

Historical background

Definition

An m-regular system on a polar space $\mathcal{P}_{d, e}$ is a set \mathcal{R} of generators such that every point of $\mathcal{P}_{d, e}$ lies on exactly m generators in \mathcal{R}, $0 \leq m \leq\left|\mathcal{M}_{\mathcal{P}_{d-1, e}}\right|$.
m-regular systems were introduced on Hermitian varieties in 1965 by Beniamino Segre in Forme e geometrie hermitiane, con particolare riguardo al caso finito. In that article Segre proved the following theorem on Hermitian surfaces $H\left(3, q^{2}\right)$, whose generators are lines, and each point lies on $n=q+1$ of them.

Theorem (Segre's Theorem)

Let $\mathcal{H}=H\left(3, q^{2}\right)$ be an Hermitian surface. If q is odd, all the m-regular systems on \mathcal{H} are hemistystems, i.e. $m=\frac{n}{2}=\frac{q+1}{2}$.

m-regular systems

Known facts on regular systems

Proposition

Let \mathcal{A} and \mathcal{B} be an m-regular system and an m^{\prime}-regular system of $\mathcal{P}_{d, e}$, respectively, then:
(1) $|\mathcal{A}|=m\left(q^{d+e-1}+1\right),|\mathcal{B}|=m^{\prime}\left(q^{d+e-1}+1\right)$;
(2) $\mathcal{M}_{\mathcal{P}_{d, e}} \backslash \mathcal{A}$ is also a \widetilde{m}-regular system, $\widetilde{m}=\left|\mathcal{M}_{\mathcal{P}_{d-1, e}}\right|-m$ (and analogously for \mathcal{B});
(3) if $\mathcal{A} \subseteq \mathcal{B}$, then $\mathcal{B} \backslash \mathcal{A}$ is an $\left(m^{\prime}-m\right)$-regular system;
(1) if \mathcal{A} and \mathcal{B} are disjoint, then $\mathcal{A} \cup \mathcal{B}$ is an $\left(m+m^{\prime}\right)$-regular system;
(5) the empty set and $\mathcal{M}_{\mathcal{P}_{d, e}}$ are trivial examples of regular systems, $m=0,\left|\mathcal{M}_{\mathcal{P}_{d-1, e}}\right|$, respectively.

m-regular systems arising from field reduction

Field reduction map

Let $K=G F(q)$ and $L=G F\left(q^{2}\right)$. All elements of L are seen as 2-dimensional vectors over K. Taking $\omega \in L \backslash K$, the set $\{1, \omega\}$ is a basis of L over K, and for $\lambda \in L$:

$$
\lambda=\lambda_{1}+\omega \lambda_{2}
$$

with $\lambda_{1}, \lambda_{2} \in K$.
The image under the field reduction map ϕ of an r-dimensional vector space over $G F\left(q^{2}\right)$ is a $2 r$-dimensional vector space over $G F(q)$, and the image of a projective space $P G\left(r-1, q^{2}\right)$ is the projective space $P G(2 r-1, q)$.

m-regular systems arising from field reduction Group embedding

Theorem

In odd characteristic, via field reduction we get:
(1) from an Hermitian variety $H\left(2 n-1, q^{2}\right)$ an hyperbolic quadric $Q^{+}(4 n-1, q) ;$
(2) from an Hermitian variety $H\left(2 n, q^{2}\right)$ an elliptic quadric $Q^{-}(4 n+1, q)$.
Moreover, we can define the following group inclusions:
(1) $P G U(2 n, q) \leq P G O^{+}(4 n, q)$;
(2) $P G U(2 n+1, q) \leq P G O^{-}(4 n+2, q)$.

m-regular systems arising from field reduction Group embedding

The image under the field reduction map ϕ of an unitary transformation $M=\left(a_{i j}\right) \in G U(2 n, q)$, is represented by the matrix

$$
\bar{M}=\left(A_{i j}\right)=\left(\begin{array}{cc}
b_{i j} & \alpha c_{i j} \\
c_{i j} & b_{i j}+c_{i j}
\end{array}\right) \in \phi[G U(2 n, q)] \leq G O^{+}(4 n, q),
$$

where $a_{i j}=b_{i j}+\omega c_{i j}$ and $\omega^{2}=\omega+\alpha, \alpha \in G F(q)$.

m-regular systems arising from field reduction

Orbits on generators of hyperbolic quadrics

Theorem

The group $\phi[P G U(2 n, q)] \leq P G O^{+}(4 n, q)$ has $n+1$ orbits, say $O_{n, i}, 0 \leq i \leq n$, on generators of $Q^{+}(4 n-1, q)$, where

$$
\begin{gathered}
\left|O_{n, 0}\right|=q^{n^{2}-n} \prod_{j=1}^{n}\left(q^{2 j-1}+1\right), \quad\left|O_{n, n}\right|=\prod_{j=1}^{n}\left(q^{2 j-1}+1\right) \\
\left|O_{n, i}\right|=q^{(n-i)(n-i-1)} \frac{\prod_{j=n-i+1}^{n}\left(q^{2 j}-1\right)}{\prod_{j=1}^{i}\left(q^{2 j}-1\right)} \prod_{j=1}^{n}\left(q^{2 j-1}+1\right) \\
1 \leq i \leq n-1
\end{gathered}
$$

m-regular systems arising from field reduction

Orbits on generators of elliptic quadrics

Theorem

The group $\phi\left[P G U\left(2 n+1, q^{2}\right)\right] \leq P G O^{-}(4 n+2, q)$ has $n+1$ orbits, say $\widetilde{O_{n, i}}, 0 \leq i \leq n$, on generators of $Q^{-}(4 n+1, q)$, where

$$
\begin{gathered}
\left|O_{n, 0}\right|=q^{n^{2}+n} \prod_{j=2}^{n+1}\left(q^{2 j-1}+1\right), \quad\left|O_{n, n}\right|=\prod_{j=2}^{n+1}\left(q^{2 j-1}+1\right) \\
\left|O_{n, i}\right|=q^{(n-i)(n-i+1)} \frac{\prod_{j=n-i+1}^{n}\left(q^{2 j}-1\right)}{\prod_{j=1}^{i}\left(q^{2 j}-1\right)} \prod_{j=2}^{n+1}\left(q^{2 j-1}+1\right) \\
1 \leq i \leq n-1 .
\end{gathered}
$$

m-regular systems arising from field reduction

Theorem

If G is a group of collineations of \mathcal{P} acting transitively on points of \mathcal{P} and O is an orbit on the generators of \mathcal{P} under the action of G, then through each point of \mathcal{P} there will be a constant number of elements of O, i.e., O is a regular system of \mathcal{P}.

Corollary

Each one of the $n+1$ orbits $O_{n, i}, 0 \leq i \leq n$, of $Q^{+}(4 n-1, q)$; and each one of the $n+1$ orbits $\widetilde{O_{n, i}}, 0 \leq i \leq n$, of $Q^{-}(4 n+1, q)$, is a regular system of the related quadric.

Hemisystems of elliptic quadrics

We now provide a costruction of hemisystems of the elliptic quadrics $Q^{-}(2 n+1, q)$, q odd, by partitioning the generators into generators of an hyperbolic section $Q^{+}(2 n-1, q)$.

Proposition

Let \mathcal{L} be a set of $\frac{\left(q^{n}+1\right)\left(q^{n+1}+1\right)}{2(q+1)}$ lines external to $Q^{-}(2 n+1, q)$ such that

$$
\left|\left\langle r, r^{\prime}\right\rangle \cap Q^{-}(2 n+1, q)\right| \neq \begin{cases}1 & \text { if }\left|r \cap r^{\prime}\right|=1 \\ q+1 & \text { if }\left|r \cap r^{\prime}\right|=0\end{cases}
$$

for each $r, r^{\prime} \in \mathcal{L}, r \neq r^{\prime}$. Then there exists a partition of the generators of $Q^{-}(2 n+1, q)$ into generators of a $Q^{+}(2 n-1, q)$.

Hemisystems of elliptic quadrics

Theorem

Let \mathcal{P} be a partition of the generators of the elliptic quadric $Q^{-}(2 n+1, q), n \geq 2$, into generators of hyperbolic quadrics $Q^{+}(2 n-1, q)$ embedded in $Q^{-}(2 n+1, q)$. Then q is odd and $2^{\frac{\left(q^{n}+1\right)\left(q^{n+1}+1\right)}{2(q+1)}}$ family from each of the Latin and Greek pairs in \mathcal{P}, and forming the union of these generators.

m－regular systems arising from k－systems k－systems

Definition

A k－system of a polar space \mathcal{P} of rank $d, 1 \leq k \leq d-2$ ，is a set of k－spaces Π_{i} such that no generator containing Π_{j} has point in common with $\bigcup_{i \neq j} \Pi_{i}$ ．

Let \mathcal{S} be a k－system of $\mathcal{P}_{d, e}$ and let \mathcal{G} be the set of generators of $\mathcal{P}_{d, e}$ containing an element of \mathcal{S} ．

Lemma

The set \mathcal{G} is a $\left|\mathcal{M}_{\mathcal{P}_{d-k-1, e}}\right|$－regular system of $\mathcal{P}_{d, e}$ ．

m-regular systems arising from k-systems

Construction on $Q(6,3)$

Let be $Q(6,3)$ the parabolic quadric of equation

$$
\begin{equation*}
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}+x_{5}^{2}+x_{6}^{2}+x_{7}^{2}=0 \tag{1}
\end{equation*}
$$

From the previous theorem, finding a 1 -system of $Q(6,3)$ we get also a regular system of the quadric.
The set of the 7 internal points $\left\{P_{1}, P_{2}, \ldots, P_{7}\right\}=$

$$
=\{(1: 0: \ldots: 0),(0: 1: \ldots: 0), \ldots,(0: 0: \ldots: 1)\}
$$

is a self-polar simplex, i.e. $\forall j: P_{j}=\left\{P_{i} \mid i \neq j\right\}^{\perp}$.

m－regular systems arising from k－systems

Construction on $Q(6,3)$

Construction

Let $\pi=\left\langle P_{1}, P_{2}, P_{3}\right\rangle$ ，and consider the following lines：
$r_{1}=\left\langle P_{1}, P_{2}\right\rangle, r_{2}=\left\langle P_{2}, P_{3}\right\rangle, r_{3}=\left\langle P_{1}, P_{3}\right\rangle$,
$I_{1}=\left\langle P_{4}, P_{5}\right\rangle, I_{1}^{\prime}=\left\langle P_{6}, P_{7}\right\rangle, I_{2}=\left\langle P_{4}, P_{7}\right\rangle$,
$I_{2}^{\prime}=\left\langle P_{5}, P_{6}\right\rangle, I_{3}=\left\langle P_{4}, P_{6}\right\rangle, I_{3}^{\prime}=\left\langle P_{5}, P_{7}\right\rangle$ ．
Let φ be a permutation of $\{1,2,3\}$ ．
Let \mathcal{R}_{i} be one of the two reguli of the hyperbolic quadric $\left\langle r_{i}, I_{\varphi(i)}\right\rangle \cap Q(6,3)$ ，
\mathcal{R}_{i}^{\prime} be one of the two reguli of the hyperbolic quadric
$\left\langle r_{i}, l_{\varphi(i)}^{\prime}\right\rangle \cap Q(6,3)$ and
\mathcal{R} be one of the two reguli of the hyperbolic quadric $\pi^{\perp} \cap Q(6,3)$ ．

m-regular systems arising from k-systems

Construction on $Q(6,3)$

Proposition

The set $\mathcal{S}=\mathcal{R} \cup\left(\bigcup_{i=1}^{3}\left(\mathcal{R}_{i} \cup \mathcal{R}_{i}^{\prime}\right)\right)$ is a 1-system of the quadric $Q(6,3)$.

Then the set of generators containing one line of \mathcal{S} is a 4-regular system of $Q(6,3)$.
Let $\mathcal{S}^{0}=\mathcal{R}^{0} \cup\left(\bigcup_{i=1}^{3}\left(\mathcal{R}_{i}^{0} \cup \mathcal{R}_{i}^{\prime 0}\right)\right)$ be the 1-system obtained using the opposite regulus $\mathcal{R}^{0}, \mathcal{R}_{i}^{0}$ and $\mathcal{R}_{i}^{\prime 0}$ of $\mathcal{R}, \mathcal{R}_{i}$ and \mathcal{R}_{i}^{\prime}, respectively. Then the set of generators containing one line of $\mathcal{S} \cup \mathcal{S}^{0}$ is an 8 -regular system of $Q(6,3)$.

m-regular systems w.r.t. $(k-1)$-spaces of $\mathcal{P}_{d, e}$

 Association schemes
Definition

Considered a set finite set A a (symmetric) association scheme is a partition of the Cartesian product $A \times A$ into $d+1$ associate classes $C_{0}, C_{1}, \ldots, C_{d}$ such that:
(1) $C_{0}=\operatorname{Diag}(A)=\{(\alpha, \alpha) \mid \alpha \in A\}$;
(2) for all i in $\{0,1, \ldots, d\}, C_{i}$ is symmetric, i.e. $(\alpha, \beta) \in C_{i}$ if and only if $(\beta, \alpha) \in C_{i}$;
(3) for all i, j, k in $\{0,1, \ldots, d\}$ there exists an integer $p_{i j}^{k}$ such that, for all $(\alpha, \beta) \in C_{k}$:

$$
\left|\left\{\gamma \in A \mid(\alpha, \gamma) \in C_{i} \wedge(\gamma, \beta) \in C_{j}\right\}\right|=p_{i j}^{k}
$$

m-regular systems w.r.t. $(k-1)$-spaces of $\mathcal{P}_{d, e}$

Distance regular graphs

Consider a graph $G=(V(G), E(G))$. Let

$$
G_{i}=\{(x, y) \in(V(G) \times V(G)) \mid d(x, y)=i\} .
$$

Definition

A graph is called distance regular if, for any two vertices v and w, the number of vertices u at distance j from u and distance k from w depends only to j, k and $i=d(v, w)$.

Definition

A graph is distance regular if $G_{0}, G_{1}, \ldots, G_{d}$ form an association scheme on $V(G)$.

m-regular systems w.r.t. $(k-1)$-spaces of $\mathcal{P}_{d, e}$

Dual polar graph

Definition

- The dual polar graph $\mathcal{D}_{\mathcal{P}_{d, e}}$ of $\mathcal{P}_{d, e}$, is the graph that has as vertex set $\mathcal{M}_{\mathcal{P}_{d, e}}$, and in which two vertices x and y are adjacent if $x \cap y$ is a $(d-2)$-space of $\mathcal{P}_{d, e}$.
- The i-th distance graph $\mathcal{D}_{\mathcal{P}_{d, e}}^{i}$ of $\mathcal{P}_{d, e}$, is the graph that has as vertex set $\mathcal{M}_{\mathcal{P}_{d, e}}$, and in which two vertices x and y are adjacent if $x \cap y$ is a $(d-1-i)$-space of $\mathcal{P}_{d, e}$.

Definition

An m-regular system w.r.t. $(k-1)$-spaces on a polar space $\mathcal{P}_{d, e}$ of rank d is a set \mathcal{R} of generators such that every $(k-1)$-space of $\mathcal{P}_{d, e}$ lies on exactly m generators in $\mathcal{R}, 0 \leq m \leq\left|\mathcal{M}_{\mathcal{P}_{d-k, e}}\right|$.

m-regular systems w.r.t. $(k-1)$-spaces of $\mathcal{P}_{d, e}$

 Eigenvalues of the dual polar graph
Theorem (F. Vanhove)

$\mathcal{D}_{\mathcal{P}_{d, e}}^{i}$ has the following $d+1$ eigenvalues, $0 \leq j \leq d$:

$$
\sum_{\max (0, j-i) \leq u \leq \min (d-i, j)}(-1)^{j+u}\left[\begin{array}{c}
d-j \tag{2}\\
d-i-u
\end{array}\right]_{q}\left[\begin{array}{l}
j \\
u
\end{array}\right]_{q} q^{\frac{(u+i-j)(u+i-j+2 e-1)}{2}+\frac{(j-u)(j-u-1)}{2}}
$$

m-regular systems w.r.t. $(k-1)$-spaces of $\mathcal{P}_{d, e}$

 Hoffman's ratio bound
Theorem (Hoffman's ratio bound)

Let G be a k-regular graph with vertex set $V(G)$, largest and smallest eigenvalues k and λ, respectively, and independence number $\alpha(G)$. Then

$$
\begin{equation*}
\alpha(G) \leq-\frac{|V(G)| \lambda}{k-\lambda} \tag{3}
\end{equation*}
$$

Corollary
$\alpha\left(\mathcal{D}_{\mathcal{P}_{d, e}}^{i}\right) \leq-\frac{\left|\mathcal{M}_{\mathcal{P}_{d, e}}\right| \lambda_{i}}{k_{i}-\lambda_{i}}, k_{i}$ and λ_{i} from Equation (2).

m-regular systems w.r.t. $(k-1)$-spaces of $\mathcal{P}_{d, e}$

 Non-existence results for 1-regular systemsWe study the cases when \mathcal{R} is a 1-regular system of a polar space with rank 4 or 5 .

Theorem

The polar spaces $Q^{+}(7, q), H(7, q), W(7, q), Q(8, q), H(8, q)$, $Q^{-}(9, q)$ do not have a 1-regular system w.r.t. lines. The polar spaces $Q^{+}(9, q), H(9, q), W(9, q), Q(10, q), H(10, q), Q^{-}(11, q)$ do not have a 1-regular system w.r.t. planes.

Problem

Find the smallest eigienvalue of $\mathcal{D}_{\mathcal{P}_{d, e}}^{i}$.

