The number of Hamiltonian paths in a digraph

Tanja Stojadinović
University of Belgrade - Faculty of Mathematics

RICCOTA 2023
Rijeka, July 3-7, 2023

A digraph X is a triple $X=(V, E,<)$, where $(V,<)$ is a finite linearly ordered set and E is a collection

$$
E \subset\{(u, v) \in V \times V \mid u \neq v\}
$$

For a permutation of vertices $\sigma \in \mathbb{S}_{V}$, denoted as a list $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$, define the X-descent set as

$$
X \operatorname{Des}(\sigma)=\left\{1 \leq i \leq n-1 \mid\left(\sigma_{i}, \sigma_{i+1}\right) \in X\right\}
$$

(If V is the set $[n]=\{1, \ldots, n\}$ and $X=\{(i, j) \mid 1 \leq j<i \leq n\}$ then X-descent sets are standard descent sets of permutations $\sigma \in \mathbb{S}_{n}$.)

To a digraph X Stanley associated a generating function for X-descent sets

$$
\begin{equation*}
U_{X}=\sum_{\sigma \in \mathbb{S}_{V}} F_{X \operatorname{Des}(\sigma)} \tag{1}
\end{equation*}
$$

(R. Stanley, The X-Descent set of a permutation, Combinatorial and Algebraic Enumeration, Waterloo, Ontario, 2022, available at: https://math.mit.edu/~rstan/transparencies/gj.pdf, or R. Stanley, The X-Descent set of a permutation, Algorithmic and Enumerative Combinatorics conference, Vienna, July 4-8, 2022)

To a digraph X Stanley associated a generating function for X-descent sets

$$
\begin{equation*}
U_{X}=\sum_{\sigma \in \mathbb{S}_{V}} F_{X \operatorname{Des}(\sigma)} \tag{1}
\end{equation*}
$$

(R. Stanley, The X-Descent set of a permutation, Combinatorial and Algebraic Enumeration, Waterloo, Ontario, 2022, available at: https://math.mit.edu/~rstan/transparencies/gj.pdf, or R. Stanley, The X-Descent set of a permutation, Algorithmic and Enumerative Combinatorics conference, Vienna, July 4-8, 2022) It is given in terms of fundamental quasisymmetric functions

$$
\begin{equation*}
F_{I}=\sum_{\substack{1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{n} \\ i_{j}<i_{j+1} \text { for each } j \in I}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}}, \quad I \subset[n-1] . \tag{2}
\end{equation*}
$$

Example: $n=3, X=\{(1,3),(2,1),(3,1),(3,2)\}$

$$
\begin{aligned}
& \sigma \quad X \operatorname{Des}(\sigma) \\
& 123 \text { Ø } \\
& 132 \quad\{1,2\} \\
& 213 \quad\{1,2\} \\
& 231 \quad\{2\} \\
& 312 \quad\{1\} \\
& 321 \quad\{1,2\} \\
& U_{X}=F_{\emptyset}+F_{1}+F_{2}+3 F_{\{1,2\}}=\sum_{1 \leq i_{1} \leq i_{2} \leq i_{3}} x_{i_{1}} x_{i_{2}} x_{i_{3}}+\sum_{1 \leq i_{1}<i_{2} \leq i_{3}} x_{i_{1}} x_{i_{2}} x_{i_{3}}+ \\
& +\sum_{1 \leq i_{1} \leq i_{2}<i_{3}} x_{i_{1}} x_{i_{2}} x_{i_{3}}+3 \sum_{1 \leq i_{1}<i_{2}<i_{3}} x_{i_{1}} x_{i_{2}} x_{i_{3}}
\end{aligned}
$$

Symmetric functions

Symmetric function $f=f\left(x_{1}, x_{2}, \ldots\right)$ is a power series of bounded degree, invariant under any permutation of the x_{i} 's

Symmetric functions

Symmetric function $f=f\left(x_{1}, x_{2}, \ldots\right)$ is a power series of bounded degree, invariant under any permutation of the x_{i} 's
Partition of n is $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right), \lambda_{1} \geq \lambda_{2} \geq \cdots \geq 0, \sum \lambda_{i}=n$

Other important bases for the space Sym of symmetric functions are elementary, homogeneous and power sum symmetric functions. Power sums: $p_{k}=m_{(k)}=\sum x_{i}^{k},\left(p_{0}=1\right)$, is a \mathbb{Q}-basis for the space of symmetric functions

Symmetric functions

Symmetric function $f=f\left(x_{1}, x_{2}, \ldots\right)$ is a power series of bounded degree, invariant under any permutation of the x_{i} 's
Partition of n is $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right), \lambda_{1} \geq \lambda_{2} \geq \cdots \geq 0, \sum \lambda_{i}=n$ A partition $\lambda \vdash n$ defines the monomial symmetric function

$$
\mathbf{m}_{\lambda}=\sum x_{i_{1}}^{\lambda_{1}} x_{i_{2}}^{\lambda_{2}} \cdots x_{i_{j}}^{\lambda_{j}} .
$$

Other important bases for the space Sym of symmetric functions are elementary, homogeneous and power sum symmetric functions. Power simns: $n_{i}=m_{\infty}=\sum x^{k} \quad\left(n_{0}=1\right)$ is a Q-basis for the space of symmetric functions

Symmetric functions

Symmetric function $f=f\left(x_{1}, x_{2}, \ldots\right)$ is a power series of bounded degree, invariant under any permutation of the x_{i} 's
Partition of n is $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right), \lambda_{1} \geq \lambda_{2} \geq \cdots \geq 0, \sum \lambda_{i}=n$ A partition $\lambda \vdash n$ defines the monomial symmetric function

$$
\mathbf{m}_{\lambda}=\sum x_{i_{1}}^{\lambda_{1}} x_{i_{2}}^{\lambda_{2}} \cdots x_{i_{j}}^{\lambda_{j}} .
$$

Other important bases for the space Sym of symmetric functions are elementary, homogeneous and power sum symmetric functions.
Power sums: $\mathbf{p}_{k}=m_{(k)}=\sum x_{i}^{k},\left(p_{0}=1\right)$,

$$
p_{\lambda}=p_{\lambda_{1}} p_{\lambda_{2}} \cdots
$$

is a \mathbb{Q}-basis for the space of symmetric functions
U_{X} from our example, in the power sum basis

$$
U_{X}=F_{\emptyset}+F_{1}+F_{2}+3 F_{\{1,2\}}=p_{1}^{3}-p_{2} p_{1}+p_{3}
$$

It holds: U_{X} is a p-integral symmetric function, i.e., $U_{X}=\sum_{\lambda} c_{\lambda} p_{\lambda}$, where $c_{\lambda} \in \mathbb{Z}$

Also if ω is the linear transformation on symmetric functions given by $\omega\left(p_{\lambda}\right)=(-1)^{n-l(\lambda)} p_{\lambda}$, where $I(\lambda)=\#\left\{i: \lambda_{i}>0\right\}$, then
where \bar{X} is the complement of the digraph X
U_{X} from our example, in the power sum basis

$$
U_{X}=F_{\emptyset}+F_{1}+F_{2}+3 F_{\{1,2\}}=p_{1}^{3}-p_{2} p_{1}+p_{3}
$$

It holds: U_{X} is a p-integral symmetric function, i.e., $U_{X}=\sum_{\lambda} c_{\lambda} p_{\lambda}$, where $c_{\lambda} \in \mathbb{Z}$
where \bar{X} is the complement of the digraph X
U_{X} from our example, in the power sum basis

$$
U_{X}=F_{\emptyset}+F_{1}+F_{2}+3 F_{\{1,2\}}=p_{1}^{3}-p_{2} p_{1}+p_{3}
$$

It holds: U_{X} is a p-integral symmetric function, i.e., $U_{X}=\sum_{\lambda} c_{\lambda} p_{\lambda}$, where $c_{\lambda} \in \mathbb{Z}$

Also, if ω is the linear transformation on symmetric functions given by $\omega\left(p_{\lambda}\right)=(-1)^{n-I(\lambda)} p_{\lambda}$, where $I(\lambda)=\#\left\{i: \lambda_{i}>0\right\}$, then

$$
\omega\left(U_{x}\right)=U_{\bar{x}}
$$

where \bar{X} is the complement of the digraph X

Connection with Hamiltonian paths

A Hamiltonian path in the digraph X is a permutation $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right) \in \mathbb{S}_{n}$ such that $\left(\sigma_{i}, \sigma_{i+1}\right) \in X$ for $1 \leq i \leq n-1$. Define

Connection with Hamiltonian paths

A Hamiltonian path in the digraph X is a permutation $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right) \in \mathbb{S}_{n}$ such that $\left(\sigma_{i}, \sigma_{i+1}\right) \in X$ for $1 \leq i \leq n-1$. Define

$$
\operatorname{ham}(X)=\# \text { Hamiltonian paths in } X
$$

Connection with Hamiltonian paths

A Hamiltonian path in the digraph X is a permutation $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right) \in \mathbb{S}_{n}$ such that $\left(\sigma_{i}, \sigma_{i+1}\right) \in X$ for $1 \leq i \leq n-1$. Define

$$
\text { ham }(X)=\# \text { Hamiltonian paths in } X
$$

NOTE:

$\sigma \in \mathbb{S}_{n}$ is a Hamiltonian path in X if and only if $X \operatorname{Des}(\sigma)=[n-1]$
$\sigma \in \mathbb{S}_{n}$ is a Hamiltonian path in X if and only if $X \operatorname{Des}(\sigma)=\emptyset$

Connection with Hamiltonian paths

A Hamiltonian path in the digraph X is a permutation $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right) \in \mathbb{S}_{n}$ such that $\left(\sigma_{i}, \sigma_{i+1}\right) \in X$ for $1 \leq i \leq n-1$. Define

$$
\operatorname{ham}(X)=\# \text { Hamiltonian paths in } X
$$

NOTE:

$\sigma \in \mathbb{S}_{n}$ is a Hamiltonian path in X if and only if $X \operatorname{Des}(\sigma)=[n-1]$ $\sigma \in \mathbb{S}_{n}$ is a Hamiltonian path in \bar{X} if and only if $X \operatorname{Des}(\sigma)=\emptyset$

Stanley and Grinberg proved: If $U_{X}=\sum_{\lambda} c_{\lambda} p_{\lambda}$, then

$$
\operatorname{ham}(\bar{X})=\sum_{\lambda} c_{\lambda}
$$

Stanley and Grinberg proved: If $U_{X}=\sum_{\lambda} c_{\lambda} p_{\lambda}$, then

$$
\operatorname{ham}(\bar{X})=\sum_{\lambda} c_{\lambda}
$$

When we apply the involution ω to $U_{X}=\sum_{\lambda} c_{\lambda} p_{\lambda}$, we obtain

$$
\operatorname{ham}(X)=\sum_{\lambda}(-1)^{n-l(\lambda)} c_{\lambda}
$$

Berge's theorem

Theorem (Claude Berge) ham $(X) \equiv \operatorname{ham}(\bar{X})(\bmod 2)$

Berge's theorem

Theorem (Claude Berge) ham $(X) \equiv \operatorname{ham}(\bar{X})(\bmod 2)$

- If $U_{X}=\sum_{\lambda} c_{\lambda} p_{\lambda}$, it suffices to show

$$
\sum_{\lambda}(-1)^{n-l(\lambda)} c_{\lambda}=\sum_{\lambda} c_{\lambda}(\bmod 2)
$$

which follows immediately from $(-1)^{n-l(\lambda)}= \pm 1$.

We construct a structure of combinatorial Hopf algebra on digraphs for which the enumerator U_{X} is obtained from a universal morphism to quasisymmetric functions.

Basic from combinatorial Hopf algebras

The theory of combinatorial Hopf algebras is founded in M. Aguiar, N. Bergeron, F. Sottile, Combinatorial Hopf algebras and generalized Dehn-Sommerville relations, Compositio Math. (2006)

Basic from combinatorial Hopf algebras

The theory of combinatorial Hopf algebras is founded in M. Aguiar, N. Bergeron, F. Sottile, Combinatorial Hopf algebras and generalized Dehn-Sommerville relations, Compositio Math. (2006)

A combinatorial Hopf algebra (\mathcal{H}, ζ) (CHA for short) over a field \mathbf{k} is a graded, connected Hopf algebra $\mathcal{H}=\oplus_{n \geq 0} \mathcal{H}_{n}$ over \mathbf{k} together with a multiplicative functional $\zeta: \mathcal{H} \rightarrow \mathbf{k}$ called the character.

A partition $\left\{V_{1}, \ldots, V_{k}\right\} \vdash V$ of the length k of a finite set V is a family of disjoint nonempty subsets with $V_{1} \cup \ldots \cup V_{k}=V$. A composition $\left(V_{1}, \ldots, V_{k}\right) \models V$ is an ordered partition.

A composition $\alpha=n$ is a sequence $\alpha=\left(a_{1}, \ldots, a_{k}\right)$ of positive

A partition $\left\{V_{1}, \ldots, V_{k}\right\} \vdash V$ of the length k of a finite set V is a family of disjoint nonempty subsets with $V_{1} \cup \ldots \cup V_{k}=V$. A composition $\left(V_{1}, \ldots, V_{k}\right) \models V$ is an ordered partition.
A composition $\alpha=n$ is a sequence $\alpha=\left(a_{1}, \ldots, a_{k}\right)$ of positive integers with $a_{1}+\cdots+a_{k}=n$.
The type of a composition $\left(V_{1}, \ldots, V_{k}\right) \models V$ is the composition $\operatorname{type}\left(V_{1}, \ldots, V_{k}\right)=\left(\left|V_{1}\right|, \ldots,\left|V_{k}\right|\right) \models n$.

There is a bijection between sets $\operatorname{Comp}(n)$ of compositions of n and $2^{[n-1]}$ of subsets of $[n-1]=\{1, \ldots, n-1\}$ given by

$$
\left(a_{1}, \ldots, a_{k}\right) \mapsto\left\{a_{1}, a_{1}+a_{2}, \ldots, a_{1}+\cdots+a_{k-1}\right\}
$$

We denote the inverse of this bijection by $I \mapsto \operatorname{comp}(I)$.

The terminal object in the category of CHA's is the CHA of quasisymmetric functions $\left(Q S y m, \zeta_{Q}\right)$. A composition $\alpha=\left(a_{1}, \ldots, a_{k}\right) \models n$ defines the monomial quasisymmetric function

$$
M_{\alpha}=\sum_{i_{1}<\cdots<i_{k}} x_{i_{1}}^{a_{1}} \cdots x_{i_{k}}^{a_{k}} .
$$

Alternatively we write $M_{I}=M_{\text {comp }(I)}, I \subset[n-1]$.
Also, there is a basis of fundamental quasisymmetric functions
(2) which are expressed in the monomial basis as

$$
F_{I}=\sum_{I \subset J} M_{J}, I \subset[n-1] .
$$

The terminal object in the category of CHA's is the CHA of quasisymmetric functions $\left(Q S y m, \zeta_{Q}\right)$. A composition $\alpha=\left(a_{1}, \ldots, a_{k}\right) \models n$ defines the monomial quasisymmetric function

$$
M_{\alpha}=\sum_{i_{1}<\cdots<i_{k}} x_{i_{1}}^{a_{1}} \cdots x_{i_{k}}^{a_{k}} .
$$

Alternatively we write $M_{I}=M_{\operatorname{comp}(I)}, I \subset[n-1]$. Also, there is a basis of fundamental quasisymmetric functions (2) which are expressed in the monomial basis as

$$
F_{I}=\sum_{I \subset J} M_{J}, I \subset[n-1] .
$$

The character ζ_{Q} is defined by $\zeta_{Q}\left(M_{\alpha}\right)=1$ if $\alpha=(n)$ or $\alpha=()$ and $\zeta_{Q}\left(M_{\alpha}\right)=0$ otherwise.

The unique canonical morphism $\psi:(\mathcal{H}, \zeta) \rightarrow\left(Q S y m, \zeta_{Q}\right)$ is given on homogeneous elements with

$$
\begin{equation*}
\Psi(h)=\sum_{l \subset[n-1]} \zeta_{l}(h) M_{l}, h \in \mathcal{H}_{n}, \tag{3}
\end{equation*}
$$

where ζ_{I} is the convolution product

$$
\zeta_{I}=\zeta_{a_{1}} \cdots \zeta_{a_{k}}: \mathcal{H} \xrightarrow{\Delta^{(k-1)}} \mathcal{H}^{\otimes k} \xrightarrow{\text { proj }} \mathcal{H}_{a_{1}} \otimes \cdots \otimes \mathcal{H}_{a_{k}} \xrightarrow{\zeta^{\otimes k}} \mathbf{k}
$$

for $\operatorname{comp}(I)=\left(a_{1}, \ldots, a_{k}\right)$.

The algebra of symmetric functions Sym is the subalgebra of QSym and it is the terminal object in the category of cocommutative combinatorial Hopf algebras.

The algebra of symmetric functions Sym is the subalgebra of QSym and it is the terminal object in the category of cocommutative combinatorial Hopf algebras.

Hopf algebra of digraphs

We say that two digraphs $X=(V, E,<)$ and $Y=\left(V^{\prime}, E^{\prime},<^{\prime}\right)$ are isomorphic if there is an order preserving bijection $f:(V,<) \rightarrow\left(V^{\prime},<^{\prime}\right)$ such that $(u, v) \in E$ if and only if $(f(u), f(v)) \in E^{\prime}$. Any isomorphism class of digraphs $[X]$ has the canonical representative on the vertex set $[n]=\{1<2<\cdots<n\}$ for some integer $n \geq 0$.

For digraphs $X=(V, E,<)$ and $Y=\left(V^{\prime}, E^{\prime},<^{\prime}\right)$ we define the product $X \cdot Y$ as the digraph on the linear sum $V \oplus V^{\prime}=\left(V \sqcup V^{\prime}, \prec\right)$ with the set of directed edges $E \cup E^{\prime} \cup\left\{(u, v) \mid u \in V, v \in V^{\prime}\right\}$.
The order \prec on the disjoint union $V \sqcup V^{\prime}$ is defined by $u \prec v$ if and only if either $u<v$ in $V, u<^{\prime} v$ in V^{\prime} or $u \in V, v \in V^{\prime}$.

The multiplication of digraphs is obviously an associative, but
not a commutative operation.

For digraphs $X=(V, E,<)$ and $Y=\left(V^{\prime}, E^{\prime},<^{\prime}\right)$ we define the product $X \cdot Y$ as the digraph on the linear sum $V \oplus V^{\prime}=\left(V \sqcup V^{\prime}, \prec\right)$ with the set of directed edges $E \cup E^{\prime} \cup\left\{(u, v) \mid u \in V, v \in V^{\prime}\right\}$.
The order \prec on the disjoint union $V \sqcup V^{\prime}$ is defined by $u \prec v$ if and only if either $u<v$ in $V, u<^{\prime} v$ in V^{\prime} or $u \in V, v \in V^{\prime}$.

The multiplication of digraphs is obviously an associative, but not a commutative operation.

Let $\mathcal{D}=\oplus_{n \geq 0} \mathcal{D}_{n}$ be the graded vector space over the field of rational numbers \mathbb{Q}, which is linearly spanned by the set of all isomorphism classes of digraphs, where the grading is given by the number of vertices. The linear extension of the product on digraphs determines the multiplication $\mu: \mathcal{D} \otimes \mathcal{D} \rightarrow \mathcal{D}$, which turns the space \mathcal{D} into a noncommutative algebra.

The restriction of a digraph $X=(V, E,<)$ on a subposet $S \subset V$

 is the digraph $\left.X\right|_{S}=\left(S,\left.E\right|_{S},<\right)$, where $\left.E\right|_{S}=\{(u, v) \in E \mid u, v \in S\}$.$\qquad$ Evidently, this is a coassociative and a cocommutative oneration

The restriction of a digraph $X=(V, E,<)$ on a subposet $S \subset V$ is the digraph $\left.X\right|_{S}=\left(S,\left.E\right|_{S},<\right)$, where $\left.E\right|_{S}=\{(u, v) \in E \mid u, v \in S\}$.

We use the restrictions of digraphs to define a comultiplication $\Delta: \mathcal{D} \rightarrow \mathcal{D} \otimes \mathcal{D}$ by

$$
\Delta([X])=\sum_{S \subset V}\left[\left.X\right|_{S}\right] \otimes\left[\left.X\right|_{V \backslash S}\right]
$$

where V is the vertex set of a digraph X.
Evidently, this is a coassociative and a cocommutative

The restriction of a digraph $X=(V, E,<)$ on a subposet $S \subset V$ is the digraph $\left.X\right|_{S}=\left(S,\left.E\right|_{S},<\right)$, where $\left.E\right|_{S}=\{(u, v) \in E \mid u, v \in S\}$.
We use the restrictions of digraphs to define a comultiplication $\Delta: \mathcal{D} \rightarrow \mathcal{D} \otimes \mathcal{D}$ by

$$
\Delta([X])=\sum_{S \subset V}\left[\left.X\right|_{S}\right] \otimes\left[\left.X\right|_{V \backslash S}\right]
$$

where V is the vertex set of a digraph X.
Evidently, this is a coassociative and a cocommutative operation.

It is easy to check that Δ is an algebra morphism, meaning that

$$
\Delta([X \cdot Y])=\Delta([X]) \cdot \Delta([Y])
$$

for any isomorphism classes $[X]$ and $[Y]$ of digraphs.
With these operations the space of digraphs D is endowed with a structure of a graded, connected, noncommutative and cocommiltative Honf alogehra on the empty set of vertices and the counit is given by $\in(0)=1$ and $\epsilon([X])=0$ otherwise.

It is easy to check that Δ is an algebra morphism, meaning that

$$
\Delta([X \cdot Y])=\Delta([X]) \cdot \Delta([Y])
$$

for any isomorphism classes $[X]$ and $[Y]$ of digraphs.
With these operations the space of digraphs \mathcal{D} is endowed with a structure of a graded, connected, noncommutative and cocommutative Hopf algebra. The unit element is the digraph \emptyset on the empty set of vertices and the counit is given by $\epsilon(\emptyset)=1$ and $\epsilon([X])=0$ otherwise.

To obtain a structure of a combinatorial Hopf algebra on digraphs we need a character. Let $\zeta: \mathcal{D} \rightarrow \mathbb{Q}$ be a linear functional determined by the following enumerator on digraphs

$$
\zeta([X])=\#\left\{\sigma \in \mathbb{S}_{V} \mid X \operatorname{Des}(\sigma)=\emptyset\right\}
$$

SO, $\zeta([X]$ IS EXACTLY THE NUMBER OF HAMILTONIAN PATHS IN THE COMPLEMENT OF THE DIGRAPH X

To obtain a structure of a combinatorial Hopf algebra on digraphs we need a character. Let $\zeta: \mathcal{D} \rightarrow \mathbb{Q}$ be a linear functional determined by the following enumerator on digraphs

$$
\zeta([X])=\#\left\{\sigma \in \mathbb{S}_{V} \mid X \operatorname{Des}(\sigma)=\emptyset\right\}
$$

SO, $\zeta([X]$ IS EXACTLY THE NUMBER OF HAMILTONIAN PATHS IN THE COMPLEMENT OF THE DIGRAPH X

Theorem
 The linear functional ζ is multiplicative on the Hopf algebra of digraphs \mathcal{D}.

Proof.

Let X and Y be digraphs on V and V^{\prime} respectively. For permutations $\omega=\left(\omega_{1}, \ldots, \omega_{m}\right) \in \mathbb{S}_{V}$ and $\tau=\left(\tau_{1}, \ldots, \tau_{n}\right) \in \mathbb{S}_{V^{\prime}}$ define their reverse concatenation by $\omega\lrcorner \tau=\left(\tau_{1}, \ldots, \tau_{n}, \omega_{1}, \ldots, \omega_{m}\right) \in \mathbb{S}_{V \oplus V^{\prime}}$. Then if $X \operatorname{Des}(\omega)=\emptyset$ and $Y \operatorname{Des}(\tau)=\emptyset$ it is clear that $X Y \operatorname{Des}(\omega\lrcorner \tau)=\emptyset$. On the other hand any permutation $\sigma=\left(\sigma_{1}, \ldots, \sigma_{m+n}\right) \in \mathbb{S}_{V \oplus V^{\prime}}$ with $X Y \operatorname{Des}(\sigma)=\emptyset$ decomposes uniquely as $\sigma=\omega\lrcorner \tau$, where $\omega=\left(\sigma_{n+1}, \ldots, \sigma_{n+m}\right) \in \mathbb{S}_{V}$ and $\tau=\left(\sigma_{1}, \ldots, \sigma_{n}\right) \in \mathbb{S}_{V^{\prime}}$. This shows that a map $f(\omega, \tau)=\omega\lrcorner \tau$ is a bijection, consequently

$$
\zeta([X Y])=\zeta([X]) \zeta([Y])
$$

(\mathcal{D}, ζ) - CHA on digraphs

The universal morphism $\Psi: \mathcal{D} \rightarrow$ QSym assigns to each digraph X a quasisymmetric function $\psi([X])$ determined by (3). If X is a digraph on an n-element vertex set V the coefficients of this quasisymmetric function in the monomial basis are given with

Since \mathcal{D} is a cocommutative $\mathrm{CHA}, \Psi([X])$ is a symmetric function. This implies that values of coefficients $\zeta_{/}$depend only on set partitions of the vertex set V.

(\mathcal{D}, ζ) - CHA on digraphs

The universal morphism $\Psi: \mathcal{D} \rightarrow Q S y m$ assigns to each digraph X a quasisymmetric function $\Psi([X])$ determined by (3). If X is a digraph on an n-element vertex set V the coefficients of this quasisymmetric function in the monomial basis are given with

$$
\zeta_{l}([X])=\sum_{\substack{\left(V_{1}, \ldots, V_{k}\right) \models V \\ \operatorname{type}\left(V_{1} \ldots, V_{k}\right)=\operatorname{comp}(I)}} \zeta\left(\left[X \mid V_{1}\right]\right) \cdots \zeta\left(\left[X \mid v_{k}\right]\right) .
$$

Since \mathcal{D} is a cocommutative $\mathrm{CHA}, \Psi([X])$ is a symmetric function. This implies that values of coefficients ζ_{I} depend only on set partitions of the vertex set V.

A generating function for X -descent sets

The expansion of the enumerator U_{X} defined by (1) in the basis of monomial quasisymmetric functions is given by

$$
\begin{equation*}
U_{X}=\sum_{\sigma \in \mathbb{S}_{V}} \sum_{X \operatorname{Des}(\sigma) \subset I} M_{I}=\sum_{I \subset[n-1]} \mu_{l}(X) M_{l}, \tag{4}
\end{equation*}
$$

where n is the number of vertices and coefficients are determined with

$$
\mu_{I}(X)=\#\left\{\sigma \in \mathbb{S}_{V} \mid X \operatorname{Des}(\sigma) \subset I\right\}
$$

Theorem

Let $\Psi: \mathcal{D} \rightarrow Q S y m$ be a universal morphism from the combinatorial Hopf algebra of digraphs to quasisymmetric functions. Then for a digraph X

$$
\Psi([X])=U_{X}
$$

Proof.

According to expansions in the basis of monomial quasisymmetric functions we should prove that $\zeta_{l}([X])=\mu_{l}(X)$ for all $I \subset[n-1]$. For a subset $I \subset[n-1]$ let $\sigma \in \mathbb{S}_{n}$ be a permutation such that $X \operatorname{Des}(\sigma) \subset I$. If $\operatorname{comp}(I)=\left(a_{1}, \ldots, a_{k}\right)$ and $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ let $V_{1}=\left\{\sigma_{1}, \ldots, \sigma_{a_{1}}\right\}, V_{2}=\left\{\sigma_{a_{1}+1}, \ldots, \sigma_{a_{1}+a_{2}}\right\}, \ldots, V_{k}=$ $\left\{\sigma_{a_{1}+\cdots+a_{k-1}+1}, \ldots, \sigma_{n}\right\}$ be linearly ordered subposets of $[n]$. Then $\left(\sigma_{1}, \ldots, \sigma_{a_{1}}\right) \in \mathbb{S}_{V_{1}},\left(\sigma_{a_{1}+1}, \ldots, \sigma_{a_{1}+a_{2}}\right) \in$ $\mathbb{S}_{V_{2}}, \ldots,\left(\sigma_{a_{1}+\cdots+a_{k-1+1}}, \ldots, \sigma_{n}\right) \in \mathbb{S}_{V_{k}}$.
In this way the permutation σ produces a composition
$\left(V_{1}, \ldots, V_{k}\right) \models[n]$ with type $\left(V_{1}, \ldots, V_{k}\right)=\operatorname{comp}(I)$ which satisfies $X\left|v_{1} \operatorname{Des}\left(\sigma_{1}, \ldots, \sigma_{a_{1}}\right)=\emptyset, \ldots, X\right| v_{k} \operatorname{Des}\left(\sigma_{a_{1}+\cdots+a_{k-1}+1}, \ldots, \sigma_{n}\right)=\emptyset$. In other direction, for any composition $\left(V_{1}, \ldots, V_{k}\right) \models[n]$ with $\operatorname{type}\left(V_{1}, \ldots, V_{k}\right)=\operatorname{comp}(I)$, the concatenation of permutations $\sigma_{1} \in \mathbb{S}_{V_{1}}, \ldots, \sigma_{k} \in \mathbb{S}_{V_{k}}$ such that
$X\left|V_{1} \operatorname{Des}\left(\sigma_{1}\right)=\emptyset, \ldots, X\right| v_{k} \operatorname{Des}\left(\sigma_{k}\right)=\emptyset$ gives the permutation

Tournaments

A tournament is a digraph $X=(V, E,<)$ such that for all vertices $u, v \in V$ either $(u, v) \in E$ or $(v, u) \in E$

Tournaments are obviously closed under operations of taking restrictions and products, so their isomorphism classes g
Hopf subalgebra $\mathcal{T} \subset \mathcal{D}$ of the Hopf algebra of digraphs the CHA of tournaments

Tournaments

A tournament is a digraph $X=(V, E,<)$ such that for all vertices $u, v \in V$ either $(u, v) \in E$ or $(v, u) \in E$

Tournaments are obviously closed under operations of taking restrictions and products, so their isomorphism classes generate a Hopf subalgebra $\mathcal{T} \subset \mathcal{D}$ of the Hopf algebra of digraphs \mathcal{T} - the CHA of tournaments

Tournaments

A tournament is a digraph $X=(V, E,<)$ such that for all vertices $u, v \in V$ either $(u, v) \in E$ or $(v, u) \in E$

Tournaments are obviously closed under operations of taking restrictions and products, so their isomorphism classes generate a Hopf subalgebra $\mathcal{T} \subset \mathcal{D}$ of the Hopf algebra of digraphs \mathcal{T} - the CHA of tournaments

Each tournament $X=(V, E,<)$ has its complementary tournament $\bar{X}=(V, \bar{E},<)$ determined by $(u, v) \in E$ if and only if $(v, u) \in \bar{E}$

Theorem
 For each tournament we have $U_{X}=U_{\bar{X}}$.

Proof.

Assume that X is a tournament on the vertex set $[n]$. Define reversions of a permutation $\sigma=\left(i_{1}, \ldots, i_{n}\right) \in \mathbb{S}_{n}$ and of a subset $I \subset[n-1]$ by $\operatorname{rev} \sigma=\left(i_{n}, \ldots, i_{1}\right)$ and $\operatorname{rev} I=\{n-i \mid i \in I\}$. For a permutation $\sigma \in \mathbb{S}_{n}$ we have

$$
\operatorname{rev} X \operatorname{Des}(\sigma)=\bar{X} \operatorname{Des}(\operatorname{rev} \sigma)
$$

so $X \operatorname{Des}(\sigma) \subset I$ if and only if $\bar{X} \operatorname{Des}(\operatorname{rev} \sigma) \subset$ rev $/$ for any subset $I \subset[n-1]$. Therefore $\mu_{I}(X)=\mu_{\text {rev }}(\bar{X}), I \subset[n-1]$. The operation of reversion can be defined on the monomial bases by $\operatorname{rev} M_{I}=M_{\text {rev }} /$ Using the expansion (4) we obtain

$$
U_{X}=\operatorname{rev} U_{\bar{x}}
$$

The statement follows since the reversion on symmetric functions is an identity.

THANK YOU FOR YOUR ATTENTION!

THANK YOU FOR YOUR ATTENTION!

The speaker was supported by the Science Fund of the Republic of Serbia, Grant No. 7749891, Graphical Languages - GWORDS

