Ternary self-dual codes, Hadamard matrices and related designs

Vladimir D. Tonchev

Michigan Technological University
Joint work with Sanja Rukavina, University of Rijeka, Croatia

Linear codes

A linear $[n, k]$ code C over $G F(q)$ is a k-subspace of $G F(q)^{n}$.
The support $\operatorname{Sup}(x)$ of a vector x is the set of indices of its nonzero components.

The Hamming weight of $x \in G F(q)^{n}$ is $w(x)=|\operatorname{Sup}(x)|$.
An $[n, k, d]$ code C is an $[n, k]$ code with minimum weight d.
The dual code C^{\perp} is an $[n, n-k]$ code being the orthogonal complement of C.

An $[n, k]$ code is self-orthogonal if $C \subseteq C^{\perp}$, and self-dual if $C=C^{\perp}$.

Combinatorial designs

A $t-(v, k, \lambda)$ design D with a point set $X=\left\{x_{i}\right\}_{i=1}^{v}$ is a collection of k-subsets $\mathcal{B}=\left\{B_{j}\right\}_{j=1}^{b}$ called blocks, such that every t-subset of X is contained in exactly λ blocks.

The incidence matrix of D is a $b \times v(0,1)$-matrix $A=\left(a_{i, j}\right)$, where $a_{i, j}=1$ if $x_{j} \in B_{i}$ and $a_{i, j}=0$ otherwise.
If $t=2$ and $v>k>0$ then $b \geq v$ (Fisher inequality).
A 2-($v, k, \lambda)$ design is symmetric if $b=v$, or equivalently, every two blocks share exactly λ points.

Ternary extremal self-dual codes

An upper bound (Mallows and Sloane 1973)

If C is a self-dual $[n, n / 2, d]$ ternary code then

$$
d \leq 3\left[\frac{n}{12}\right]+3 .
$$

Definition

A ternary self-dual code of length n is extremal if it meets the upper bound: $d=3\left[\frac{n}{12}\right]+3$.

Theorem (Assmus and Mattson 1969)

If C is an extremal ternary self-dual code of length $n \equiv 0(\bmod 12)$ then the supports of all codewords of any nonzero weight $w<n$ are the blocks of a 5-design.

Extended QR codes and Pless symmetry codes

Theorem (Assmus and Mattson 1969)

The ternary extended quadratic residue codes $Q R(n-1)^{*}$ of length $n=12,24,48$ and 60 are extremal and support 5-designs.

Pless Symmetry Codes (Pless 1969)

- For every odd prime power $q \equiv-1(\bmod 3)$ there is a ternary self-dual $[2 q+2, q+1]$ code $C(q)$.
- The symmetry codes of length $n=12,24,36,48,60$ ($q=5,11,17,23,29$) are extremal and support 5-designs.

Note

The 5-designs obtained from the extremal codes of length 24, 36, 48 and 60, were the only known 5-designs at that time, other than the 5 -designs arising from the 5 -transitive Mathieu groups M_{12} and M_{24}, which were known since the 1930's.

The known extremal ternary self-dual codes of length $n \equiv 0(\bmod 12)$

- $n=12: Q R_{11}^{*}$ and $C(5)$ are equivalent to the Golay code G_{12}.
- $n=24$: Extended $Q R(23)^{*}$ code, Pless symmetry code $C(11)$.
- $n=36$: Pless symmetry code $C(17)$.
- $n=48: Q R_{47}^{*}, C(23)$.
- $n=60: Q R_{59}^{*}, C(29), N V$.

The code $N V$ is a group theoretical analogue of the Pless symmetry code $C(29)$, found by G. Nebe and D. Villar in 2013.

Theorem

- Up to equivalence, G_{12} there is only extremal ternary self-dual code of length 12 (Pless 1968).
- There are exactly two inequivalent codes of length 24 (Leon, Pless, and Sloane 1981).

Hadamard matrices and designs

A Hadamard matrix of order n is an $n \times n$ matrix H of 1 's and -1 's such that $H H^{T}=n l$, where l is the identity matrix.
A necessary condition: if $n>2$ then $n=4 t$ for some integer $t \geq 1$.

Theorem

If H is a Hadamard matrix of order $n=4 t$ being a multiple of a prime $p>2$ then the row space of H is a self-orthogonal code over $G F(p)$.

An automorphism of a Hadamard matrix H is a pair of $\{0,1,-1\}$-monomial matrices L, R such that $L H R=H$.

Two Hadamard matrices H_{1}, H_{2} of the same order are equivalent if there are monomial matrices L, R such that $L H_{1} R=H_{2}$.

A Hadamard matrix H of order $n=4 t$ is normalized with respect to its i th row and j th column if all entries in row i and column j are equal to 1 . Deleting the all-one ith row and jth column and replacing all -1 's with 0 's gives the incidence matrix of a symmetric 2-($\mathbf{4 t}-\mathbf{1}, \mathbf{2 t}-\mathbf{1}, \mathbf{t}-\mathbf{1}$) design D called a Hadamard 2-design.
If H is a Hadamard matrix of order $n=4 t$ normalized with respect to a row, deleting the all-one row of H and the all -1 -row of $-H$ in

$$
\binom{H}{-H}
$$

and replacing all -1 's with 0's gives the incidence matrix of a Hadamard $3-(4 \mathbf{t}, \mathbf{2 t}, \mathbf{t}-1)$ design D^{*}.

A Hadamard matrix H of order $n=4 t$ is regular of degree k if every row of H contains exactly $\mathbf{k}+1$'s.
Then necessarily $t=m^{2}$ for some integer $m, k=2 m^{2} \pm m$, and replacing all -1 's with zeros gives the incidence matrix of a symmetric $\left.\mathbf{2 - (4 \mathbf { m } ^ { 2 }}, \mathbf{2} \mathbf{m}^{\mathbf{2}} \pm \mathbf{t}, \mathbf{m}^{\mathbf{2}} \pm \mathbf{m}\right)$ design (called a Menon design).

Hadamard matrices of Paley type

Let $q=p^{r}$, where p is an odd prime, and let $Q=\left\{q_{i, j}\right\}$ be the $q \times q$ matrix with rows and columns labeled by the elements of $G F(q)$ and defined as follows:
$q_{i j}=0$ if $i=j, q_{i j}=+1$ if $i-j$ is a nonzero square in $\operatorname{GF}(q)$, and $q_{i j}=-1$ if $i-j$ is not a square in $G F(q)$.
Let $\overline{1}=(1, \ldots, 1)$ be the constant all-one vector with q components.
Let S be the $(q+1) \times(q+1)$ matrix defined by

$$
S=\left[\begin{array}{cc}
0 & \overline{1} \\
-\overline{1}
\end{array}\right] .
$$

The matrix S satisfies the equation

$$
S S^{T}=q I_{q+1} .
$$

A square $n \times n\{0,1,-1\}$-matrix with zero diagonal that satisfies the equation $S S^{T}=(n-1) /$ is called a conference matrix.

Theorem (Paley 1933)

(1) If $q \equiv 3(\bmod 4)$ then $H=I+S$ a Hadamard matrix of order $n=q+1$.
(2) If $q \equiv 1(\bmod 4)$ then

$$
H=\left[\begin{array}{cc}
S+1 & S-1 \\
S-1 & -S-1
\end{array}\right]
$$

is a Hadamard matrix of order $n=2 q+2$.
These matrices are known as Paley-Hadamard matrices of type I and type II respectively.

Hadamard matrices in ternary QR codes

Theorem

- If $q \equiv 3(\bmod 4)$ is a prime power, a quadratic residue (QR) code of length q is a code spanned by the incidence matrix A of a symmetric Hadamard $2-(q,(q-1) / 2,(q-3) / 4)$ design associated with a Paley-Hadamard matrix of type I.
- The extended code is spanned by a matrix obtained by bordering A with the all-one column.
- If, in addition, $q \equiv-1(\bmod 3)$, that is, $q=12 s+11$, the ternary extended QR code is self-dual that contains a Hadamard matrix having as rows codewords of weight $q+1$, equivalent to a Paley-Hadamard matrix of type I.

Symmetry codes and Hadamard matrices

Let q be an odd prime power such that $q \equiv-1(\bmod 3)$.
The Pless symmetry code $C(q)$ is defined as a ternary self-dual code of length $n=2 q+2$ with a generator matrix $G=(I, S)$.

Theorem (Pless 1972)

- The symmetry code $C(q)$ contains a Hadamard matrix H of order $n=2 q+2$ whose rows are codewords of full weight $2 q+2$, after any entry equal to 2 is replaced by -1 .
- H is equivalent to a Paley Hadamard matrix of type II.

The matrix H is normalized with respect to a row if if -1 is not a square in $G F(q)$, and contains a row R with $n-1$ entries equal to 1 and one entry equal to -1 whenever -1 is a square in $G F(q)$. In the latter case, negating the column of H with entry -1 in row R gives a normalized Hadamard matrix with respect to row R, whose row space is a code $\mathbf{L}(\mathbf{q})$ which is equivalent to $\mathbf{C}(\mathbf{q})$ and contains the all-one vector.

The code $L(q)$

Theorem

- The code $L(q)$ contains the all-one vector $\overline{1}=(1, \ldots, 1)$.
- The code $L(q)$ contains a set of $4 q+2(0,1)$-codewords of weight $q+1$ that form the incidence matrix of a Hadamard $3-(2 q+2, q+1,(q-1) / 2)$ design $D(q)$.
- If $q=5,11,17,23$, the code $L(q)$ contains exactly $4 q+2$
$(0,1)$-codewords of weight $q+1$, and every such codeword is the incidence vector of a block of the Hadamard 3-design $D(q)$.
- The code $L(q)$ is spanned by the incidence matrix of $D(q)$.

Hadamard matrices in ternary linear codes

Lemma 1

A set M of n codewords of weight n in a ternary linear self-orthogonal code of length $n \equiv 0(\bmod 12)$ is the set of rows of a Hadamard matrix of order n if and only if the Hamming distance between every two codewords from M is equal to $n / 2$.

Corollary

if H is a Hadamard matrix of order n having as rows codewords in a ternary linear code C, the code contains at least 2^{n} distinct Hadamard matrices that are equivalent to H.

Lemma 2

If H is a Hadamard matrix whose rows are codewords in a ternary linear code C, then the set rows of any normalized Hadamard matrix obtained from H belongs to a code which is monomially equivalent to C.

Codewords of weight 36 in the code $L(17)$

The symmetry code $C(17)$ and its equivalent code $L(17)$ each contains exactly 888 codewords of weight 36.
The set W of all 888 codewords of $L(17)$ of weight 36 spans the code and comprises of the following disjoint subsets:

- 36 rows of a Hadamard matrix H which is normalized with respect to a row $\overline{1}$ and equivalent to a Paley-Hadamard matrix of type II;
- 36 rows of $2 H($ or $-H)$ that include a constant row $\overline{2}=(2, \ldots, 2)$;
- a set T of 408 codewords having 15 components equal to 1 and 21 components equal to 2 ;
- a set $2 T$ of 408 codewords obtained by multiplying every codeword from T by 2.
Note. Adding $\overline{2}$ to any $(0,1)$-codeword of weight 18 gives a codeword of weight 36 with 181 's and 182 's; hence the code $L(17)$ contains exactly $70(0,1)$-codewords of weight 18 obtained by adding the codeword $\overline{2}$ to the rows of H and $2 H$, and these $70(0,1)$-codewords form the incidence matrix of the Hadamard 3-(36, 18, 8) design $D(17)$.

Enumeration of Hadamard matrices in $L(17)$

We can enumerate all normalized Hadamard matrices of order 36 with rows from the set W of codewords of full weight in $L(17)$ by the following simple algorithm that employs Lemma 1 and Lemma 2:
(1) Choose a codeword $x \in W$. If $x=\overline{1}$ then go to Step 2, else go to Step 4.
(2) Define a graph Γ with vertices the codewords $y \in W$ such that $y=\left(y_{1}, \ldots, y_{36}\right)$ contains exactly 18 components equal to 1 , and $y_{1}=1$. Two vertices u, z of Γ are adjacent if they differ in 18 positions.
(3) Enumerate and record all cliques of size 35 in Γ. Every such clique together with $\overline{1}$ forms a normalized Hadamard matrix.
(9) For $i=1$ to 36 do if $x_{i}=-1$ then negate the i th column of W.
(0) Go to Step 2.

We can enumerate the regular Hadamard matrices arising from $L(17)$ as cliques of size 36 in a graph with vertices being the codewords in W containing exactly 15 entries equal to +1 .

Inequivalent normalizations of W

The set W of all codewords of weight 36 can be normalized with respect to every of the 888 codewords by negating columns of W.

An examination of the matrices W_{i} obtained by normalizing W with respect to a row i having weight structure $(18,18)$ shows that any such matrix has the same complete weight distribution as W and is given in Table 1.

$\# x$	$\left(w_{1}(x), w_{2}(x)\right)$
1	$(0,36)$
408	$(15,21)$
70	$(18,18)$
408	$(21,15)$
1	$(36,0)$

Table 1: The complete weight distribution of W

Theorem

(1) The code $L(17)$ contains two equivalence classes of Hadamard matrices of order 36:

- a Hadamard matrix H equivalent to a Paley-Hadamard matrix of type II, with full automorphism group of order $19584=2^{7} 3^{2} 17$; - a second Hadamard matrix \mathbf{H}^{\prime} with full automorphism group of order 72, being a regular Hadamard matrix such that the associated symmetric 2-($36,15,6$) design D^{\prime} has a trivial automorphism group.
(2) The ternary code spanned by the incidence matrix of the $2-(36,15,6)$ design D^{\prime} is an extremal ternary $[36,18,12]$ code equivalent to the symmetry code $C(17)$.
(3) The automorphism group of $L(17)$ partitions the set of codewords of weight 36 into two orbits of length 72 and 816 respectively, the orbit of length 72 consisting of rows of H and $-H$.
(4) The full automorphism group of the code $L(17)$ coincides with the full automorphism group H.

An examination of the matrices W_{i} obtained by normalizing W with respect to any of the 408 rows having weight structure $(15,21)$ shows that any such matrix has a complete weight distribution given in Table 2 , where W_{408} is obtained by normalizing W with respect to row no. 408.

$\# x$	$\left(w_{1}(x), w_{2}(x)\right)$
1	$(0,36)$
93	$(12,24)$
36	$(15,21)$
628	$(18,18)$
36	$(21,15)$
93	$(24,12)$
1	$(36,0)$

Table 2: The complete weight distribution of W_{408}

A second regular Hadamard matrix associated with the Pless symmetry code

Theorem

(a) The 36 codewords of W_{408} with weight structure $(15,21)$ form a regular Hadamard matrix H which is monomially equivalent to the Paley-Hadamard matrix of type II.
(b) The symmetric 2 -($36,15,6$) design D associated with H has a full automorphism group of order 24.
(c) The incidence matrix of D has 3 -rank 18, and its linear span over $G F(3)$ is a code equivalent to the Pless symmetry code $C(17)$.

Note.

Every row of the regular Hadamard matrix H from part (b) of the theorem contains 15 entries equal to 1 and 21 entries equal to -1 . A $(0,1)$-incidence matrix A of the associated symmetric $2-(36,15,6)$ design D is obtained by adding the all-one codeword $\overline{1}$ to every row of H, followed by a multiplication of all rows by $2(\bmod 3)$. Hence, the ternary code spanned by the rows of H contains also the rows of A.

Automorphisms of ternary self-dual $[36,18,12]$ codes

Theorem (Huffman 1992; Eisenbarth and Nebe 2020)

- Up to equivalence, the only ternary self-dual $[36,18,12]$ code with an automorphism of an odd prime order is the Pless symmetry code $C(17)$.
- A ternary self-dual $[36,18,12]$ code is either equivalent to the Pless symmetry code $C(17)$ or its full automorphism group is a subgroup of the cyclic group of order 8.

These results and the fact that the Pless symmetry code is spanned by the incidence matrices of symmetric $2-(36,15,6)$ designs, including one having a trivial full automorphism group, motivated us to study symmetric 2-($36,15,6$) designs with an automorphism of order 2 (or an involution) and the related ternary codes.

2-(36,15,6) designs with an involution

The first step in the process of constructing a design with a prescribed automorphism group is to find all admissible orbit orbit matrices.
Let $\mathcal{D}=(\mathcal{P}, \mathcal{B})$ be a $2-(v, k, \lambda)$ design and $G \leq \operatorname{Aut}(\mathcal{D})$.
We denote by $\mathcal{P}_{1}, \ldots, \mathcal{P}_{m}$ the G-orbits of points, and by $\mathcal{B}_{1}, \ldots, \mathcal{B}_{n}$ the G-orbits of blocks. Let $\left|\mathcal{P}_{i}\right|=\nu_{i},\left|\mathcal{B}_{j}\right|=\beta_{j}, i=1, \ldots, m, j=1, \ldots, n$.
The matrix $M=\left\{m_{i j}\right)$, where $m_{i j}$ is the number of blocks from j th orbit of blocks that contain a point from the ith orbit of points, is called an orbit matrix of \mathcal{D} with respect to the group G. The entries of M satisfy the following equations:

$$
\begin{equation*}
\sum_{j=1}^{n} m_{i j}=r, \sum_{j=1}^{n} \frac{\nu_{t}}{\beta_{j}} m_{s j} m_{t j}=\lambda \nu_{t}+\delta_{s t}(r-\lambda) \tag{1}
\end{equation*}
$$

After finding all matrices that satisfy the equations (1), the next step of the construction process involves the expansion of every admissible orbit matrix to an incidence matrix of a $2-(v, k, \lambda)$ design.

In order to determine the possible orbit lengths distribution, we use the following upper and lower bounds on the number of fixed points.

Theorem (Lander 1983)

- Suppose that σ is a nontrivial automorphism of a symmetric 2- (v, k, λ) design that fixes f points. Then

$$
f \leq v-2(k-\lambda) \quad \text { and } \quad f \leq\left(\frac{\lambda}{k-\sqrt{k-\lambda}}\right) v
$$

Equality holds if σ is an involution and every non-fixed block contains exactly λ fixed points.

- If σ is an involution fixing $f \neq 0$ points then

$$
f \geq \begin{cases}1+\frac{k}{\lambda}, & \text { if } k \text { and } \lambda \text { are both even } \\ 1+\frac{k-1}{\lambda}, & \text { otherwise }\end{cases}
$$

It follows that if σ is an involution of a symmetric $2-(36,15,6)$ then either $f=0$ or $4 \leq f \leq 18$. Our computations show that there are no orbit matrices for $f \in\{6,14,18\}$.

Symmetric 2-(36, 15, 6) designs with an involution and their ternary codes

\# fixed pts	\# orbit matrices	\# designs	self-dual codes	$\max d$
0	119,907	13,869	none	-
4	12,991	884,139	+	12
8	670	498,592	none	-
10	56	186,369	none	-
12	311	$3,719,232$	+	9
16	83	209,160	none	-

2-($36,15,6$) designs with an involution and extremal self-dual codes

The classification of 2-(36,15,6) designs with an involution and 3-rank 18 implies the following.

Theorem

(1) Up to isomorphism, there exists exactly one symmetric $2-(36,15,6)$ design D that admits an automorphism of order 2 and its incidence matrix spans an extremal ternary self-dual code of length 36.
(2) The full automorphism group G of D is of order 24, and G is isomorphic to the symmetric group S_{4}.
(3) The regular Hadamard matrix associated with D is equivalent to the Paley-Hadamard matrix of type II.
(4) The ternary code spanned by the incidence matrix of D is equivalent to the Pless symmetry code.

Thank You!

Bibliography

- E. F. Assmus, Jr. and H. F. Mattson, Jr., New 5-designs, JCTA 6 (1969), 122-151.
- S. Eisenbarth, G. Nebe, Self-dual codes over chain rings, Math. Comp. Sci. 14 (2020), 443-456.
- G. Nebe, D. Villar, An analogue of the Pless symmetry codes, 7th Int. Workshop "Optimal Codes and Related Topics", Sep. 6-12, 2013, Albena, Bulgaria, pp. 158-163.
- V. Pless, On a new family of symmetry codes and related new five-designs, Bull. Amer. Math. Soc. 75, No. 6 (1969), 1339-1342.
- V. Pless, Symmetry codes over GF(3) and new five-designs, JCTA 12 (1972), 119-142.
- S. Rukavina and V. D. Tonchev, Extremal ternary self-dual codes of length 36 and symmetric 2-($36,15,6$) designs with an automorphism of order 2, J. Alg. Combinatorics, doi.org/10.1007/s10801-022-01206-2, 29 Dec. 2022.
- V. D. Tonchev, On Pless symmetry codes, ternary QR codes, and related Hadamard matrices and designs, DCC 90, No. 11 (2022), 2753-2762.

