Partial permutation decoding for \mathbb{Z}_{p^s} -linear generalized Hadamard codes

Josep Rifà Adrián Torres-Martín Mercè Villanueva

Department of Information and Communications Engineering Combinatorics, Coding and Security Group

Rijeka Conference on Combinatorial Objects and Their Applications

Outline

1 Introduction

- \mathbb{Z}_{p^s} -linear codes
- Permutation decoding
- \mathbb{Z}_{p^s} -linear generalized Hadamard codes

2 *r*-PD-sets for \mathbb{Z}_{p^s} -linear GH codes

- Information sets
- Permutation automorphism group
- Criterion for r-PD-sets

3 Constructions of r-PD-sets of size r+1

- Explicit construction of r-PD-sets of size r + 1
- Recursive constructions of r-PD-sets

Contents

1 Introduction

- \mathbb{Z}_{p^s} -linear codes
- Permutation decoding
- \mathbb{Z}_{p^s} -linear generalized Hadamard codes

2 *r*-PD-sets for \mathbb{Z}_{p^s} -linear GH codes

- Information sets
- Permutation automorphism group
- Criterion for *r*-PD-sets
- 3 Constructions of r-PD-sets of size r+1
 - Explicit construction of r-PD-sets of size r + 1
 - Recursive constructions of r-PD-sets

Definition

A nonempty subset of $\mathbb{Z}_{p^s}^n$ is a \mathbb{Z}_{p^s} -additive code of length n if it is a subgroup of $\mathbb{Z}_{p^s}^n$.

• Isomorphic to $\mathbb{Z}_{p^s}^{t_1} \times \mathbb{Z}_{2^{s-1}}^{t_2} \times \cdots \times \mathbb{Z}_p^{t_s}$ and we say that it is of **type** $(n; t_1, \ldots, t_s)$. Permutation equivalent to a \mathbb{Z}_{p^s} -additive code with generator matrix in **standard form**:

$$\mathcal{G} = \begin{pmatrix} Id_{t_1} & A_{0,1} & A_{0,2} & A_{0,3} & \cdots & \cdots & A_{0,s} \\ \mathbf{0} & pId_{t_2} & pA_{1,2} & 2A_{1,3} & \cdots & \cdots & pA_{1,s} \\ \mathbf{0} & \mathbf{0} & p^2Id_{t_3} & p^2A_{2,3} & \cdots & \cdots & p^2A_{2,s} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \ddots & \ddots & & \vdots \\ \vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} & p^{s-1}Id_{t_s} & p^{s-1}A_{s-1,s} \end{pmatrix}$$

Definition

Generalization of Carlet's **Gray map**. $\Phi_s : \mathbb{Z}_{p^s} \longrightarrow \mathbb{Z}_p^{p^{s-1}}$,

$$\Phi_s(u) = (u_{s-1}, \dots, u_{s-1}) + (u_0, \dots, u_{s-2})Y_{s-1},$$

where $u = [u_0, u_1, \ldots, u_{s-1}]_2$ is the p-ary expansion of u and Y_{s-1} has the elements of \mathbb{Z}_p^{s-1} as columns.

Definition

If \mathcal{C} is a \mathbb{Z}_{p^s} -additive code of length n, then $\Phi_s(\mathcal{C})$ is called a \mathbb{Z}_{p^s} -linear code of length $p^{s-1}n$.

• $\Phi_s(\mathcal{C})$ is a code over \mathbb{Z}_p which may not be linear. That is, it may not be a linear subspace of $\mathbb{Z}_p^{p^{s-1}n}$.

Permutation decoding. Basic definitions

Let C be a t-error correcting code over \mathbb{Z}_p of length n.

Definition

- If C has p^k codewords, a set I ⊆ {1,...,n} of k coordinate positions is an information set if C_I = {u|_I : u ∈ C} satisfies |C_I| = |C| = p^k. If such a set exists, then C is called a systematic code.
- The **permutation automorphism group** of C is

$$PAut(C) = \{ \sigma \in Sym(n) : \sigma(C) = C \}.$$

A subset P ⊆ PAut(C) is called an r-PD-set if every r-set of coordinate positions is moved out of the information set by at least one element in P. If r = t, then P is called a PD-set.

Permutation decoding: Use a suitable element in a PD-set to move the errors out of the information coordinates in order to decode.

- Originally designed by Prange (1962), and developed by MacWilliams (1964), for linear codes.
- An alternative permutation decoding method was proposed, which can be used for any systematic code.
 - J. J. Bernal, J. Borges, C. Fernández-Córdoba, and M. Villanueva. Permutation decoding of $\mathbb{Z}_2\mathbb{Z}_4$ -additive codes. *Designs, Codes and Cryptography*, 76(2):269–277, 2015.
- \mathbb{Z}_{p^s} -linear codes were proved to be systematic.
 - A. Torres-Martín and M. Villanueva. Systematic encoding and permutation decoding for \mathbb{Z}_{p^s} -linear codes. *IEEE Transactions on Information Theory*, 68(7):4435–4443, 2022.

\mathbb{Z}_{p^s} -linear generalized Hadamard codes

Definition

A generalized Hadamard (GH) code C over \mathbb{Z}_p of length N is defined as $C = \bigcup_{\alpha \in \mathbb{Z}_p} \{\mathbf{h} + \alpha \mathbf{1} : \mathbf{h} \in F_H\}$, where F_H is the code consisting of the rows of a generalized Hadamard matrix of order N over \mathbb{Z}_p .

Proposition

A GH code over \mathbb{Z}_p of length N has pN codewords and minimum distance $\frac{(p-1)N}{p}$.

- Z_{p^s}-linear GH codes allow for an easier approach to the PAut. In particular, r-PD-sets for Z₄-linear Hadamard codes have been studied.
 - R. D. Barrolleta and M. Villanueva. Partial permutation decoding for binary linear and Z₄-linear Hadamard codes. *Des. Codes Cryptogr.*, 86(3):569–586, 2018.

Rifà, Torres, Villanueva (UAB)

RICCOTA 2023

\mathbb{Z}_{p^s} -linear generalized Hadamard codes

• Consider the matrix $\mathcal{G}^{t_1,\dots,t_s}$ whose columns are all the elements in $\{1\} \times \mathbb{Z}_{p^s}^{t_1-1} \times (p\mathbb{Z}_{p^s})^{t_2} \times \cdots \times (p^{s-1}\mathbb{Z}_{p^s})^{t_s}.$

Example

For p = 3 and s = 3, $\mathcal{G}^{2,0,1}$ is the following matrix over \mathbb{Z}_{27} :

Definition

Let $\mathcal{H}^{t_1,...,t_s}$ be the \mathbb{Z}_{p^s} -additive code generated by $\mathcal{G}^{t_1,...,t_s}$, and let $H^{t_1,...,t_s} = \Phi(\mathcal{H}^{t_1,...,t_s})$ be the corresponding \mathbb{Z}_{p^s} -linear code. $H^{t_1,...,t_s}$ is a generalized Hadamard code.

Contents

1 Introduction

- \mathbb{Z}_{p^s} -linear codes
- Permutation decoding
- \mathbb{Z}_{p^s} -linear generalized Hadamard codes

2 *r*-PD-sets for \mathbb{Z}_{p^s} -linear GH codes

- Information sets
- Permutation automorphism group
- Criterion for *r*-PD-sets

3 Constructions of r-PD-sets of size r+1

- Explicit construction of r-PD-sets of size r + 1
- Recursive constructions of r-PD-sets

Definition

 $\mathcal{I} = \{i_1, \ldots, i_{t_1 + \cdots + t_s}\} \subseteq \{1, \ldots, n\} \text{ is an additive information set for} \\ a \mathbb{Z}_{p^s}\text{-additive code } \mathcal{C} \text{ of type } (n; t_1, \ldots, t_s) \text{ if } |\mathcal{C}_{\mathcal{I}}| = p^{st_1 + (s-1)t_2 + \cdots + t_s}.$

Proposition. [Torres-Martín and Villanueva, 2022]

From an additive information set \mathcal{I} for \mathcal{C} , we can obtain an information set $I = \Phi(\mathcal{I})$ for $C = \Phi(\mathcal{C})$.

Example

 $\mathcal{I} = \{1, 2, 9\}$ is an additive information set for $\mathcal{H}^{2,0,1}$.

 $\Phi(\mathcal{I}) = \{1, 2, 3, 5, 6, 7, 33\}$ is an information set for $H^{2,0,1} = \Phi(\mathcal{H}^{2,0,1})$.

Let \mathcal{L} be the set of matrices over \mathbb{Z}_{p^s} of the form

$$\begin{pmatrix} 1 & a_1 & pa_2 & \cdots & p^{s-2}a_{s-1} & p^{s-1}a_s \\ \mathbf{0} & A_{1,1} & pA_{1,2} & \cdots & p^{s-2}A_{1,s-1} & p^{s-1}A_{1,s} \\ \mathbf{0} & A_{2,1} & A_{2,2} & \cdots & p^{s-3}A_{2,s-1} & p^{s-2}A_{2,s} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \mathbf{0} & A_{s-1,1} & A_{s-1,2} & \cdots & A_{s-1,s-1} & pA_{s-1,s} \\ \mathbf{0} & A_{s,1} & A_{s,2} & \cdots & A_{s,s-1} & A_{s,s} \end{pmatrix}$$

where $A_{i,i}$ are invertible matrices.

,

Let $\pi(\mathcal{L})$ be the set of matrices over \mathbb{Z}_{p^s} of the form

where $A_{i,i}$ are invertible matrices.

,

Let $\pi(\mathcal{L})$ be the set of matrices over \mathbb{Z}_{p^s} of the form

where $A_{i,i}$ are invertible matrices.

Lemma

 $\pi(\mathcal{L}) \subseteq \operatorname{GL}(t_1 + \dots + t_s, \mathbb{Z}_{p^s})$ is a group with the operation $\mathcal{M} * \mathcal{N} = \pi(\mathcal{M}\mathcal{N})$, for all $\mathcal{M}, \mathcal{N} \in \pi(\mathcal{L})$.

Theorem

 $\operatorname{PAut}(\mathcal{H}^{t_1,\ldots,t_s})$ is isomorphic to $\pi(\mathcal{L})$.

,

• A matrix $\mathcal{M} \in \text{PAut}(\mathcal{H}^{t_1,\dots,t_s})$ sends columns of $\mathcal{G}^{t_1,\dots,t_s}$ to other columns of $\mathcal{G}^{t_1,\dots,t_s}$. Therefore \mathcal{M} can be seen as a permutation $\tau \in \text{Sym}(n)$, such that $\tau(i) = j$ iff $w_j = w_i \mathcal{M}$, where w_i, w_j are the columns i, j in $\mathcal{G}^{t_1,\dots,t_s}$.

Definition

Let $\Phi : \operatorname{Sym}(n) \to \operatorname{Sym}(p^{s-1}n)$ be the map defined as

$$\Phi(\tau)(i) = p^{s-1} \left[\tau \left(\left\lfloor \frac{i-1}{p^{s-1}} \right\rfloor + 1 \right) - 1 \right] + (i \mod p^{s-1}),$$

Example. p = 2, s = 2

 $\tau = (1,2) \in \operatorname{Sym}(n) \Longrightarrow \Phi(\tau) = (1,5)(2,6)(3,7)(4,8) \in \operatorname{Sym}(4n)$

• We define $\Phi(\mathcal{M}) = \Phi(\tau) \in \operatorname{Sym}(p^{s-1}n).$

Theorem

 $\mathcal{P}_r = \{\mathcal{M}_i : 0 \leq i \leq r\} \subseteq \text{PAut}(\mathcal{H}^{t_1,\dots,t_s}). \ \Phi(\mathcal{P}_r) \text{ is an } r\text{-}PD\text{-set of size } r+1 \text{ for } H^{t_1,\dots,t_s} \text{ iif no two matrices } (\mathcal{M}_i^{-1})^* \text{ and } (\mathcal{M}_j^{-1})^*, i \neq j, \text{ have a row in common.}$

• Upper bound:
$$r \leq f_p^{t_1,...,t_s} = \begin{bmatrix} \frac{p^{st_1+(s-1)t_2+\cdots+t_s-t_1-t_2-\cdots-t_s}}{t_1+t_2+\cdots+t_s} \end{bmatrix}$$

Contents

1 Introduction

- \mathbb{Z}_{p^s} -linear codes
- Permutation decoding
- \mathbb{Z}_{p^s} -linear generalized Hadamard codes

2 *r*-PD-sets for \mathbb{Z}_{p^s} -linear GH codes

- Information sets
- Permutation automorphism group
- Criterion for *r*-PD-sets

3 Constructions of r-PD-sets of size r+1

- Explicit construction of r-PD-sets of size r + 1
- Recursive constructions of r-PD-sets

Goal: Find a set of matrices $\{\mathcal{M}_0^*, \ldots, \mathcal{M}_r^*\}, r \leq f_p^{t_1, \ldots, t_s}$, with no row in common such that $\{\mathcal{M}_0^{-1}, \ldots, \mathcal{M}_r^{-1}\} \subseteq \text{PAut}(\mathcal{H}^{t_1, \ldots, t_s}).$

- GR $(p^{s(t_1-1)}) \cong \mathbb{Z}_{p^s}[x]/(h(x)), h(x)$ monic basic primitive of degree $t_1 1, h(x) | x^l 1$, where $l = p^{t_1-1} 1$.
- α root of h(x) of order l. $T = \{0, 1, \alpha, \alpha^2, \dots, \alpha^{l-1}\}.$
- p-adic representation: $y = a_1 + pa_2 + p^2a_3 + \dots + p^{s-1}a_s, a_i \in T$
- $\mathcal{R} = \mathbb{Z}_{p^s}[x]/(h(x)) = \{y_1, \dots, y_{p^{s(t_1-1)}}\}$, with lexicographical order.
- Additive representation: $y = \sum_{i=0}^{t_1-2} b_i \alpha^i, b_i \in \mathbb{Z}_{p^s}$. Represented as (b_0, \ldots, b_{t_1-2}) .

Explicit construction of r-PD-sets of size r + 1

• Define the set of matrices $\mathcal{P}_r = \{\mathcal{M}_0^{-1}, \dots, \mathcal{M}_r^{-1}\},$ where

$$\mathcal{M}_i^* = \left(\begin{array}{ccc} 1 & y_{t_1i+1} \\ \vdots & \vdots \\ 1 & y_{t_1(i+1)} \end{array}\right)$$

• Note that there are $\lfloor \frac{p^{s(t_1-1)}}{t_1} \rfloor = f_p^{t_1,0,\dots,0} + 1$. Therefore r can reach the bound $f_p^{t_1,0,\dots,0}$.

Theorem

 $\Phi(\mathcal{P}_r)$ is an r-PD-set of size r+1 for the \mathbb{Z}_{p^s} -linear GH code $H^{t_1,0,\ldots,0}$, for all $t_1 \geq 3$ and $2 \leq r \leq f_p^{t_1,0,\ldots,0}$.

Explicit construction of r-PD-sets of size r + 1

Example. *r*-PD-sets for $H^{3,0,0}$, p = 2

•
$$\mathcal{R} = \mathbb{Z}_{8}[x]/(h(x)), h(x) = x^{2} + x + 1.$$

• α root of $h(x)$. $T = \{0, 1, \alpha, \alpha^{2}\}.$
• $\mathcal{R} = \{0, 1, \alpha, 7\alpha + 7, 2, 3, \dots, 2 + 2\alpha, 3 + 2\alpha, 2 + 3\alpha, 1 + \alpha\}.$
• **Example:** $y = \alpha^{2} = -1 - \alpha = 7 + 7\alpha \longleftrightarrow (7, 7).$
• $r \leq f_{2}^{3,0,0} = \lfloor \frac{2^{6} - 3}{3} \rfloor = 20$
 $\mathcal{M}_{0}^{*} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}, \mathcal{M}_{1}^{*} = \begin{pmatrix} 1 & 7 & 7 \\ 1 & 2 & 0 \\ 1 & 3 & 0 \end{pmatrix}, \mathcal{M}_{2}^{*} = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 1 & 7 \\ 1 & 0 & 2 \end{pmatrix},$
 $\mathcal{M}_{3}^{*} = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 0 & 3 \\ 1 & 7 & 1 \end{pmatrix}, \mathcal{M}_{4}^{*} = \begin{pmatrix} 1 & 6 & 6 \\ 1 & 7 & 6 \\ 1 & 6 & 7 \end{pmatrix}, \mathcal{M}_{5}^{*} = \begin{pmatrix} 1 & 4 & 0 \\ 1 & 4 & 0 \\ 1 & 5 & 0 \end{pmatrix},$
 $\mathcal{M}_{6}^{*} = \begin{pmatrix} 1 & 4 & 1 \\ 1 & 3 & 7 \\ 1 & 6 & 0 \end{pmatrix}, \mathcal{M}_{7}^{*} = \begin{pmatrix} 1 & 7 & 0 \\ 1 & 6 & 1 \\ 1 & 5 & 7 \end{pmatrix}, \mathcal{M}_{8}^{*} = \begin{pmatrix} 1 & 4 & 2 \\ 1 & 5 & 2 \\ 1 & 4 & 3 \end{pmatrix}.$

Explicit construction of r-PD-sets of size r + 1

Example. r-PD-sets for $H^{3,0,0}$

•
$$\mathcal{P}_8 = \{\mathcal{M}_0^{-1}, \dots, \mathcal{M}_8^{-1}\} \subseteq \operatorname{PAut}(\mathcal{H}^{3,0,0}).$$

• $\Phi(\mathcal{P}_8) \subseteq \text{Sym}(256)$ is an 8-PD-set of size 9 for $H^{3,0,0}$ with information set $\Phi(\mathcal{I}_{3,0,0}) = \{1, 2, 3, 5, 6, 7, 33, 34, 35\}.$

$$\mathcal{M}_{1}^{*} = \begin{pmatrix} 1 & 7 & 7 \\ 1 & 2 & 0 \\ 1 & 3 & 0 \end{pmatrix} \longrightarrow \mathcal{M}_{1} = \begin{pmatrix} 1 & 7 & 7 \\ 0 & 3 & 1 \\ 0 & 4 & 1 \end{pmatrix} \longrightarrow \mathcal{M}_{1}^{-1} = \begin{pmatrix} 1 & 3 & 6 \\ 0 & 7 & 1 \\ 0 & 4 & 5 \end{pmatrix}$$

 $\rightarrow \tau_1 = (1, 52, 57, 16, 17, 4, 9, 32, 33, 20, 25, 48, 49, 36, 41, 64)$

(2, 59, 30, 19, 18, 11, 46, 35, 34, 27, 62, 51, 50, 43, 14, 3)

(5, 24, 61, 44, 21, 40, 13, 60, 37, 56, 29, 12, 53, 8, 45, 28)

 $(6, 31, 26, 55, 22, 47, 42, 7, 38, 63, 58, 23, 54, 15, 10, 39) \in$ Sym(64)

 $\rightarrow \Phi(\tau_1) = (1, 205, 225, 61, 65, 13, 33, 125, 129, 77, 97, 189, 193, 141, 161, 253)$

 $(24, 124, 104, 220, 88, 188, 168, 28, 152, 252, 232, 92, 216, 60, 40, 156) \in Sym(256)$

Main idea: r-PD-sets for $H^{t_1,t_2,t_3} \longrightarrow r$ -PD-sets for $H^{t_1+i_1,t_2+i_2,t_3+i_3}$.

Drawback: r does not increase, even when the bound $f_p^{t_1,t_2,t_3}$ does.

Example

If $\sigma_1 = (1, 2, 3) \in \text{Sym}(4)$ and $\sigma_2 = (1, 2) \in \text{Sym}(3)$, then

 $(\sigma_1 \mid \sigma_2) = (1, 2, 3)(5, 6) \in \text{Sym}(7).$

Construction for non-free codes

 $r_{i_1}, \ldots, r_{i_{t_1}}$ consecutive in the ordered sequence $r_1, \ldots, r_{8^{t_1-1}}$,

Construction for non-free codes

Construction for non-free codes

Proposition

There exists an r-PD-set of size r+1 for H^{t_1,t_2,t_3} for every

$$r \le 4^{t_2} 2^{t_3} \alpha - 1, \tag{1}$$

where $\alpha = \tau d_4$ is the maximum multiple of $d_4 = 2^{t_1 - 1} d_2$, with $d_2 = \lfloor \frac{2^{t_1 - 1}}{t_1} \rfloor$, such that the following conditions are satisfied:

$$\alpha \le t_1 d_2 \left[\frac{4^{t_1 - 1} - 2^{t_1 - 1} \tau}{t_2 + t_3} \right] \text{ when } t_2 + t_3 > 0,$$

$$\alpha \le t_1 d_4 \left[\frac{2^{t_1 - 1} - \tau}{t_3} \right] \text{ when } t_3 > 0.$$
(2)
(3)

t_2	$r_{4,t_2,0}$	$f_2^{4,t_2,0}$	$r_{4,t_2,1}$	$f_2^{4,t_2,1}$	$r_{4,t_2,2}$	$f_2^{4,t_2,2}$	$r_{4,t_2,3}$	$f_2^{4,t_2,3}$
0	127	127	191	203	255	340	511	584
1	383	408	639	681	1023	1169	2047	2047
2	1279	1364	2047	2339	4095	4095	6143	7280
3	4095	4680	8191	8191	12287	14562	24575	26213

Rifà, Torres, Villanueva (UAB)

Thank You!