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Orthogonal arrays

2-(3, 4, 1) orthogonal array

t-(q, n, λ) orthogonal array

I t = # chosen columns

I q = # colors

I n = length of rows

I λ = how often we see a t-tuple

Applications:

statistics, coding theory, cryptography, software testing, . . .
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Ordered orthogonal array (OOA)

No orthogonal array

with t = 2!

t-(q, n, r , λ) ordered orthogonal array

I t = # chosen ordered columns

I q = # colors

I n = # blocks

I r = # ordered columns per block

I λ = how often we see a t-tuple

Applications:

numerical integration (connected to (t,m, s)-nets), coding theory,

cryptography, . . .
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Main questions

Trivial examples:

The complete set of n-tuples or nr -tuples on q symbols is a

t-orthogonal array or t-OOA for all t, respectively.

Goal: Orthogonal arrays and OOAs having as few rows as possible.

Main questions:

I For a given t, how small can a t-orthogonal array be?

I For a given t, how small can a t-OOA be?

N(n) = minimum number N such that a t-(q, n, λ) orthogonal

array with N rows exists for some λ.

Accordingly, define N∗(n, r) for t-(q, n, r , λ) OOAs.
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Lower bounds

Orthogonal array: Rao bound 1973

N(n) ≥
(cqn

t

)t/2
(c is a universal constant independent of all other parameters)

OOA:

Every t-(q, n, r , λ) OOA gives a t-(q, n, λ) orthogonal array.

Choose only the first column in every block

of the OOA.

N∗(n, r) ≥ N(n) ≥
(cqn

t

)t/2
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Existence of orthogonal arrays

Theorem (Kuperberg-Lovett-Peled 2017)

For all integers q, n, t with q ≥ 2 and 1 ≤ t ≤ n, there exists a

t-(q, n, λ) orthogonal array Y such that

|Y | ≤
(cqn

t

)ct
for some universal constant c > 0.

This gives (c ′qn
t

)t/2
≤ N(n) ≤

(cqn
t

)ct
for some universal constants c , c ′ > 0.
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Upper bound for OOAs

Orthogonal array:

N(n) ≤
(cqn

t

)ct

Every t-(q, nr , λ) orthogonal array gives a t-(q, n, r , λ) OOA.

Divide the nr columns into n blocks

each of size r .

N∗(n, r) ≤ N(nr) ≤
(cqnr

t

)ct
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Main result

(c ′qn
t

)t/2
≤ N∗(n, r) ≤

(cqnr
t

)ct
(?)

Theorem (Schmidt-W. 2023)

For all integers q, n, r , t with q ≥ 2 and 1 ≤ t ≤ nr , there exists

a t-(q, n, r , λ) ordered orthogonal array Y such that

|Y | ≤
(
cq(n + t)

t

)ct

for some universal constant c > 0.

Roughly speaking, the lower bound (?) is more accurate than the

upper bound (?) if n is large compared to t.

The proof is nonconstructive and based on a probabilistic method.
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Constructions of OOAs

Besides using (t,m, s)-nets, only a few constructions of OOAs are

known, for example:

• Rosenbloom-Tsfasman (1997)

• Skriganov (2001)

• Castoldi-Moura-Panario-Stevens (2017)

• Panario-Saaltink-Stevens-Wevrick (2019)

They all give MDS-like codes, namely optimal t-(q, n, r , 1) OOAs

of size qt if q is a prime power with q ≥ n − 1.
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KLP theorem

Kuperberg, Lovett, and Peled (2017) established a theorem that

proves the existence of “regular combinatorial objects” by

probabilistic techniques.

It has been applied to

• orthogonal arrays, combinatorial t-designs,

t-wise permutations (Kuperberg-Lovett-Peled 2017)

• t-designs over finite fields (Fazeli-Lovett-Vardy 2014)

• large sets of combinatorial t-designs (Lovett-Rao-Vardy 2020)

• large sets of t-designs over finite fields (Bao-Ji 2022)

• ...
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Basic idea of the KLP theorem

“Regular combinatorial objects”: highly symmetric objects with

many simultaneous conditions of exact count.

t-(q, n, r , λ) OOA:

collection of vectors in [q]nr such that on any t coordinates (that

are allowed to choose), each one of the possible qt patterns occurs

exactly λ times.

Basic idea of KLP theorem

If the regular combinatorial objects satisfy certain properties,

then the probability that a random construction works is positive,

albeit tiny. Thus, the object exists.
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Framework of KLP theorem

Let M be an integer matrix with row set R and column set C .

Goal: Find a small subset Y of rows whose average equals the

average of all rows

1

|Y |
∑
x∈Y

row(x) =
1

|R|
∑
x∈R

row(x).

Orthogonal arrays:

Take the incidence matrix M of n-tuples vs. t-tuples.

∗ ∗ ∗ �

3-tuple 6-tuple
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Incidence matrix

��∗ ��∗ �∗� · · ·



��� 1 0 0 0 0 0 0 0 0 0 1 1

��� 0 1 1 0 0 0 0 0 0 0 0 1

��� 0 0 0 1 1 0 0 0 0 0 1 0

��� 1 0 0 0 0 1 1 0 0 0 0 0

M = ��� 0 0 1 1 0 0 0 1 0 0 0 0

��� 0 1 0 0 0 0 1 0 1 0 0 0

��� 0 0 0 0 1 1 0 0 0 1 0 0

��� 0 0 0 0 0 0 0 1 1 1 0 0
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��� 0 0 0 0 0 0 0 1 1 1 0 0

∑
x∈R

row(x)=
(

2 2 2 2 2 2 2 2 2 2 2 2
)
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Incidence matrix
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M = ��� 0 0 1 1 0 0 0 1 0 0 0 0

��� 0 1 0 0 0 0 1 0 1 0 0 0

��� 0 0 0 0 1 1 0 0 0 1 0 0

��� 0 0 0 0 0 0 0 1 1 1 0 0

This gives

1

4
(1, . . . , 1) =

1

|Y |
∑
x∈Y

row(x) =
1

|R|
∑
x∈R

row(x) =
1

8
(2, . . . , 2).
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Orthogonal arrays

A subset Y of rows of M satisfying

1

|Y |
∑
x∈Y

row(x) =
1

|R|
∑
x∈R

row(x)

is precisely a t-(q, n, λ) orthogonal array.
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KLP theorem

Theorem (KLP theorem)

If the matrix M satisfies certain conditions, then there is a small

subset Y of rows in M such that

1

|Y |
∑
x∈Y

row(x) =
1

|R|
∑
x∈R

row(x).

(Small means polynomial in the number of columns of M and

other parameters.)
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“Easy conditions”

Let V be the vector space over Q spanned by the columns of M.

Boundedness of V :

All entries in M are “small”.

I This is trivially true for incidence matrices.

Constant vectors:

The subspace V contains the constant vectors.

I The sum of columns in M is
(n
t

)
· (1, . . . , 1)T .

Symmetry:

The symmetry group of M acts transitively on the rows of M.
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Divisibility condition

We want a small subset Y with∑
x∈Y

row(x) = |Y | · 1

|R|
∑
x∈R

row(x).

Divisibility: There exists a small integer c such that

c · 1

|R|
∑
x∈R

row(x)

can be expressed as an integer combination of the rows of M.
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Boundedness of V⊥

Let V⊥ be the orthogonal complement of V in QR .

Boundedness of V⊥:

The subspace V⊥ is spanned by “short” integer vectors.

This is usually the hardest condition to check!
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Main result

Theorem (Schmidt-W. 2023)

For all integers q, n, r , t with q ≥ 2 and 1 ≤ t ≤ nr , there exists

a t-(q, n, r , λ) ordered orthogonal array Y such that

|Y | ≤
(
cq(n + t)

t

)ct

for some universal constant c > 0.
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