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Background and motivation



Johnson, Grassmann and Hamming graphs

Johnson Grassmann Hamming

Notation 𝐽(𝑛, 𝑘) 𝐽𝑞(𝑛, 𝑘) 𝐻(𝑛, 𝑞)

Vertices ([𝑛]
𝑘 ) 𝑘-dim. subspaces of 𝔽𝑛

𝑞 {0, 1, … , 𝑞 − 1}𝑛

Edges |𝑢 ∩ 𝑣| = 𝑘 − 1 dim 𝑢 ∩ 𝑣 = 𝑘 − 1 𝑞 − 1 entries same
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Generalized Johnson and Grassmann graphs

Let 𝑆 ⊆ {0, 1, … , 𝑘 − 1}

Johnson Grassmann Hamming

Notation 𝐽𝑆(𝑛, 𝑘) 𝐽𝑞,𝑆(𝑛, 𝑘) 𝐻(𝑛, 𝑞)

Vertices ([𝑛]
𝑘 ) 𝑘-dim. subspaces of 𝔽𝑛

𝑞 {0, 1, … , 𝑞 − 1}𝑛

Edges |𝑢 ∩ 𝑣| ∈ 𝑆 dim 𝑢 ∩ 𝑣 ∈ 𝑆 𝑞 − 1 entries same
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Why (generalized) Johnson, Grassmann and Hamming graphs?

Structure: distance-regular → rich algebraic structure

Applications: designs, codes, association schemes, …
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Why (generalized) Johnson, Grassmann and Hamming graphs?

(Chen, Lih 1987) Hamiltonicity generalized Johnson graphs

(Van Dam, Haemers, Koolen, Spence 2006) Johnson and Grassmann
graphs not determined by their spectrum

(Meagher, Bailey 2012) Metric dimension of Grassmann graphs

(Alspach 2013) Johnson graphs Hamiltonian connected

(Balogh, Cherkashin, Kiselev 2019) Coloring of generalized Kneser
graphs

…
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Why (generalized) Johnson, Grassmann and Hamming graphs?

(Chen, Lih 1987) Hamiltonicity generalized Johnson graphs

(Van Dam, Haemers, Koolen, Spence 2006) Johnson and Grassmann
graphs not determined by their spectrum

(Meagher, Bailey 2012) Metric dimension of Grassmann graphs

(Alspach 2013) Johnson graphs Hamiltonian connected

(Balogh, Cherkashin, Kiselev 2019) Coloring of generalized Kneser
graphs

Diameter, zero forcing?
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Graph diameter

Largest distance between two
vertices

3

Polynomial-time computable, but

• our graphs are large;
• finding a closed expression is hard
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Zero forcing on graphs

Graph 𝐺 = (𝑉 , 𝐸) with set 𝐵 ⊆ 𝑉 of orange vertices

Force: unique uncolored neighbor of a orange vertex is colored
orange
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Zero forcing on graphs

Graph 𝐺 = (𝑉 , 𝐸) with set 𝐵 ⊆ 𝑉 of orange vertices

Zero forcing number 𝑍(𝐺): minimum |𝐵| such that all of 𝑉 is forced

(Yang 2013) In general, this is NP-hard
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History and applications

(Haynes, Hedetniemi, Hedetniemi, Henning 2002) Power domination
(placing Phasor Measurement Units in electrical networks)

(Burgarth, Giovannetti 2007) Zero forcing for quantum system control

(AIM workshop 2008) Zero forcing as an upper bound for minimum
rank

↕ ?

(Alon 2008) Zero forcing on Cayley graphs, relation minimum rank
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Known results

(Agong, Amarra, Caughman, Herman, Terada 2018) Diameter and girth
of generalized Johnson graphs

(Fallat, Meagher, Soltani, Yang 2016) 𝑍(𝐽(𝑛, 2)) = (𝑛
2) − 𝑛 + 2

(Bres̆ar, Gologranc, Kos 2016) 𝑍(𝐾(𝑛, 𝑘)) = (𝑛
𝑘) − (2𝑘

𝑘 ) if 𝑛 ≥ 3𝑘 + 1

(AIM workshop 2008) 𝑍(𝐻(2, 𝑞)) = 𝑞2 − 2𝑞 + 2.

(AIM workshop, Alon 2008) 𝑍(𝐻(𝑛, 2)) = 2𝑛−1
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Our contribution

• Diameter: generalized Grassmann graphs

• Zero forcing: Hamming graphs and generalized Johnson,
Grassmann graphs
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Diameter



Generalized Grassmann graphs

Let 𝑆 ⊆ {0, 1, … , 𝑘 − 1}

Johnson Grassmann Hamming

Notation 𝐽𝑆(𝑛, 𝑘) 𝐽𝑞,𝑆(𝑛, 𝑘) 𝐻(𝑛, 𝑞)

Vertices ([𝑛]
𝑘 ) 𝑘-dim. subspaces of 𝔽𝑛

𝑞 {0, 1, … , 𝑞 − 1}𝑛

Edges |𝑢 ∩ 𝑣| ∈ 𝑆 dim 𝑢 ∩ 𝑣 ∈ 𝑆 𝑞 − 1 entries same

𝐽𝑞,𝑆(𝑛, 𝑘) ≃ 𝐽𝑞,{𝑠+𝑛−2𝑘∣𝑠∈𝑆}(𝑛, 𝑛 − 𝑘) → assume 𝑛 ≥ 2𝑘
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Diameter and girth

(Agong, Amarra, Caughman, Herman, Terada 2018) Diameter and girth
of generalized Johnson graphs

(Caughman, Herman, Terada 2023) Distance function and odd girth of
generalized Johnson graphs
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Diameter and girth

Nice fact: #trivially intersecting 𝑘-subspaces of 𝔽𝑛
𝑞 >> #disjoint

𝑘-subsets of [𝑛].

Theorem
Let 𝑛 ≥ 2𝑘 and 𝑠 = min 𝑆. Then

diam (𝐽𝑞,𝑆(𝑛, 𝑘)) = { 2 if 𝑠 = 0
⌈ 𝑘

𝑘−𝑠 ⌉ if 𝑠 ≠ 0.

Theorem
Every generalized Grassmann graph with 𝑆 ≠ ∅ has girth 3.
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Zero forcing



Relations between families

Gen. Grassmann
𝐽𝑞,𝑆(𝑛, 𝑘) 𝑞 = 1 Gen. Johnson

𝐽𝑆(𝑛, 𝑘)
𝑆

=
{𝑘

−
1}

𝑆
=

{𝑘
−

1} 𝑆 = {0}

𝑞 = 1

12

13

14

34

24

23

13

24

3514

25
45

15

1223

34

Grassmann
𝐽𝑞(𝑛, 𝑘)

Johnson
𝐽(𝑛, 𝑘)

Kneser
𝐾(𝑛, 𝑘)

11



Known results

(Fallat, Meagher, Soltani, Yang 2016)

𝑍(𝐽(𝑛, 2)) = (𝑛
2) − 𝑛 + 2

(Bres̆ar, Gologranc, Kos 2016)

𝑍(𝐾(𝑛, 𝑘)) = (𝑛
𝑘) − (2𝑘

𝑘 )

if 𝑛 ≥ 3𝑘 + 1; upper bound for 𝑛 ≤ 3𝑘
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The case max(𝑆) = 𝑠

Theorem
Let 𝑆 ⊆ {0, 1, … , 𝑘 − 3} with 𝑠 ∶= max(𝑆),
and 𝑛 ≥ max(3𝑘 − 2𝑠, 2𝑘 + 1). Then

𝑍(𝐽𝑞,𝑆(𝑛, 𝑘)) ≤ [𝑛
𝑘]

𝑞
− (2𝑘 − 2𝑠

𝑘 − 𝑠 ).

If 𝑆 = {0, 1, … , 𝑠}, equality holds throughout.

Note: independent of 𝑛 and 𝑞
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Corollaries for subfamilies

gen. Grassmann 𝑍(𝐽𝑞,𝑆(𝑛, 𝑘)) ≤ [𝑛
𝑘]

𝑞
− (2𝑘 − 2𝑠

𝑘 − 𝑠 )

↓

gen. Johnson 𝑍(𝐽𝑆(𝑛, 𝑘)) ≤ (𝑛
𝑘) − (2𝑘 − 2𝑠

𝑘 − 𝑠 )

↓

Kneser (BGK 2016) 𝑍(𝐾(𝑛, 𝑘)) = (𝑛
𝑘) − (2𝑘

𝑘 )
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Conditions

Theorem
Let 𝑆 ⊆ {0, 1, … , 𝑘 − 3} with 𝑠 ∶= max(𝑆),
and 𝑛 ≥ max(3𝑘 − 2𝑠, 2𝑘 + 1). Then

𝑍(𝐽𝑞,𝑆(𝑛, 𝑘)) ≤ [𝑛
𝑘]

𝑞
− (2𝑘 − 2𝑠

𝑘 − 𝑠 ).

If 𝑆 = {0, 1, … , 𝑠}, equality holds throughout.

What about (𝑛, 𝑘, 𝑠) = (9, 4, 1)?
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Conjecture

Conjecture
Let 𝑆 ⊆ {0, 1, … , 𝑘 − 3} and 𝑛 ≥ 2𝑘 + 1, where 𝑠 ∶= max(𝑆). Then

𝑍(𝐽𝑆(𝑛, 𝑘)) ≤ [𝑛
𝑘]

𝑞
− (2𝑘 − 2𝑠

𝑘 − 𝑠 ).

If 𝑆 = {0, 1, … , 𝑠}, equality holds throughout.

Computational experiments for gen. Johnson graphs suggest this is
true

Construction found for 𝑠 = 1
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The case min(𝑆) = 𝑠

Only for generalized Johnson graphs:

Theorem
Let 𝑆 ⊆ {0, 1, … , 𝑘 − 1} with 𝑠 ∶= min(𝑆) and 𝑛 ≥ 2𝑘 − 𝑠. Then

𝑍(𝐽𝑆(𝑛, 𝑘)) ≤ (𝑛
𝑘) − (𝑛 − 2(𝑘 − 𝑠)

𝑠 ).

If 𝑆 = {𝑠, 𝑠 + 1, … , 𝑘 − 1}, equality holds throughout.
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Proving zero forcing bounds

• Upper bounds are ‘easy’: find a construction

• Lower bounds are hard: maximum nullity, Grundy domination,
etc.
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Upper bound for Johnson graphs

𝐵 = 𝑉 \{𝑣 ∈ 𝑉 ∣ 1 ∈ 𝑣, 2 ∉ 𝑣} → 𝑍(𝐽(𝑛, 𝑘)) ≤ |𝐵| = (𝑛
𝑘)−(𝑛 − 2

𝑘 − 1)
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Force 𝑣 with (𝑣\1) ∪ 2: 24 → 14, 23 → 13
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Upper bound for Johnson graphs

Johnson 𝑉 \{𝐴 ∈ 𝑉 ∣ 1 ∈ 𝐴, 2 ∉ 𝐴}

↓

gen. Johnson 𝑉 \{𝐴 ∈ 𝑉 ∣ [𝑘 − 𝑠] ⊂ 𝐴, 𝑘 − 𝑠 + 1, … , 2(𝑘 − 𝑠) ∉ 𝐴}
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Hamming graphs

Let 𝑆 ⊆ {0, 1, … , 𝑘 − 1}

Johnson Grassmann Hamming

Notation 𝐽𝑆(𝑛, 𝑘) 𝐽𝑞,𝑆(𝑛, 𝑘) 𝐻(𝑛, 𝑞)

Vertices ([𝑛]
𝑘 ) 𝑘-dim. subspaces of 𝔽𝑛

𝑞 {0, 1, … , 𝑞 − 1}𝑛

Edges |𝑢 ∩ 𝑣| ∈ 𝑆 dim 𝑢 ∩ 𝑣 ∈ 𝑆 𝑞 − 1 entries same

000

001

010

011

100

101

110

111

20



Main result

(AIM workshop 2008) 𝑍(𝐻(2, 𝑞)) = 𝑞2 − 2𝑞 + 2.

(AIM workshop, Alon 2008) 𝑍(𝐻(𝑛, 2)) = 2𝑛−1

Theorem
For any 𝑛, 𝑞 ≥ 2,

𝑍(𝐻(𝑛, 𝑞)) = 1
2 (𝑞𝑛 + (𝑞 − 2)𝑛) .
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A constructive upper bound

If 𝑛 = 2, the following is a zero forcing set:

22



A constructive upper bound

𝐻(𝑛, 𝑞) = 𝐻(𝑛 − 1, 𝑞)□𝐾𝑞

→ take 𝑞 copies of the zero forcing set of 𝐻(𝑛 − 1, 𝑞),
remove core vertices from one

(0, 4, 0)
(0, 0, 4)

(4, 0, 0)
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Closing remarks



Open problems

• Get rid of lower bound on 𝑛 for generalized Grassmann graphs;

Theorem
Let 𝑆 ⊆ {0, 1, … , 𝑘 − 3} and 𝑛 ≥ max(3𝑘 − 2𝑠, 2𝑘 + 1), where
𝑠 ∶= max(𝑆). Then

𝑍(𝐽𝑞,𝑆(𝑛, 𝑘)) ≤ [𝑛
𝑘]

𝑞
− (2𝑘 − 2𝑠

𝑘 − 𝑠 ).

If 𝑆 = {0, 1, … , 𝑠}, equality holds throughout.
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Open problems

• Get rid of lower bound on 𝑛 for generalized Grassmann graphs;

• Zero forcing number of classic Grassmann graphs;

• Zero forcing on distance-regular graphs in general.

arXiv:2302.07757
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