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Necklaces and Bracelets

Let Zn be a finite cyclic group. We are coloring
its vertices in r colours. The total number of col-
orings is rn. Colorings are equivalent if we can
get one from another by rotation.
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I. VINOGRADOV Elementary Number Theory, 1972.
The number of r-ary necklaces of length n is

Nr(n) =
1

n

∑
d|n

ϕ(d)r
d
,

whereϕ is the Euler function.



The number of r-ary bracelets of length n is

Br(n) =
1

2
Nr(n)+

{
1
4 (r + 1) r

n
2 if n is even

1
2r

n+1
2 if n is odd



Let G be a finite group. An r-coloring of G is
any mapping χ : G→ {1, . . . , r}.



Let G be a finite group. An r-coloring of G is
any mapping χ : G→ {1, . . . , r}.

The group G acts on the set of colorings. For
every coloring χ and g ∈ G, the coloring χg is
defined by χg(x) = χ(xg−1).



Let G be a finite group. An r-coloring of G is
any mapping χ : G→ {1, . . . , r}.

The group G acts on the set of colorings. For
every coloring χ and g ∈ G, the coloring χg is
defined by χg(x) = χ(xg−1).

So,
[χ] = {χg : g ∈ G}

is an orbit and

St(χ) = {g ∈ G : χg = χ}.

is a stabilizer of χ.



The number of orbits (r-ary necklaces) of group
G equals

Nr(G) =
1

|G|
∑
g∈G

r
|G:〈g〉|

where 〈g〉 is the subgroup generated by g.
The number of r-ary bracelets of abelian group
A equals
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2
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)
r
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In general case x is symmetric to (xg−1)−1g =
g(g−1x)−1 = gx−1g with respect to the centre
g.

O. LOOS, Symmetric Spaces, 1969.
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A coloring χ of G is symmetric if there exists
g ∈ G centre of symmetry such that

χ(gx
−1
g) = χ(x)

for all x ∈ G.

Colorings equivalent to a symmetric coloring are
also symmetric.

What is the number of orbits (symmetric r-ary
necklaces) sr(G) and what is the number of all
symmetric colorings Sr(G) ?
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x 7→ 2g − x
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x 7→ g − x

symmetry
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YE. ZELENYUK AND YU. ZELENYUK Counting
symmetric bracelets BULL. AUST. MATH. SOC.,
89 (2014), 431-436.



Corollary. For all n, r ∈ N, the number of sym-
metric r-ary necklaces is equal to the number of
symmetric r-ary bracelets and is equal to

B
∗
r(n) = N

∗
r (n) =

{
1
2(r + 1)r

n
2 if n is even

r
n+1
2 if n is odd.
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