Constructions of directed regular graphs from groups

Matea Zubović
(matea.zubovic@math.uniri.hr)

Matea Zubović
matea.zubovic@math.uniri.hr

(Joint work with Vedrana Mikulić Crnković)
This work has been supported by the University of Rijeka under the project number uniri-prirod-18-111-1249.
Faculty of Mathematics, University of Rijeka

Content

(1) Preliminaries
(2) Construction
(3) Results

Definition

A simple graph \mathcal{G} consists of a non-empty finite set $\mathcal{V}(\mathcal{G})$, whose elements are called vertices and a finite set $\mathcal{E}(\mathcal{G})$ of different 2-subsets of set $\mathcal{V}(\mathcal{G})$ whose elements are called edges.

Definition

A directed graph or a digraph \mathcal{G} consists of a non-empty finite set $\mathcal{V}(\mathcal{G})$, whose elements are called vertices, and of a finite family $\mathcal{E}(\mathcal{G})$ of ordered pairs of elements of set $\mathcal{V}(\mathcal{G})$ whose elements are called arcs.

Definition

Let $\mathcal{G}=(\mathcal{V}, \mathcal{E}, \mathcal{J})$ be a graph with n vertices. Graph \mathcal{G} is strongly regular graph or SRG with parameters $(n, k, \lambda, \mu), \operatorname{SRG}(n, k, \lambda, \mu)$, if
(1) \mathcal{G} is simple k-regular graph,
(2) any two adjacent vertices have λ common neighbours,
(3) any two non-adjacent vertices have μ common neighbours.

Definition

A quasi-strongly regular graph ($Q S R G$) with parameters $\left(n, k, a ; c_{1}, c_{2}, \ldots, c_{p}\right)$ is a k-regular graph on n vertices such that any two adjacent vertices have a common neighbours and any two non-adjacent vertices have c_{i} common neighbours for some $1 \leq i \leq p$.

Art M. Duval, A directed graph version of strongly regular graphs, Journal of Combinatorial Theory, 1988.

Definition

A directed strongly regular graph with parameters (n, k, λ, μ, t) is a directed graph Г on n vertices without loops such that
(i) every vertex has in-degree and out-degree k,
(ii) every vertex x has t out-neighbours that are also in-neighbours of x, and
(iii) the number of directed paths of length 2 from a vertex x to another vertex y is λ if there is an edge from x to y, and is μ if there is no edge from x to y.
Such a graph 「 is called a $\operatorname{DSRG}(n, k, \lambda, \mu, t)$.
The adjacency matrix $A=A(\Gamma)$ of directed strongly regular graph satisfies

$$
\begin{array}{r}
A^{2}=t l+\lambda A+\mu(J-I-A), \\
A J=J A=k J .
\end{array}
$$

DSRG with $t=k$ is SRG.

Guo, Z., Jia, D. and Zhang, G. Some Constructions of Quasi-strongly Regular Digraphs. Graphs and Combinatorics, 2022.

Definition

A quasi-strongly regular digraph with parameters ($n, k, t, a ; c_{1}, c_{2}, \ldots, c_{p}$), also denoted by $\operatorname{QSRD}\left(n, k, t, a ; c_{1}, c_{2}, \ldots, c_{p}\right)$, is a k-regular digraph on n vertices such that
(i) each vertex is incident to t undirected edges;
(ii) for any two vertices $x \rightarrow y$ the number of paths of length 2 from x to y is a;
(iii) for any distinct vertices $x \nrightarrow y$ the number of paths of length 2 from x to y is c_{i}, where $1 \leq i \leq p$,
(iv) for any $1 \leq i \leq p$ there exist distinct vertices $x \nrightarrow y$ such that the number of paths of length 2 from x to y is c_{i}.

Proposition

Let Γ be a digraph with n vertices and let A be the adjacency matrix of Γ. Then Γ is a $\operatorname{QSRD}\left(n, k, t, a ; c_{1}, c_{2}, \ldots, c_{p}\right)$ if and only if

$$
\begin{aligned}
& A J=J A=k J, \\
& A^{2}=t I+a A+c_{1} C_{1}+c_{2} C_{2}+\cdots+c_{p} C_{p}
\end{aligned}
$$

for some non-zero $(0,1)$-matrices $C_{1}, C_{2}, \ldots, C_{p}$ such that $C_{1}+C_{2}+\cdots+C_{p}=J-I-A$.
p is the grade of QSRD.

Definition

Let Ω be a finite set and let $R_{0}, R_{1}, \ldots, R_{d}$ be a partition of $\Omega \times \Omega$. Then $\left(\Omega,\left\{R_{0}, R_{1}, \ldots, R_{d}\right\}\right)$ is called a d-class association scheme if the following conditions hold.
(i) $R_{0}=\{(x, x) \mid x \in \Omega\}$;
(ii) for any $i \in\{0,1 \ldots, d\}$, there exists $i^{\prime} \in\{0,1, \ldots, d\}$, such that

$$
R_{i^{\prime}}=\left\{(x, y) \mid(y, x) \in R_{i}\right\} ;
$$

(iii) for any $i, j, k \in\{0,1, \ldots, d\}$ and any pair $(x, y) \in R_{k}$, the number

$$
p_{i j}^{k}=\mid\left\{z \in \Omega \mid(x, z) \in R_{i} \text { and }(z, y) \in R_{j}\right\} \mid
$$

depends only on i, j, k.

Theorem

Let $\left(\Omega,\left\{R_{0}, R_{1}, R_{2}, \ldots, R_{d}\right\}\right)$ be a d-class association scheme, and let Γ_{i} be a digraph with vertex set Ω and arc set R_{i}, where $i \in\{1,2, \ldots, d\}$. Then each Γ_{i} is a QSRD. Moreover, the grade of Γ_{i} is p if and only if $p_{i i}{ }^{j}$ takes on p distinct values as j ranges over $\{1,2, \ldots, d\} \backslash\{i\}$.

Definition

A group G acts on a set Ω if there exists a function $f: G \times \Omega \rightarrow \Omega$ such that
(1) $f(e, x)=x, \forall x \in \Omega$,
(2) $f\left(g_{1}, f\left(g_{2}, x\right)\right)=f\left(g_{1} g_{2}, x\right), \forall x \in \Omega, \forall g_{1}, g_{2} \in G$.

Denote the described action by $g . x, g \in G$. The set $G_{x}=\{g \in G \mid g . x=x\}$ is a group called stabilizer of the element $x \in \Omega$.
The action of the group G on set Ω induces the equivalence relation on set $\Omega: x \sim y \Leftrightarrow(\exists g \in G) g . x=y$. The equivalence classes are orbits of the action.

Definition

Group G acts transitively on set Ω if

$$
(\forall x, y \in \Omega)(\exists g \in G) \text { such that } g \cdot x=y,
$$

that is, if there exists an element $x \in \Omega$ such that $G . x=\Omega$.
Let group G act transitively on set Ω. Then group G acts on set $\Omega \times \Omega$ like this: $g \cdot\left(x_{1}, x_{2}\right)=\left(g \cdot x_{1}, g \cdot x_{2}\right)$. Orbits for that action are called orbitals of group G on set Ω.
G transitive permutation group on set $\Omega, H \leq G$.

- For each orbital Δ there is an orbital Δ^{*}, where $(\alpha, \beta) \in \Delta^{*}$ if and only if $(\beta, \alpha) \in \Delta$. An orbital is self-paired if $\Delta^{*}=\Delta$.
- $T \subseteq G$ is a left (right) transversal or a set of representatives of all left (right) cosets of H in G if T contains exactly one element of each left (right) coset $a H(H a), a \in G$.
- There exists a bijection from the set of orbitals to set of G_{α}-orbits. G_{α}-orbits are called suborbits, and their sizes are subdegrees of permutation group G.

Construction of transitive 1-designs from finite group:

D. Crnković, V. Mikulić Crnković and A. Švob: On some transitive combinatorial structures constructed from the unitary group $U(3,3)$. Journal of Statistical Planning and Inference, 2014.

Theorem

Let G be a finite permutation group acting transitively on sets Ω_{1} and Ω_{2} of size m and n, respectively. Let $\alpha \in \Omega_{1}$ and $\Delta_{2}=\cup_{i=1}^{s} G_{\alpha} \cdot \delta_{i}$, where $\delta_{1}, \ldots, \delta_{s} \in \Omega_{2}$ are representatives of distinct G_{α}-orbits. If $\Delta_{2} \neq \Omega_{2}$ and

$$
\mathcal{B}=\left\{g \cdot \Delta_{2}: g \in G\right\},
$$

then $\mathcal{D}\left(G, \alpha, \delta_{1}, \ldots, \delta_{s}\right)=\left(\Omega_{2}, \mathcal{B}\right)$ is a $1-\left(n,\left|\Delta_{2}\right|, \frac{\left|G_{\alpha}\right|}{\left|G_{\Delta_{2}}\right|} \sum_{i=1}^{s}\left|G_{\delta_{i}} \cdot \alpha\right|\right)$ design with $\frac{m \cdot\left|G_{\alpha}\right|}{\left|G_{\Delta_{2}}\right|}$ blocks. The group $H \cong G / \cap_{x \in \Omega_{2}} G_{x}$ acts as an automorphism group on $\left(\Omega_{2}, \mathcal{B}\right)$, transitively on points and blocks of the design.

Construction of directed regular graphs:

Theorem

Let G be a finite permutation group acting transitively on the set Ω. Let $\alpha \in \Omega$ and let $\Delta=\cup_{i=1}^{s} \delta_{i} G_{\alpha}$ be a union of orbits of the stabilizer G_{α} of α, where $\delta_{1}, \ldots, \delta_{s}$ are representatives of different G_{α} - orbits. Let $T=\left\{g_{1}, \ldots, g_{t}\right\}$ be a set of representatives of left cosets in $G / G_{\alpha}=\left\{g_{1} G_{\alpha}, \ldots, G_{t} G_{\alpha}\right\}$. Let $\mathcal{V}=\left\{g_{i} . \alpha \mid i=1, \ldots, t\right\}$ and let $\mathcal{E}=\left\{\left(g_{i} . \alpha, g_{i} \cdot \beta\right) \mid i=1, \ldots, t, \beta \in \Delta\right\}$. Then $\Gamma=(\mathcal{V}, \mathcal{E})$ is a directed graph with $|\Omega|$ vertices that is $|\Delta|$-regular and such that $g_{i} . \Delta$ is a set of out-neighbours of the vertex $g_{i} . \alpha, i=1, \ldots, t$.

Theorem

If a group G acts transitively on a set of vertices of a directed regular graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$, then there exists a set Ω such that vertices and arcs of a digraph \mathcal{G} are defined in the way described in the previous theorem.

Example

D_{3} acts transitively on $\Omega=\{1,2,3,4,5,6\}$ in six suborbits of length 1. Take $\Delta_{1} \cup \Delta_{2}=\{2,3\}$ as a set of out-neighbours of vertex $\alpha=1 \in \Omega$:
$g_{1} \cdot\{2,3\}=\{2,3\}$ is a set of out-neighbours of a vertex $g_{1} \cdot \alpha=1$, $g_{2} \cdot\{2,3\}=\{1,6\}$ is a set of out-neighbours of a vertex $g_{1} \cdot \alpha=2$,
$g_{3} \cdot\{2,3\}=\{4,5\}$ is a set of out-neighbours of a vertex $g_{1} \cdot \alpha=3$, $g_{4} \cdot\{2,3\}=\{3,2\}$ is a set of out-neighbours of a vertex $g_{1} \cdot \alpha=4$, $g_{5} \cdot\{2,3\}=\{6,1\}$ is a set of out-neighbours of a vertex $g_{1} \cdot \alpha=5$, $g_{6} \cdot\{2,3\}=\{5,4\}$ is a set of out-neighbours of a vertex $g_{1} \cdot \alpha=6$.

Adjacency matrix:

$$
A=\left[\begin{array}{llllll}
0 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 0
\end{array}\right]
$$

Figure: $\operatorname{DSRG}(6,2,0,1,1)$

GAP - Transitive Groups Library:

Theorem

(1) There are, up to isomorphism, 478 quasi-strongly regular graphs on which a transitive automorphism group of degree n, $n \in\{4, \ldots, 30\} \backslash\{22,24,28,30\}$, acts. 19 of them are strongly regular graphs.
(2) There are, up to isomorphism, 2920 directed quasi-strongly regular graphs on which a transitive automorphism group of degree n, $n \in\{4, \ldots, 30\} \backslash\{22,24,28,30\}$, acts. 478 of them are directed strongly regular graphs.

Degree	\# QSRG	\# SRG	\# QSRD	\# DSRG
22	39	2	18	
24	7853		68171	64
28	213	2	447	22
30	110	40	642	

Table: Number of graphs obtained from transitive non-regular permutation groups of degree $n, n \in\{22,24,28,30\}$
https://homepages.cwi.nl/~aeb/math/dsrg/dsrg.html

Figure: (Non)existence of DSRGs with parameters (22, 9, 3, 4, 6) and (22, 12, 6, 8, 8)

Graphs from unions of length $k=9$ and $k=12$ from regular permutation representations of \mathbb{Z}_{22} and D_{11} of degree 22:

Degree	Parameters	\# non-isom.	Aut(G)
22	$\operatorname{QSRG}(22,9,0 ; 8,7,0)$	1	D_{22}
	$\operatorname{QSRD}(22,9,5,4 ; 4,3)$	1	D_{22}
	$\operatorname{QSRD}(22,9,7,0 ; 9,8,7,0)$	4	\mathbb{Z}_{22}
	$\operatorname{QSRD}(22,9,8,0 ; 9,8,7,0)$	1	\mathbb{Z}_{22}

Table: Graphs obtained from regular permutation groups \mathbb{Z}_{22} and D_{11} of degree 22

Future work...

- Construction of self-orthogonal codes from adjacency matrix A of $\operatorname{DSRG}(n, k, \lambda, \mu, t)$ with $t=\mu$.
- Construction of LCD codes from matrices $\left[A \mid I_{n}\right]$ and $\left[A, I_{n}, \mathbb{1}\right]$, where A is the adjacency matrix of $\operatorname{DSR}(n, k, \lambda, \mu, t)$ with $t=\mu$.

Thank you for your attention!

