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General information

Goal and topics

The goal of the conference is to bring together researchers interested in design theory, finite
geometry, graph theory, algebraic combinatorics and their applications to communication and
cryptography, especially to codes (error-correcting codes, quantum codes, network codes, etc.).
The conference will give the opportunity to research faculty and young researchers in discrete
mathematics to learn about the latest developments in combinatorics and its contemporary
applications in communication theory and information security, and to explore new directions
for their future work.

Invited speakers

Aida Abiad, Eindhoven University of Technology
Ronan Egan, Dublin City University
Hadi Kharaghani, University of Lethbridge
Anamari Nakić, University of Zagreb
Francesco Pavese, Polytechnic University of Bari
Cheryl Praeger, University of Western Australia
Patrick Solé, Aix-Marseille University
Leo Storme, Ghent University
Vladimir Tonchev, Michigan Technological University

Organising Committee

Andrea Švob, University of Rijeka (chair)

Dean Crnković, University of Rijeka
Maarten De Boeck, University of Memphis

Daniel Hawtin, University of Rijeka
Vedrana Mikulić Crnković, University of Rijeka

Room information

The conference takes place in the building of the Faculty of Mathematics on the Trsat campus
of the University of Rijeka (where Sveučilǐsna Avenija makes a 90 degree turn). Talks are in
rooms O-027 (ground floor) and O-S31 (floor -1). Plenary talks are in O-027. Coffee breaks are
served in front of room O-027, and also the registration desk is there.

Internet access and conference website

Throughout the campus eduroam is available. In the conference building also the UNIRI wifi
network is available (password: Uniri2019!!).
Conference website: www.riccota2023.math.uniri.hr
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Food and transport information 
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III 
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General

I Conference location

II Student restaurant (first floor):
they serve breakfast, lunch and dinner at
reasonable prices

III Stairs to downtown (539 steps): many
food options in the center (ca. 40 minute
walk)

Shops and bakeries

A Plodine: big supermarket

B Studenac: grocery store

C Vojak: bakery

D Piko: bakery and limited shopping

E Mlinar: bakery

Restaurants and bars

1. Pampas: pizzeria (as good as Italian, but
don’t tell the Italians)

2. Konoba Tarsa: traditional Croatian

3. Carraca (pizza, grill and more) and
Konoba MB (grill and marende)

4. Trsatica (conference dinner location)

5. Trsat center (near church, ca 10 min
walk): several restaurants and bars

6. Bistro Paris

7. Gelateria Trsat: for the sweet tooth

8. Beertija: although there are many bars
on Trsat, this is the one with the highest
probability of finding math faculty on the
terrace.

The walk from the campus to the center of Rijeka via the stairs is quite nice, but taking a
bus or taxi back is also possible. There are several buses that run between the Trsat campus
and the center of Rijeka (lines 2,7,8 and KBC). Information about these can be found on Google
maps or on https://www.autotrolej.hr/en/routes/. The easiest way to order a taxi is via
the Cammeo app (https://cammeo.hr/en/ride-with-cammeo).
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University of Primorska, Slovenia
Safet.Penjic@iam.upr.si
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Conference programme

Monday July 3 Tuesday July 4
O-027 O-S31 O-027 O-S31

8.15 Registration
9.00 Opening Solé
9.15 Praeger
10.00 coffee break
10.15 coffee break (conference photo)

10.30 Armario D’haeseleer
10.55 Montinaro Zelenyuk Barrera-Acevedo Simoens
11.20 Chen Pisanski Krčadinac Gashi

11.45 Stojadinović Ó Catháin Wang

14.30 Pavese Nakić
15.30 coffee break coffee break

16.00 Browne Pike Burgess Zeijlemaker
16.25 Smaldore Fernández Galici Maleki
16.50 Mannaert Zubović Merola Monzillo
17.15 Arumugam Podrug Tabak Penjić

Wednesday July 5 Thursday July 6 Friday July 7
O-027 O-S31 O-027 O-S31 O-027

9.00 Kharaghani Storme Egan
10.00 coffee break coffee break coffee break

10.30 Wanless Ernst Lia Panario Torres-Mart́ın
10.55 Falcón Razafimahatratra Adriaensen Alonso-González Mostarac
11.20 Buratti Kempner De Winter Martinjak Ban
11.45 Weiß Islam Beck Mravić

14.00 Excursion
14.30 Abiad Tonchev
15.30 coffee break coffee break

16.00 Khramova Moura Rodrigues
16.25 Lansdown Shinde Zrinski

16.50 Gavrilyuk Clarke Šumberac
17.15 Bailey Bašić Grbac

17.40 Closing

19.30 Conference dinner
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Monday July 3

8:15-9:00 Registration

9:00-9:15 Opening

9:15-10:10 Cheryl Praeger: Novel constructions of normal covers of the complete
bipartite graphs K2n,2n

10:15-10:55 Coffee break (conference photo)

ROOM O-027

10:55-11:15 Alessandro Montinaro: On flag-
transitive symmetric 2-designs
arising from Cameron-Praeger con-
struction

11:20-11:40 Lei Chen: Vertex-primitive s-arc-
transitive digraphs of almost sim-
ple groups

11:45-12:05 Tanja Stojadinović: The number
of Hamiltonian paths in a digraph

ROOM O-S31

10:55-11:15 Yuliya Zelenyuk: Counting Sym-
metric Bracelets

11:20-11:40 Tomaž Pisanski: A Strategy for
Generating Polycyclic Configura-
tions

14:30-15:25 Francesco Pavese: On r-general sets in finite projective spaces

15:30-16:00 Coffee break

ROOM O-027

16:00-16:20 Patrick Browne: Segre’s theorem
on ovals in Desarguesian projective
planes

16:25-16:45 Valentino Smaldore: On regular
systems of finite classical polar
spaces

16:50-17:10 Jonathan Mannaert: Some non-
existence results on m-ovoids in fi-
nite classical polar spaces

17:15-17:35 Vishnuram Arumugam: The
Suzuki and Ree groups cannot act
primitively on the points of a finite
generalised quadrangle

ROOM O-S31

16:00-16:20 David Pike: Colourings of Path
Systems

16:25-16:45 Blas Fernández: On the trivial T -
module of a graph

16:50-17:10 Matea Zubović: Constructions
of directed regular graphs from
groups

17:15-17:35 Luka Podrug: Beyond Fibonacci
cubes and Pell graphs
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Novel constructions of normal covers of the complete bipartite
graphs K2n,2n.

Cheryl E Praeger

University of Western Australia - Department of Maths & Stats

(Joint work with Dan Hawtin and Jin-Xin Zhou)

Abstract

It is thirty years since I introduced the concept of a normal quotient of a finite 2-arc-transitive
graph, showing that each such graph is a normal cover of a ‘basic’ 2-arc-transitive graph. In
the years since then a lot of progress has been made in identifying families of basic graphs.
In particular, Cai Heng Li [1] identified all the basic 2-arc transitive graphs of prime power
order, and posed the problem of characterising their 2-arc-transitive normal covers which also
had prime power order: he stated that he was ‘inclined to think that non-basic 2-arc-transitive
graphs of prime power order would be rare and hard to construct ’. This was the motivation for
the joint work which I will report on.

Our work focused on 2-arc-transitive normal covers of one of these basic families, namely the
complete bipartite graphs K2n,2n . We first proved that such graphs are usually Cayley graphs,
with all the exceptions based on a special family of groups called ‘mixed dihedral groups’. We
studied these mixed dihedral groups further and used them to build

� a new infinite family of 2-geodesic-transitive normal Cayley graphs which are neither
distance-transitive nor 2-arc-transitive;

� a new infinite family of locally 2-arc-transitive semisymmetric graphs of 2-power order,
(that is, provably not vertex-transitive);

� a 2-arc-transitive normal cover of K24,24 which is not a Cayley graph, and has order 253.
We do not know if such graphs exist for K2n,2n (n > 4).

Bibliography

[1] C. H. Li. Finite s-arc transitive graphs of prime-power order. Bull. London Math. Soc.,
33:129–137, 2001.

[2] D. R. Hawtin, C. E. Praeger and J.-X. Zhou.

(1) A characterisation of edge-affine 2-arc-transitive covers of K2n,2n . ArXiv :2211.16809,
2022.

(2) A family of 2-groups and an associated family of semisymmetric, locally 2-arc-transitive
graphs. ArXiv :2303.00305, 2023.

(3) Using mixed dihedral groups to construct normal Cayley graphs, and a new bipartite
2-arc-transitive graph which is not a Cayley graph. ArXiv :2304.10633, 2023.
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On flag-transitive symmetric 2-designs arising from
Cameron-Praeger construction

Alessandro Montinaro

University of Salento

(Joint work with Cheryl E. Praeger)

Abstract

Based on a previous result of Sane [4], in 2016 Cameron and Praeger [3] provided a construc-
tion of a family of symmetric 2-designs with a specified point-partition. The authors also gave
necessary and sufficient conditions for a 2-design D in the above mentioned family to possess a
flag-transitive automorphism group G preserving the specified point-partition Σ and provided
remarkable examples, one of them new. All the flag-transitive examples in [3] have the following
property R: each block of imprimitivity ∆ in Σ has the structure of an affine resolvable 2-design.
In this this talk, we show how to combine the results in [1, 2, 3] in order to obtain a classification
of the pair (D, G) when D is in the Cameron-Praeger family and has the R-property, and the
group induced by G on Σ is not semilinear 1-dimensional.

Bibliography

[1] S. H. Alavi, M. Bayat, M. Biliotti, A. Daneshkhah, E. Francot, H. Guan, A. Montinaro, F.
Mouseli, P. Rizzo, D. Tian, Y. Wang, X. Zhan, Y. Zhang, S. Zhou, Y. Zhu, Block designs
with flag-transitive automorphism groups, Results Math. 77 (2022) 151.

[2] R. C. Bose, A note on the resolvability of balanced incomplete block designs, Sankhya 6
(1942) 105-110.

[3] P. J. Cameron C. E. Praeger, Constructing flag-transitive, point-imprimitive designs, J.
Algebr. Comb. 43 (2016) 755–769.

[4] S. S. Sane : On a class of symmetric designs. In: Combinatorics and Applications (Calcutta,
1982), pp. 292–302. Indian Statist. Inst., Calcutta (1984)
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Vertex-primitive s-arc-transitive digraphs of almost simple groups

Lei Chen

University of Western Australia

Abstract

The property of s-arc-transitivity has been well studied for many years. Weiss proved that
finite undirected graphs that are not cycles can be at most 7-arc-transitive. On the other hand,
Praeger showed that for each s there are infinitely many finite s-arc-transitive digraphs that are
not (s+1)-arc-transitive. However, G-vertex-primitive (G, s)-arc-transitive digraphs for large s
seem rare. Thus we are interested in finding an upper bound for such s. In 2018, Giudici and
Xia showed that it is sufficient to determine s when G is almost simple. We will show that s ≤ 1
when G is almost simple with socle Sz(22n+1) or 2G2(3

2n+1) for n ≥ 1.

The number of Hamiltonian paths in a digraph

Tanja Stojadinović

University of Belgrade - Faculty of Mathematics

(Joint work with Vladimir Grujić and Marko Pešović)

Abstract

In a series of recent talks, Richard Stanley introduced a symmetric function UX associated
to a digraph X, see [3]. This symmetric function enumerates descent sets of permutations
corresponding to a digraph. Stanley and Grinberg expand the function UX in the power sum
basis of the algebra of symmetric functions and relate the number of Hamiltonian paths in the
digraph X with the alternating sum of the coefficients in this expansion. In fact, the function
UX is related to two classical results in graph theory. The first of them originates in 1933
paper of Laszlo Redei [1] and states that every finite tournament contains an odd number of
Hamiltonian paths. The other one was found by Claude Berge [2] and it claims that the numbers
of Hamiltonian paths in a digraph and its complement are of the same oddity.

We construct a structure of combinatorial Hopf algebra on digraphs for which the enumerator
UX is obtained from a universal morphism to quasisymmetric functions. In our construction,
the number of Hamiltonian paths in the complement X of a digraph X is actually the value of
the character ζ(X) of the newly constructed combinatorial Hopf algebra of digraphs.

Bibliography

[1] Laszlo Redei. Ein kombinatorischer Satz. Acta Litteraria Szeged, 7: 39-43, 1934.

[2] Claude Berge. Graphs and Hypergraphs. North-Holland Mathematical Library, 6, 2nd edi-
tion, North-Holland, 1976.

[3] R. Stanley. The X-Descent set of a permutation, Combinatorial and Algebraic Enumeration,
Waterloo, Ontario, 2022. available at: https://math.mit.edu/ rstan/transparencies/gj.pdf
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Counting Symmetric Bracelets

Yuliya Zelenyuk

University of the Witwatersrand

Abstract

An r-ary bracelet of length n is an equivalence class of r-colorings of vertices of a regular
n-gon, taking all rotations and reflections as equivalent. A bracelet is symmetric if a corre-
sponding coloring is invariant under some reflection. We show that the number of symmetric

r-ary bracelets of length n is 1
2(r+1)r

n
2 if n is even, and r

n+1
2 if n is odd [1, 2]. We also discuss

further developments of this topic [3].

Bibliography

[1] Yu. Gryshko. Symmetric colorings of regular polygons. Ars Combinatoria, 78:277–281,
2006.

[2] Ye. Zelenyuk and Yu. Zelenyuk. Counting symmetric bracelets. Bull. Aust. Math. Soc.,
89:431–436, 2014.

[3] Yu. Zelenyuk. Computing the number of symmetric colorings of elementary Abelian groups.
Alexandria Engineering Journal, 60:2075–2081, 2021.

A Strategy for Generating Polycyclic Configurations

Tomaž Pisanski

University of Primorska - FAMNIT

(Joint work with Leah Berman and Gábor Gévay)

Abstract

In 1950, the renowned geometer H. S. M. Coxeter [4] clearly established a connection between
configurations and graphs. In 2009, another great geometer, B. Grünbaum in his monograph [5],
developed the contemporary theory of configurations of points and lines. For the first time he
made a clear distinction between combinatorial configurations as part of incidence geometry and
geometric configurations of points and lines in the real projective plane. Moreover, in between
he placed topological configurations, realized with points and pseudolines in the real projective
plane as part of the class of pseudoline arrangements. In 2003, in the paper [3], the class of
configurations investigated mainly by Grünbaum and his student Leah Berman was named poly-
cyclic configurations, their combinatorial version admitting a convenient description by voltage
graphs and cyclic covering graphs. The graph-theoretic approach towards configurations has
been presented in [6]. Berman developed a series of techniques for constructing geometric poly-
cyclic configurations, eg., see [1]. In a recent paper [2], we employed various tools to investigate
a novel polycyclic (214) configuration; the existence of this configuration disproves a conjecture
of Grünbaum. The purpose of this talk is to present the strategy that we used.
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Bibliography

[1] A. Berardinelli, L. W. Berman. Systematic celestial 4-configurations. Ars Math. Contemp.
7: 361–377, 2014.

[2] L. W. Berman. G. Gévay, and T. Pisanski. manuscript, 2023.

[3] M. Boben and T. Pisanski. Polycylic configurations. European J. Combin. 24: 431–457,
2003.

[4] H. S. M. Coxeter. Self-dual configurations and regular graphs. Bull. Amer. Math. Soc. 56:
413–455, 1950.

[5] B. Grünbaum. Configurations of Points and Lines. American Mathematical Society, Provi-
dence, RI, 2009.

[6] T. Pisanski and B. Servatius. Configurations from a Graphical Viewpoint Birkhäuser Ad-
vanced Texts Basler Lehrbücher Series, Birkhäuser Boston Inc., Boston, 2013.
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On r-general sets in finite projective spaces

Francesco Pavese

Polytechnic University of Bari

Abstract

Let PG(n, q) denote the n-dimensional projective space over the finite field with q elements.
A cap is a set of points in PG(n, q) such that at most two of them are on a line, whereas a set
of points in PG(n, q) with at most n on a hyperplane is known as an arc. These objects have
been extensively studied due to their connections to coding theory. More generally an r-general
set in PG(n, q) is a set X of points spanning the whole PG(n, q) such that any r of them are
in general position. Hence a cap is a 3-general set and an arc is an (n + 1)-general set. An
r-general set of PG(n, q) is called complete if it is not contained in a larger r-general set of
PG(n, q). The study of r-general sets is not only of geometrical interest, but arises from coding
theory. Indeed, let X be a complete r-general set of PG(n, q) of size k, such that there is an
(r− 1)-dimensional projective subspace of PG(n, q) containing r+1 points of X . By identifying
the representatives of the points of X with the columns of a parity check matrix of a q-ary linear
code, there corresponds a non-extendable linear [k, k − n− 1, r + 1]q code with covering radius
r − 1.

One of the main issue is to determine the spectrum of the sizes of complete r-general sets in
PG(n, q) and in particular their maximal and minimal possible values. In this talk I will focus
on the cases when r equals 3 or 4. In particular, I will discuss recent results regarding small
complete 3-general sets in PG(4d+ 1, q) and large complete 4-general sets in PG(2d+ 1, 3) and
PG(n, 4) whose sizes are close to their respective trivial lower and upper bounds.
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Segre’s theorem on ovals in Desarguesian projective planes

Patrick Browne

Technological University of the Shannon

(Joint work with Steven T. Dougherty, Padraig Ó Catháin )

Abstract

Segre’s theorem on ovals in projective spaces is an ingenious result from the mid-twentieth
century which requires surprisingly little background to prove. In this brief talk we give a
self contained proof of Segre’s theorem. This is accessible to most yet showcases some minor
improvements to Segre’s proof that allow for results in shorter time and simpler computations
than the original. See below for all needed references.
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On regular systems of finite classical polar spaces

Valentino Smaldore

Università degli Studi di Padova - Dipartimento di Tecnica e Gestione dei
Sistemi Industriali

(Joint work with A. Cossidente, G. Marino and F. Pavese)

Abstract

Let Pd,e be a finite classical polar space of rank d, where we choose e ∈ {0, 12 , 1,
3
2 , 2} as

follows:

Pd,e Q+(2d− 1, q) W (2d− 1, q) Q(2d, q) Q−(2d+ 1, q) H(2d− 1, q) H(2d, q)

e 0 1 1 2 1
2

3
2

Table 1: Classification of finite classical polar spaces Pd,e.

Anm-regular system with respect to (k−1)-dimensional projective spaces of P, 1 ≤ k ≤ d−1,
is a setR of generators of P with the property that every (k−1)-dimensional projective space of P
lies on exactly m generators of R. In this talk regular systems of polar spaces are investigated,
giving three different construction methods of regular systems w.r.t. points of various polar
spaces: we find hemisystems of elliptic quadrics by partitioning generators of an elliptic quadric
into generators of hyperbolic quadrics embedded in it; we give a construction of regular systems
by means of a k-system, in hyperbolic quadrics and in the parabolic quadric Q(6, 3); we find
regular systems of hyperbolic and elliptic quadrics arising from the field reduction map.
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Some non-existence results on m-ovoids in finite classical polar
spaces

Jonathan Mannaert

Vrije Universiteit brussel (VUB)

(Joint work with Jan De Beule and Valentino smaldore)

Abstract

An m-ovoid in a finite classical polar space is a set O of points such that each generator
meets O in exactly m points. These objects are quite rare and hence one of the main research
questions is to find non-existence conditions on the parameter m. In [3] the authors prove a
modular equality on the parameter m for m-ovoids in the elliptic quadric Q−(2r + 1, q). Using
similar techniques with some major adjustments, we are able to generalize their combinatorial
arguments to H(2r, q) and W (2r + 1, q). Using this approach, we can improve the lower bound
on m for the hermitian polar space H(2r, q), the symplectic polar space W (2r + 1, q) and the
elliptic quadric Q−(2r+1, q) found in [1]. In [2], we show for q > 2 and r ≥ 3 (or r > 3 in some
very particular cases) that

m ≥
−r(1 + 2

qr−e−1 ) +
√
r2(1 + 2

qr−1 )2 + 4(q − 2)(r − 1)(qe+1 q
r−2−1
q−1 + qe + 1)

2(q − 1)
.

This result is a direct improvement of all known bounds so far. More interesting is that previously
known bounds can also be derived from the same result. Hence our approach unifies many known
non-existence results. In this talk we will focus on the proof and techniques described in [2].
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The Suzuki and Ree groups cannot act primitively on the points of a
finite generalised quadrangle

Vishnuram Arumugam

University of Western Australia - School of Physics, Mathematics and
Computing

Supervised by Michael Giudici and John Bamberg.

Abstract

Incidence geometry is the study of geometric structures involving a collection of points and
lines along with a relation (called incidence) which tells us whether a point lies on a line. A
generalised polygon is a type of point-line incidence structure that was introduced by Jacques
Tits in 1959 to study the groups of Lie type as the symmetries of geometric objects. Since then,
these objects have been studied extensively in the areas of group theory and finite geometry.
The classification of these objects started from Weiss and Tits and many results about the
existence (and non-existence) of generalised polygons under various symmetry conditions (point
primitivity, flag transitivity and so on) since then. My aim is to show that the Suzuki and the
Ree groups cannot act primitively on the points of a finite generalised quadrangle (which is a
generalised 4-gon).
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Colourings of Path Systems

David Pike

Memorial University of Newfoundland - Department of Mathematics and
Statistics

(Joint work with Iren Darijani)

Abstract

By Pm we denote a path on m vertices. A Pm system of order n consists of a partition of
the edge set of the complete graph Kn into subgraphs, each of which is isomorphic to Pm. A
c-colouring of a path system is a function ϕ from the vertex set of Kn to a set C of c “colours”
with the added restriction that each path in the path system must receive at least two colours.
If a system can be c-coloured but not (c − 1)-coloured, then we say that it is c-chromatic, and
that its chromatic number is c. We prove that each any c ≥ 2 and each m ≥ 3 there exists a
c-chromatic Pm system. In the case of c ≥ 3 and m = 4 we also show that for each sufficiently
large admissible order n there exists a c-chromatic P4 system of order n. We also study unique
colourings and show that there is a uniquely 2-chromatic P4 system of order n for each n ≡ 0
or 1 (mod 3) such that n ≥ 109.
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On the trivial T -module of a graph

Blas Fernández

University of Primorska - FAMNIT

(Joint work with Štefko Miklavič)

Abstract

Let Γ denote a finite, simple and connected graph. Fix a vertex x of Γ and let T = T (x)
denote the Terwilliger algebra of Γ with respect to x. In many instances, the algebra T can
best be studied via its irreducible modules. In this talk, we will study the unique irreducible
T -module with endpoint 0. It was already proved in [4] that this irreducible T -module is thin
if Γ is distance-regular around x. The converse, however, is not true. Fiol and Garriga [3]
later introduced the concept of pseudo-distance-regularity around vertex x, which is based on
assigning weights to the vertices where the weights correspond to the entries of the (normalized)
positive eigenvector. They showed that the unique irreducible T -module with endpoint 0 is thin
if and only if Γ is pseudo-distance-regular around x (see also [2, Theorem 3.1]). To start our
investigations, we give a purely combinatorial characterization of the property, that the unique
irreducible T -module with endpoint 0 is thin. This characterization involves the number of walks
of a certain shape between vertex x and vertices at some fixed distance from x. This is based
on joint work with Štefko Miklavič [1].
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Constructions of directed regular graphs from groups

Matea Zubović

University of Rijeka - Faculty of Mathematics

(Joint work with Vedrana Mikulić Crnković)

Abstract

Regular directed graph Γ of degree k with n vertices is directed strongly regular graph,
DSRG(n, k, λ, µ, t), if number of directed paths of length two from every vertex v to every
vertex w is λ if there exists directed edge v → w, t if v = w and µ if there is no edge v → w.
Directed strongly regular graphs were introduced by Art Duval in 1988. One can construct
1-design by defining a basic block as union of Gα-orbits of transitive permutation group. Using
that, we construct directed regular and strongly regular graphs from transitive groups.
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Beyond Fibonacci cubes and Pell graphs

Luka Podrug

University of Zagreb - Faculty of Civil Engineering

(Joint work with Tomislav Došlić)

Abstract

In his recent paper [1], Emanuele Munarini introduced a new family of graphs whose number
of vertices corresponds to Pell numbers. His idea inspired us to investigate one possible general-
ization, by considering linear recurrences sn = a ·sn−1+sn−2 for general values of the parameter
a, going thus beyond the Fibonacci (a = 1) and Pell (a = 2) case. The resulting families of
graphs turn out to exhibit many interesting properties. Some of them, both structural and
enumerative, will be presented in this talk.
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A notion of bent sequences based on Hadamard matrices

Patrick Solé

Aix Marseille University

(Joint work with Wei Cheng, D. Crnković, Yaya Li, Denis Krotov, Minjia Shi)

A new notion of bent sequence related to Hadamard matrices was introduced recently, moti-
vated by a security application ( Solé et al, 2021). We study the self dual class in length at most
196. We use three competing methods of generation: Exhaustion, Linear Algebra and Groebner
bases. Regular Hadamard matrices and Bush-type Hadamard matrices provide many examples.
We conjecture that if v is an even perfect square, a self-dual bent sequence of length v always
exist. We introduce the strong automorphism group of Hadamard matrices, which acts on their
associated self-dual bent sequences. We give an efficient algorithm to compute that group. A
generalization to complex Hadamard matrices is sketched out.
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Self-dual Butson bent sequences

José Andrés Armario

Universidad de Sevilla - Depart. Matemática Aplicada 1 - 41012-Sevilla (Spain)

(Joint work with Ronan Egan and Padraig Ó Catháin)

Abstract

A new notion of bent sequences was introduced in [1] as a solution in X,Y to the system

1√
n
HX = Y,

where H is a real Hadamard matrix of order n and X,Y ∈ {±1}n. X is called a bent sequence
for H. If H is the Sylvester Hadamard matrix then any bent Boolean function f : Zn

2 → Z2

determines a bent sequence for H by the rule X = (−1)f (and vice versa).
Clearly, the vector Y can also be shown to be a bent sequence attached to HT , called the

dual of X. When X = Y the sequence X is said to be self-dual. In [2] this notion of self-dual
bent sequence for a real Hadamard matrix was further generalized to a n×n Butson Hadamard
matrix with entries in the set of complex 4-th roots of unity as a solution in X to the system

HX = λX (1)

where λ is an eigenvalue of H and X ∈ {±1,±
√
−1}n.

In this talk, we extend the definition of self-dual bent sequence X for H to any Butson
Hadamard matrix (not only for the 4-th roots of unity) which is “complementary” to the defi-
nition given in [2]. That consists of considering, instead of (1), the system

1√
n
HX = X (or more generally, HX = λX) (2)

where the overline denotes complex conjugation, the entries of H and X belong to the set of
complex kth roots of unity. A solution X of the system (2) is what we understand in this work
to be a self-dual bent sequence for a Butson Hadamard matrix H. Furthermore, when H and
X take values in the set {±1}, we recover the definition of [1]. Finally, it is easy to realize that
if H is the complex conjugation of the mth Kronecker power of the q × q Fourier matrix then
any self-dual bent sequence for H determines a self-dual generalized bent function f : Zm

q → Zq

by the rule X = [ζ
f(a)
q ]⊤a∈Zm

q
which we denote by X = ζfq for convenience.
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A Framework for Classifying Cocyclic Hadamard Matrices of
order 8p

Santiago Barrera-Acevedo

Monash University - School of Mathematics

Abstract

We provide an update on ongoing work about the classification of cocyclic Hadamard ma-
trices (CHMs) of order 8p with p ≥ 3 prime. CHMs are Hadamard matrices whose entries are
controlled by a 2-cocycle, and thus possess additional algebraic structure. It is conjectured that
CHMs exist for all orders 4n where n is a positive integer. Ó Catháın and Röder reported the
classification of CHMs of orders less than 40. Barrera Acevedo et al., described an algorithm for
classifying CHMs of orders 4p with p > 3 prime, up to equivalence, and classified such matrices
for p ≤ 13. In this talk, we discuss a framework for classifying CHMs of order 8p with p ≥ 3
prime.

New constructions of higher dimensional Hadamard matrices and
SBIBDs

Vedran Krčadinac

University of Zagreb

(Joint work with Mario Osvin Pavčević and Kristijan Tabak)

Abstract

Higher dimensional Hadamard matrices were introduced by Paul J. Shlichta [4, 5]. Warwick
de Launey [1, 2] developed a framework for n-dimensional combinatorial designs of various kinds,
including SBIBDs, Hadamard matrices, and their generalisations. We shall present several
new constructions of such objects. A construction from [3] gives n-dimensional SBIBDs and
proper regular Hadamard matrices with inequivalent slices. Another constructions gives three-
dimensional Hadamard matrices of orders v ≡ 2 (mod 4) which had previously been unknown.
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The Hadamard maximal determinant problem

Padraig Ó Catháin

Dublin City University, Ireland

(Joint work with Patrick Browne, Ronan Egan, Fintan Hegarty and Guillermo Nunez Ponasso)

Abstract

Hadamard’s famous paper of 1893 discusses complex matrices which meet his bound with equal-
ity. Slightly less well known is the body of work on matrices with entries in -1,1 with maximal
determinant. These are typically not Hadamard, since the Hadamard bound cannot be achieved
when the dimension is larger than 2 and not a multiple of 4. I will survey the main techniques,
bounds and constructions to be found in the literature, highlighting recent progress.

While the analogous complex Hadamard matrices (particularly with kth roots as entries)
have been well studied, much less is known about complex maximal determinant matrices (over
a fixed finite extension of the rationals) when the bound is not attained. I will present some
open questions and directions for future research.

27



The chromatic number of some generalized Kneser graphs

Jozefien D’haeseleer

Ghent University - Department of Mathematics: Analysis, Logic and Discrete
Mathematics

(Joint work with Klaus Metsch and Daniel Werner)

Abstract

A set F of subspaces of PG(n, q) such that for all π, τ ∈ F we have π ⊆ τ or τ ⊆ π is called
a flag and {dim(π) : π ∈ F} is called its type. Note that we work with projective dimensions.
Furthermore, two flags F and F ′ are said to be in general position, if for all π ∈ F and π′ ∈ F ′

we have π ∩ π′ = ∅ or ⟨π, π′⟩ = PG(n, q).
For Ω ⊆ {0, 1, . . . , n − 1} we define the q-Kneser graph Γ = qKn;Ω to be the graph whose

vertices are all flags of type Ω of PG(n, q) with two vertices adjacent when the corresponding
flags are in general position. Furthermore, a co-clique or independent set of Γ, that is, a set
of vertices any two of which are non-adjacent, is called an Erdős-Ko-Rado-set (or, in short,
EKR-set) in reference to the authors who first introduced this type of problem in set theory.
Finally, a set of pairwise disjoint EKR-sets such that the union of these EKR-sets comprises all
flags of Γ is called a coloring of Γ and the cardinality of a coloring of minimal size is called the
chromatic number χ of Γ.

We are interested in the chromatic number of these Kneser graphs and hence in their in-
dependence number. In many cases these numbers are known, when |Ω| = 1, Ω = {k} and
n ≥ 2k + 2. We investigated several Kneser graphs qKn;Ω with |Ω| = 2. Our main result
gives the chromatic number of the q-Kneser graphs qK4;{1,3} and qK2d;{d−1,d}, for d = 2, 3:
χ(qK4;{1,3}) = q3+q2+q+1 for q ≥ 3, and χ(qK4;{1,2}) = q3+q2+1, χ(qK6;{2,3}) = q4+q3+q2+1,
both for q large enough. We also give the structure of a minimum coloring of these graphs.
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Minimum weight of the code from
intersecting lines in PG(3, q)

Robin Simoens

Ghent University - Department of Mathematics: Analysis, Logic and Discrete
Mathematics

Polytechnic University of Catalonia - Department of Mathematics

(Joint work with Sam Adriaensen, Mrinmoy Datta and Leo Storme)

Abstract

Consider the linear code C defined as follows, where q = ph, p prime. Let G be the matrix
whose rows and columns are indexed by the lines of PG(3, q), with

(G)ℓ1ℓ2 =

{
0 if ℓ1 ∩ ℓ2 = ∅,
1 if ℓ1 ∩ ℓ2 ̸= ∅.

Then C is defined as the Fp-vector space spanned by the rows of G.
The code C has length (q2 + 1)(q2 + q + 1) (the number of lines in PG(3, q)). In [2], it

was shown that C has dimension 1
6p(2p

2 + 1)h + 1. However, the minimum weight of C is still
unknown. This open problem is a special case of [1, Open Problem 2.4].

In this talk, I will show how we can determine the minimum weight of C.
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On a Problem Involving Strongly Orthogonal Roots

Qëndrim R. Gashi

University of Prishtina - Department of Mathematics

Abstract

The notion of strongly orthogonal roots first appeared in the classical works of Harish-
Chandra in the study of holomorphic discrete series representations and of Kostant in the study
of conjugacy classes of real Cartan subalgebras. It has since appeared in many articles on
different fields.

Fixing a natural number k and a root system R, we examine the maximal number of sets of k
mutually strongly orthogonal roots so that any two such distinct sets have the property that the
difference between the respective sums of all elements can itself be written as a sum of k roots
that are mutually strongly orthogonal. The question that we address is derived from the open
problem of (non-)existence of finite projective planes, which can be interpreted as belonging to
the root system of type A. We formulate the general problem for all root systems and provide
results in certain cases.

Some Results on Partial Difference Sets

Zeying Wang

American University–Department of Mathematics and Statistics

(Joint work with Stefaan De Winter, Ellen Kamischke and Eric Neubert )

Abstract

A few years ago we proved a theorem for strongly regular graphs that provides numerical
restrictions on the number of fixed vertices and the number of vertices mapped to adjacent
vertices under an automorphism. We then used this result to develop some new techniques to
study regular partial difference sets in abelian groups. We have proved several non-existence
results and classification results of partial difference sets in abelian groups. Also we completely
answered the question “For which odd positive integer v > 1, can we find a Paley type partial
difference set in an abelian group of order v?”, a classical question from the 1990s.

In this talk I plan to give an overview of the main ideas used in our proofs and state our
main results. I will conclude the talk with some ongoing research, and ideas for future research.
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On the additivity of 2-(v, k, λ) designs

Anamari Nakić

University of Zagreb

(Joint work with Marco Buratti)

Abstract

A 2-(v, k, λ) design is additive under a commutative group G - or briefly G-additive - if its points
can be injectively labeled with elements of G in such a way that every block has weight zero
where the weight of a block is the sum of the labels of its points. In particular, it is strongly
G-additive if its block set is precisely the set of zero-weight k-subsets of the point set. This
interesting topic was introduced by Caggegi, Falcone and Pavone in [2].

One of the most challenging problems on additive designs is the construction of additive
Steiner 2-designs whose block size k is neither a prime power greater than 2 nor a prime power
plus one.

In the first part of my talk I will summarize how in [1] we have been able to solve this
problem when k is neither singly even nor of the form 2n3. Unfortunately our solution is not
very satisfactory since the corresponding values of v are huge.

In the second part I will present some new results that we are obtaining in a long-term work
still in progress:

(1) The design PGd(n, q) of points and d-dimensional subspaces of PG(n, q) is additive under
the elementary abelian group of order qn+1.

(2) If p is a prime, the design PG1(n, p) of points and lines of PG(n, p) is strongly Zv
p-additive

where v = pn+1−1
p−1 is the number of points of PG(n, p).

(3) Every cyclic 2-(v, k, λ;n) symmetric design with gcd(n, v) = 1 is Zt
p-additive for any pair

(p, t) where p is a prime dividing n and t is its order in U(Zv).
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Burning Steiner triple systems

Andrea Burgess

University of New Brunswick

(Joint work with Caleb Jones and David Pike)

Abstract

The concept of graph burning was introduced by Bonato, Janssen and Roshanbin as a model
of information spread in a social network. At each time step, an arsonist sets fire to a vertex
of a graph; simultaneously, existing fires spread to neighbouring vertices. A graph’s burning
number is the minimum number of vertices that the arsonist must set on fire so that all vertices
burn. Graph burning is a dynamic area of study, and much work is ongoing towards proving
the Burning Number Conjecture, which posits that the burning number of a graph of order n is
at most ⌈

√
n⌉.

In this talk, we extend the graph burning model to hypergraphs. We also introduce lazy
burning, in which the arsonist’s involvement is restricted to one turn where they can set fire
to any number of vertices. After discussing a few general bounds on the hypergraph burning
number, we focus on burning Steiner triple systems. Among other results, we show that for any
integer n ≥ 3, there is a Steiner triple system with lazy burning number n. Moreover, there is
an STS(v) with lazy burning number 3 for all admissible orders v.
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Extensions of Steiner Loops of Projective Type

Mario Galici

University of Palermo

(Joint work with G. Falcone, A. Figula)

Abstract

This work sheds light on the connection between Steiner triple systems and commutative loops,
and offers a classification approach using cohomology-inspired methods. Although it has been
known since 50’s of the last century ([6], [1]) that the operation a · b = c for any triple {a, b, c}
in a Steiner triple system S (together with a · a = Ω ·Ω = Ω and a ·Ω = Ω · a = a, for a further
element Ω not in S) gives in turn a commutative loop, an extension theory for Steiner triple
systems has rarely been considered.

In this work, on the one hand we deal with non-central extensions of normal subloops using
the so called Steiner operator.

On the other hand, in this framework of extension theory, we specifically focus on the case
where the normal subloop is central, resulting in a Shcreier extension. This method provides a
constructive approach to describing Steiner triple systems containing Veblen points.
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Harmonious coloring of the incidence graph of a design

Francesca Merola

Dipartimento di Matematica e Fisica, Università Roma Tre, Italy

Abstract

A harmonious coloring of a graph is a proper vertex-coloring such that every pair of colors
appears on at most one pair of adjacent vertices, and the harmonious chromatic number χH(G)
of a graph G is then the minimum number of colors needed for a harmonious coloring of G.

It is easy to note that the harmonious chromatic number of the incidence graph of a 2-
(v, k, λ)-design is bounded below by v, the number of points. I will present some examples and
constructions of designs having harmonious chromatic number of the incidence graph exactly
v, and discuss some connections between calculating this harmonious chromatic number and
nesting of designs.

This talk is based on research still very much in progress started at a recent Banff workshop,
and it is joint work with numerous authors.

Dual incidences arising from a subsets of spaces

Kristijan Tabak

Rochester Institute of Technology, Zagreb campus

Abstract

Let V be a n-dimensional vector space over Fq and H is any set of k-dimensional subspaces of
V. We construct two incidence structures Dmax(H) and Dmin(H) using subspaces from H. The
points are subspaces from H. The blocks of Dmax(H) are indexed by all hyperplanes of V , while
the blocks of Dmin(H) are indexed by all subspaces of dimension 1. We show that Dmax(H) and
Dmin(H) are dual in a sense that their incidence matrices are dependent, one can be calculated
from the other. Additionally, if H is a t − (n, k, λ)q-design we prove new matrix equations for
incidence matrices of Dmax(H) and Dmin(H).
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On the diameter and zero forcing number of some graph classes
in the Johnson, Grassmann and Hamming association scheme

Sjanne Zeijlemaker

Eindhoven University of Technology - Department of Mathematics and
Computer Science

(Joint work with Aida Abiad, Robin Simoens)

Abstract

Graph classes in the Johnson, Grassmann and Hamming association scheme have received
a considerable amount of attention over the last decades. Although several (NP-hard) graph
parameters have been investigated for these families, many remain unknown. In this talk, we es-
tablish the diameter of generalized Grassmann graphs, extending previous results for generalized
Johnson graphs. We also study the zero forcing number of generalized Johnson and Grassmann
graphs, as well as Hamming graphs. As a corollary, we obtain the known results for Kneser
graphs, Johnson graphs on 2-sets, lattice graphs and hypercubes. This is joint work with Aida
Abiad and Robin Simoens.

Distance-regular graphs with classical parameters which support

a uniform structure: case q ≤ 1
(Part 1)

Roghayeh Maleki

University of Primorska, UP FAMNIT, Koper, Slovenia

(Joint work with Blas Fernández, Štefko Miklavič, and Giusy Monzillo)

Abstract

Let G be a connected bipartite graph. Then, its adjacency matrix A can be decomposed as
A = L+R, where L = L(x) and R = R(x) are respectively the lowering and the raising matrices
with respect to a certain vertex x. The graph G has a uniform structure with respect to x if
the matrices RL2, LRL, L2R, and L satisfy a certain linear dependency.

Let Γ = (X,E) be a connected non-bipartite graph. Fix a vertex x ∈ X and let Γf = (X,Ef )
be the bipartite graph, where Ef = E \ {yz | ∂(x, y) = ∂(x, z)} and ∂ is the distance function in
Γ. The graph Γ is said to support a uniform structure whenever Γf has a uniform structure with
respect to x. Assume that Γ is a non-bipartite distance-regular graph with classical parameters
(D, q, α, β). It turns out that q is an integer different from 0 and −1.

In this talk, I will present the complete classification of non-bipartite distance-regular graphs
with classical parameters (D, q, α, β) for q ≤ 1 and D ≥ 4, that support a uniform structure.
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Distance-regular graphs with classical parameters that support a

uniform structure: case q ≥ 2
(Part 2)

Giusy Monzillo

University of Primorska - FAMNIT

(Joint work with B. Fernández, R. Maleki, and Š. Miklavič)

Abstract

With reference to the contribution of R. Maleki, this talk will illustrate whenever a 1-thin
distance-regular graph Γ with classical parameters (D, q, α, β), D ≥ 4 and q ≥ 2, supports a
uniform structure (w.r.t. a fixed vertex of Γ). By [2] and [3], in order that the latter property is
satisfied, such a graph Γ must admit exactly two (thin) irreducible T -modules with endpoint 1
(one with diameter D− 2 and the other with diameter D− 1), up to isomorphism. The analysis
which arises from this consideration shows that for α ̸= 0 there remain only two feasible infinite
families, whose respective classical parameters are(

D, q, q,
q2(qD − 1)

q − 1

)
, with D even

(
D, q, q + 1,

qD+1(q + 1)− q2 − 1

q − 1

)
, with D odd.

Concerning the case α = 0, examples are dual polar graphs, which are known to support
a uniform structure [4, Proposition 26.4(i)]. Additionally assuming that Γ is a regular near
polygon, it follows from [1, Theorem 9.4.4] that Γ is in fact a dual polar graph.
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On (non)symmetric association schemes and associated family of
graphs

Safet Penjić

Faculty of Mathematics, Natural Sciences and Information Technologies,
and

Andrej Marušič Institute, University of Primorska

(Joint work with Giusy Monzillo)

Abstract

Let M denote the Bose-Mesner algebra of a commutative d-class association scheme X that does
not need to be symmetric. In this talk, we consider the following question: what combinatorial
structure does (un)directed graph need to have so that its adjacency matrix will generate the
Bose-Mesner algebra of a commutative d-class association scheme X?
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Balanced designs related to projective planes

Hadi Kharaghani

University of Lethbridge

(Joint work with Sho Suda)

Abstract

A link between projective planes and balancedly splittable partial Hadamard matrices will be
introduced. The applications include the existence of splittable balanced incomplete designs,
maximal equiangular lines and Hadamard matrices with large or maximal excess.

Relations on nets and MOLS

Ian Wanless

Monash University - School of Mathematics

(Joint work with Michael Gill)

Abstract

A k-net is a geometry equivalent to (k− 2) Mutually Orthogonal Latin Squares (MOLS). A
relation is a linear dependence in the point-line incidence matrix of the net. In 2014 Dukes and
Howard showed that any 6-net of order 10 satisfies at least two non-trivial relations. This opens
up a possibile avenue towards showing the non-existence of 4 MOLS of order 10. We generated
all 4-nets of order 10 that satisfy a non-trivial relation and also ruled out one type of relation
on 5-nets. I will discuss these computations, as well as some of the theory of relations on nets
more generally.
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The Hadamard quasigroup product of orthogonal Latin squares

Raúl M. Falcón

Universidad de Sevilla - Department of Applied Mathematics I

(Joint work with V. Álvarez, J.A. Armario, M.D. Frau, F. Gudiel, M.B. Güemes and L. Mella.)

Abstract

Let A(n) and L(n) denote, respectively, the set of n×n arrays, and the set of Latin squares of
order n, all of them with entries in the set [n] := {1, . . . , n}. Let A,B ∈ A(n) and L ∈ L(n). As
a natural generalization of the classical Hadamard product, the Hadamard quasigroup product
A⊙L B ∈ A(n) has recently been introduced [1] so that

(A⊙L B) [i, j] := L [A[i, j], B[i, j]] , for all i, j ∈ [n]. (3)

Let OL(n) denote the set of pairs of orthogonal Latin squares in L(n). In this talk, we are
interested in studying under which conditions L1 ⊙L3 L2 ∈ L(n), for (L1, L2) ∈ OL(n) and
L3 ∈ L(n). It requires the existence of an involution

φ : OL(n) → OL(n)

(L1, L2) → (φρ
L2
(L1), φ

ℓ
L1
(L2))

where

{
φρ
L2
(L1) [L1[i, j], L2[i, j]] := i,

φℓ
L1
(L2) [L1[i, j], L2[i, j]] := j.

, for all i, j ∈ [n].

Theorem 1. The following statements hold.

a) L1 ⊙L3 L2 ∈ L(n) if and only if φρ
L2
(L1), φ

ℓ
L1
(L2) and L3 are MOLS.

b) L1, L2 and L3 are MOLS if and only if φρ
L2
(L1), φ

ℓ
L1
(L2) and φρ

L2
(L1) ⊙L3 φ

ℓ
L1
(L2) are

MOLS.

Based on this theorem, we describe illustrative examples showing how the involution φ
establishes a new way to connect distinct species of sets of three MOLS.
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Meet my favorite net

Marco Buratti

Sapienza University of Rome

(Joint work with Anita Pasotti)

Abstract

A (r, n)-net is a partial linear space with n2 points and rn lines, each of size n, arranged into
r parallel classes. Speaking of a Heffter (r, n)-net over a group G, we mean a (r, n)-net whose
points form a half-set of G and whose lines are all zero-sum in G. This terminology is justified
by the fact that a Heffter (2, n)-net over Z2n2+1 is essentially the same as what is called a Heffter
array H(n, n) in the literature.

Constructing Heffter (r, n)-nets with r > 2 seems to be difficult and even a great challenge
for r > 3. After much effort we have been able to get Heffter (3, n)-nets for infinitely many
values of n by means of recursive constructions and some “magic” tools. On the other hand,
until recently, we did not even have an example of a Heffter net with 4 parallel classes. So it
was a plot twist when we came across one with 9 parallel classes. It is a Heffter (9, 11)-net over
Z5
3. In this talk I will retrace the path that led us to this amazing net.

Existence of small ordered orthogonal arrays

Charlene Weiß

Paderborn University - Department of Mathematics

(Joint work with Kai-Uwe Schmidt)

Abstract

Ordered orthogonal arrays generalize orthogonal arrays and have numerous applications, in
particular in coding theory, cryptography, and numerical integration via their connection to
(t,m, s)-nets. The main question is the existence of ordered orthogonal arrays having as few
rows as possible. A lower bound on the minimum number of rows in an ordered orthogonal
array is given by the famous Rao bound for orthogonal arrays. We show that there exist ordered
orthogonal arrays, whose sizes deviate from this Rao bound by a factor that is polynomial in
the parameters of the ordered orthogonal array. The proof is nonconstructive and based on a
probabilistic method due to Kuperberg, Lovett, and Peled.
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Erdős-Ko-Rado theorems for finite general linear groups

Alena Ernst

Paderborn University - Department of Mathematics

(Joint work with Kai-Uwe Schmidt)

Abstract

We call a subset Y of the finite general linear group GL(n, q) t-intersecting if rk(x−y) ≤ n−t
for all x, y ∈ Y . In this talk we give upper bounds on the size of t-intersecting sets and
characterise the extremal cases that attain the bound. This is a q-analog of the corresponding
result for the symmetric group, which was conjectured by Deza and Frankl in 1977 and proved
by Ellis, Friedgut, and Pilpel in 2011. The results are obtained by using eigenvalue techniques
and the theory of association schemes plays a crucial role.

An Erdős-Ko-Rado theorem for transitive groups of degree a
product of two odd primes

Sarobidy Razafimahatratra

University of Primorska - FAMNIT

(Joint work with Angelot Behajaina, Roghayeh Maleki and Karen Meagher)

Abstract

Given a finite transitive group G ≤ Sym(Ω), a set F ⊂ G is intersecting if for any g, h ∈ G,
there exists ω ∈ Ω such that ωg = ωh. The intersection density ρ(G) is the maximum ratio of
|F|
|Gω | , where F runs through all intersecting sets of G and Gω is the stabilizer of ω ∈ Ω in G.

In [1], it was conjectured that any transitive group of degree a product of two distinct odd
primes p > q has intersection density equal to 1. This was disproved by Marušič et al. in [2] by
constructing an imprimitive group of degree pq with a block system consisting of blocks of size
q, and whose intersection density is q.

In this talk, I will present some recent results ([3, 4]) on the intersection density of transitive
groups of degree a product of two distinct odd primes p > q. In particular, I will focus on
primitive groups and imprimitive groups with a unique block system, whose blocks have size q.
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Violator Spaces and Greedoids

Yulia Kempner

Holon Institute of Technology

(Joint work with Vadim E. Levit)

Abstract

The primary objective of this presentation is to establish connections between two prominent,
yet earlier independently developed theories: the theory of violator spaces and the theory of
greedoids.

Violator spaces, initially proposed by Matoušek et al. [1] in 2008, serve as a generalization of
linear programming problems. Originally, violator spaces were defined for the set of constraints
denoted as H, where each subset A ⊆ H corresponds to a set V (A) consisting of all constraints
violating by A.

For example, a violator space naturally emerges when determining the smallest enclosing
ball of a finite set of points in Rd. In this context, the set H represents a collection of points
in Rd, and the violated constraints of a given subset of points A are precisely the points lying
outside the smallest enclosing ball of A. If we consider the points situated within the enclosing
ball, we obtain a weakened version of a closure operator.

In our investigation, we explore the interrelations between violator spaces and closure spaces
and demonstrate that the family of closure spaces can be regarded as a sub-family of violator
spaces [2].

Greedoids, introduced by Korte and Lovász [3] in 1981, aim to characterize combinatorial
structures wherein greedy algorithms yield optimal solutions. In our study, we establish that
the family of greedoids also falls within the realm of violator spaces.
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Construction of Galois LCD MDS Codes

Habibul Islam

School of Computer Science, University of St Gallen, Switzerland

(Joint work with Anna-Lena Horlemann)

Abstract

For a prime q, let Fqm be the field of qm elements. For 0 ≤ e ≤ m − 1, the e-Galois inner
product (which generalizes both Euclidean and the Hermitian product) was introduced in 2017
as

⟨u,v⟩e :=
n∑

i=1

uiv
qe

i

for u,v ∈ Fn
qm . Accordingly, the e-Galois dual of C ⊆ Fn

qm is defined as

C⊥e := {v ∈ Fn
qm | ⟨u,v⟩e = 0 for all u ∈ C}.

A linear code C of length n is said to be linear complementary dual (shortly, LCD) if C ∩C⊥e =
{0}. Exploring new LCD MDS (maximum distance separable) codes has been an important task
due to their efficient applications in cryptography [1] and quantum codes [5]. The constructions
of Euclidean and Hermitian LCD codes are explicitly known by [2]. In this article, we explicitly
construct three new classes of e-Galois LCD MDS codes which have not been discovered so far.
We consider Generalized Reed-Solomon (GRS) codes and obtain two classes of e-Galois LCD
codes, first of length n = qs where 1 ≤ s ≤ m, and second of length n ≤ qm with dimension
k = qm−n, respectively. Further, by using Extended GRS codes, we also explore e-Galois LCD
codes of length qm + 1.

We remark that the authors of [3] investigated σ-LCD codes where the map σ defines a
more general product called σ-inner product. In particular, they proved that a linear code [n, k]
is equivalent to a σ-LCD code. However, σ can never be the e-Galois product, except in the
trivial Euclidean case. Therefore, our obtained codes are not covered by [3]. Furthermore, our
constructions are comparatively explicit and compact.
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Applications of finite geometries

Leo Storme

Ghent University

Abstract

Within finite geometries, a great variety of substructures are investigated. A lot of these sub-
structures are investigated because of their geometrical importance, but, often, these substruc-
tures are of great relevance for problems in other research domains.

Classical examples include many links with coding theory: linear MDS codes and arcs, linear
codes meeting the Griesmer bound and minihypers, . . ., [1].

But there are also links with graph theory, algebraic combinatorics, cryptography, Latin
squares and Sudoku’s, and even logic [2].

The nice fact is that the number of links with other research domains keeps increasing. A
recent example are the links of finite geometries with subspace codes and random network coding
[1].

This talk will present a number of links of substructures of finite geometries to other research
domains.
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A geometrical picture: semifields and non-singular sublines.

Stefano Lia

University College Dublin- Department of Mathematics and Statistics

(Joint work with John Sheekey)

Abstract

Building on the representation of three-fold tensors as points of PG(3, q2), we exploit a
geometrical framework allowing us to provide an interesting geometrical interpretation of the
non-singularity of tensors. As a consequence, constructions of new quasi-hermitian surfaces,
classifications of non-singular four-fold tensors, and new results on semifields (incorporating a
new geometrical proof of a classical result) are obtained.
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On the minimum size of linear sets

Sam Adriaensen

Vrije Universiteit Brussel - Department of Mathematics and Data Science

(Joint work with Paolo Santonastaso)

Abstract

A linear set in the projective space PG(d, q) is a set of points which is not (necessarily) a
subspace, but does arise from a subspace of Fd+1

q over a subfield of Fq. Linear sets have gained
interest in recent years due to their connection with many combinatorial objects such as blocking
sets, KM-arcs, and rank-metric codes. De Beule and Van de Voorde [2] gave a tight lower bound
on the size of a linear set in PG(1, q), and generalised this to a bound on the size of a linear
set in higher dimensions, intersecting some hyperplane in a subgeometry. We generalise this to
a lower bound on the size of a linear set meeting some subspace (not necessarily a hyperplane)
in a subgeometry. We also discuss some constructions of linear sets attaining equality in this
bound. This talk is based on [1].
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Projective Two-Weight Sets

Stefaan De Winter

The National Science Foundation

Abstract

In this talk we will describe the construction of a class of projective two-weight sets in
PG(3n− 1, q), n > 1, that yield strongly regular graphs with the same parameters as those that
arise from maximal arcs in PG(2, qn). Our construction works for both even and odd q and is
of particular interest when q is odd as it is known that in that case no maximal arcs exist in
PG(2, qn).
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Trade-Based LDPC Codes

Daniel Panario

Carleton University - School of Mathematics and Statistics

(Joint work with F. Amirzade and M.-R. Sadeghi)

Abstract

We provide [1] a novel approach to construct the parity-check matrix of an LDPC (Low-Density
Parity-Check) code based on trades obtained from block designs. We call these codes trade-
based LDPC codes. Using properties of cyclical trades, we consider the graphical structures of
the Tanner graph of these codes such as short cycles, girth, as well as trapping sets. These are
key factors when determining the minimum distance of these codes.

It is known [2] that the minimum distance of single-edge protograph-based LDPC codes, such
as single-edge Quasi-cyclic LDPC (QC-LDPC) codes whose parity-check matrices have column
weight m, is upper bounded by (m + 1)!. One of the merits of trade-based LDPC codes over
some different types of LDPC codes is that the minimum distances of the trade-based LDPC
codes exceed the mentioned upper bound limit for single-edge LDPC codes.

Multi-edge QC-LDPC codes have potentially larger minimum distances than single-edge
QC-LDPC codes [3]. However, studying features of their Tanner graph is harder than for single-
edge QC-LDPC codes. Using the parity-check matrix of trade-based LDPC codes, we present
a method to define base matrices of multi-edge QC-LDPC codes. The construction of exponent
matrices corresponding to these base matrices has less complexity than the proposed in the
literature. We prove that these base matrices result in QC-LDPC codes with smaller lower
bounds on the lifting degree than existing ones.
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Motzkin Numbers and Flag Codes

Clementa Alonso-González

University of Alicante

(Joint work with Miguel Ángel Navarro-Pérez)

Abstract

Motzkin numbers were introduced by T. Motzkin in [4] to count the number of ways of
connecting n points on a circle by non-intersecting chords. Since then, the integer sequence
of Motzkin numbers and other related sequences, have been widely studied since they count
many different combinatorial objects (see [3]). In this talk we present a new appearance of this
sequence in the coding theory context, more precisely, in the study of flag codes. A full flag is a
sequence of nested Fq-subspaces of dimensions (1, . . . , n− 1) of a vector space Fn

q and a full flag
code is a nonempty subset of full flags. The flag distance is defined as the sum of the respective
subspace distances and it can be described by distance vectors (see [2]). Each distance vector
represents a different way of attaining a possible value of the flag distance. In [1], we show that
the n-th Motzkin number counts the number of different distance vectors corresponding to full
flags on Fn

q . We also identify the integer sequence giving the number of possible distance vectors
associated with a specific value of the flag distance and other related sequences that can be read
in the context of full flag codes.

Bibliography
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Refined Enumeration of the Catalan Family of Alternating Sign
Matrices

Ivica Martinjak

University of Zagreb, Zagreb, Croatia

(Joint work with Ana Mimica)

Abstract

Alternating sign matrices are matrices whose non-zero elements alternate in sign, and that
sum to 1 per each row and column. In this paper, we extend the notion of permutation pattern
to these matrices. We study a family of alternating sign matrices with permutation pattern
avoidance and a constraint on relative positions of 1s among neighboring rows. Refined enumer-
ations of these matrices with respect to the special element and with respect to position of 1s in
the first row are provided. We also introduce further families of these matrices, that generalize
permutation matrices.
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Fourth Moment of Random Determinant

Dominik Beck

Charles University in Prague - Mathematical institute/Faculty of
Mathematics and Physics

Abstract

Let Xij be independent and identically distributed random variables, from which we construct
matrices A = (Xij)n×n and U = (Xij)n×p. We denote moments of their entries Xij as mr =
EXr

ij and their central moments as µr = E (Xij − m1)
r. Is there a way how we can express

the even moments of determinants detA and (detU⊤U)1/2 in an exact form? That is, the
objective is to find fk(n) = E (detA)k and fk(n, p) = E (detU⊤U)k/2 as a function of mr (or
µr). Equivalently, one could first try to find the generating functions Fk(t) =

∑∞
n=0

tn

(n!)2
fk(n)

and Fk(t, ω) =
∑∞

n=0

∑n
p=0

(n−p)!
n!p! tpωn−pfk(n, p).

The exact expression for F2(t) can be easily derived using recurrences for any distribution
of Xij . For higher moments, it is not that simple. In the case of fourth moment, Nyquist, Rice
and Riordan found the expression for F4(t) when m1 = 0. Later, Dembo [2] derived F4(t, ω)
when m1 = 0. The general case for both F4(t) and F4(t, ω) when m1 ̸= 0 remained unsolved.
However, as shown in recent arXiv preprint [1], we obtained

F4(t) =
et(µ4−3µ22)

(1−µ2
2t)

5

(
1 +

∑6
k=1 pkt

k
)

and

F4(t, ω)=
et(µ4−3µ2

2)

(1−µ2
2t)4(1−ω−µ2

2t)

(
1+

∑6
k=1 pkt

k+
ωm2

1

1−ω−µ2
2t

∑4
k=1 p̃kt

k+
2ω2m4

1µ
2
2t

2

(1−ω−µ2
2t)2

)
,

where pk and p̃k are constants depending on m1 and µr as polynomials of low order (see [1]
for their exact definition). From those generating functions, one can easily deduce the moments
f4(n) and f4(n, p) via Taylor expansion.
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On eigenvalue bounds for the independence and chromatic
number of graph powers and its applications

Aida Abiad

Eindhoven University of Technology, UGent and VUB

Abstract

In this talk I will present several eigenvalue bounds on the independence number and the distance
chromatic number of graph powers. We will see how to use polynomials and mixed-integer linear
programming in order to optimize such bounds. Infinite families of graphs for which the new
bounds are tight will be shown, and also some applications to quantum information theory and
coding theory will be discussed.
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Sum-rank-metric graphs and eigenvalue bounds for network
coding

Antonina P. Khramova

Eindhoven University of Technology - Department of Mathematics and
Computer Science

(Joint work with Aida Abiad and Alberto Ravagnani)

Abstract

This talk focuses on the properties of sum-rank-metric graphs, which we introduce and study
in connection with a problem in coding theory.

The vertices of a sum-rank-metric graph are t-tuples of matricesX = (X1, . . . , Xt) of possibly
different sizes with entries from a finite field. Matrix tuples X and Y are adjacent if their sum-
rank distance, defined as the number

∑t
i=1 rank(Xi − Yi), is equal to 1. It is known that the

geodesic distance of this graph coincides with the sum-rank distance of matrix tuples. The latter
plays a crucial role in measuring the correction capability of codes in the context of multi-shot
network coding.

We establish combinatorial properties of sum-rank-metric graphs. We also show several new
eigenvalue bounds on the cardinality of a sum-rank-metric code and we illustrate, both with
sporadic examples and infinite families, that our eigenvalue bounds are sharp in some instances
and outperform the best bounds currently available.

Rank 3 graphs and the Delsarte and Hoffman bounds

Jesse Lansdown

University of Canterbury - School of Mathematics and Statistics

(Joint work with John Bamberg, Michael Giudici and Gordon F. Royle)

Abstract

A graph is a rank 3 graph if its automorphism group has precisely one orbit on edges and pre-
cisely one orbit on non-edges. A classification of the rank 3 graphs follows from the classification
of the rank 3 groups (groups with precisely 3 orbits on ordered pairs).

Rank 3 graphs are strongly regular and so the size of cliques and cocliques are bounded in
terms of the graph’s eigenvalues via the Delsarte and Hoffman bounds. Motivated by problems
in the synchronisation hierarchy of permutation groups [1] we classify the rank 3 graphs which
fail to meet at least one of the Delsarte or Hoffman bounds [2], up to some notoriously difficult
cases.
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On strongly regular graphs decomposable into a divisible design
graph and a coclique

Alexander Gavrilyuk

Shimane University

(Joint work with Vladislav Kabanov)

Abstract

We will discuss a generalization of the construction of strongly regular graphs, presented in
[1]. It starts with a divisible design graph (which can be obtained from a variation of the Wallis
– Fon-Der-Flaass prolific construction [2]) and extends it to a strongly regular graph by adding
a coclique whose size is to satisfy the Hoffman-Delsarte bound.

Bibliography

[1] V.V. Kabanov. A new construction of strongly regular graphs with parameters of the com-
plement symplectic graph, Electron. J. Comb., 30(1), 2023.

[2] V.V. Kabanov. New versions of the Wallis – Fon-Der-Flaass construction to create divisible
design graphs, Discrete Math., 345:113054, 2022.

Block-colourings of star systems

Robert Bailey

Memorial University – Grenfell Campus

(Joint work with Iren Darijani)

Abstract

An e-star system of order n is a decomposition of a complete graph Kn into copies of a
complete bipartite graph K1,e. Necessary and sufficient conditions for the existence of e-star
systems were obtained in the 1970s by Yamamoto et al., and for resolvable e-star systems in
the 1990s by Yu. In the case where an e-star system exists but a resolvable system does not,
it is natural to ask for the chromatic index, i.e. the minimum number of colours required to
colour the blocks, of such a design. In this talk, we will give constructive upper bounds on the
chromatic index of e-star systems when n ≡ 0, 1 mod 2e, for arbitrary e ≥ 3, and in all cases for
e = 3.
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Cover-free families on hypergraphs

Lucia Moura

University of Ottawa

(Joint work with Thais Bardini Idalino)

Abstract

Cover-free families are widely studied combinatorial objects used in combinatorial group
testing and in applications in cryptography and communications [3]. A d-CFF(t, n) is a t × n
incidence matrix of a set system where no set is contained in the union of up to d other sets.
Cover-free families are used for solving the non-adaptive group testing problem: find a set of
up to d defective items among n items by testing them in pre-specified groups. A negative
test indicates that all items in the group are non-defective, while a positive test shows that the
group contains some defective items; the objective is to minimize the number t of tests while
identifying all defective items.

In this talk, we consider cover-free families on hypergraphs, which are generalizations of
cover-free families where possible sets of defective items are specified by the edges of a hy-
pergraph. Various authors have recently considered this type of generalization in group test-
ing [1, 2, 4]. We focus on constructions of cover-free families on hypergraphs and ongoing
research initiated in [2].
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Another generalization for measure of fault tolerance in
hypercubes

Amruta Shinde

Department of Mathematics, Savitribai Phule Pune University, Pune 411 007,
India.

(Joint work with Uday Jagadale)

Abstract

Interconnection networks can be modeled by a connected graph with each processor in the
network represented by a vertex, while the communication link between any two processors is
represented by an edge. Hypercube is one of the most popular interconnection networks for
parallel and distributed computing systems. We introduce a new measure for fault tolerance of
graphs which combines conditional [2], component [1, 4] and structure [3] connectivities. Let G
be a connected graph and r ≥ 2, h ≥ 0 be integers. Let S be a set of connected subgraphs of G
such that every member of S is isomorphic to a connected subgraph H of G. Then S is called an
h-conditional r-component H-structure cut of G, if there are at least r connected components in
G− V (S) and each component has minimum degree at least h. The h-conditional r-component
H-structure connectivity of G is the minimum |S| overall h-conditional r-componentH-structure
cut of G. In this paper, we investigate the h-conditional r-component H-structure connectivity
of hypercube Qn for H ∈ {Qm : m < n}.
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Reconfiguration for Dominating Sets

Nancy E. Clarke

Acadia University

(Joint work with Kira Adaricheva, Heather Smith Blake, Chassidy Bozeman, Ruth Haas,
Margaret-Ellen Messinger, and Karen Seyffarth)

Abstract

The dominating graph of a graph G has as its vertices all dominating sets of G, with two
vertices adjacent if the corresponding dominating sets differ by the addition or deletion of a
single vertex of G. We are interested in the properties of such graphs. In particular, we show
that the dominating graph of any tree has a Hamilton path and that the dominating graph of
a cycle on n vertices has a Hamilton path if and only if n is not a multiple of 4.

A relation between vertex and edge orbits in nut graphs

Nino Bašić

University of Primorska and Institute of Mathematics, Physics and Mechanics,
Slovenia

(Joint work with Patrick W. Fowler and Tomaž Pisanski)

Abstract

A nut graph has a single non-trivial kernel eigenvector and that vector contains no zero
entries. If the isolated vertex is excluded as trivial, nut graphs have seven or more vertices; they
are all connected, non-bipartite, and have no leaves. A nut graph may be vertex transitive; there
are known examples of circulant nut graphs, Cayley nut graphs, and also non-Cayley vertex-
transitive nut graphs. We will show that no nut graph can be edge transitive. Furthermore,
a nut graph always has strictly more edge orbits than vertex orbits. We also construct several
families of nut graphs with a low number of vertex orbits and edge orbits as regular coverings
over certain voltage graphs (using non-cyclic groups).
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A survey of complex generalized weighing matrices, and a
construction of quantum error-correcting codes

Ronan Egan

Dublin City University - School of Mathematical Sciences

Abstract

Let Uk denote the set of all complex kth roots of unity. An n × n matrix W with entries
in Uk ∪ {0} is a complex generalized weighing matrix of weight w if WW ∗ = wIn, where W ∗

denotes the complex conjugate transpose of W , and In denotes the n× n identity matrix. The
set of all such matrices is denoted by CGW(n,w; k). Subsets of CGW(n,w; k) include weighing
matrices (k = 2), Butson Hadamard matrices (w = n), and real Hadamard matrices (both
k = 2 and w = n). These subsets have each received a large amount of attention due to their
many applications and the interesting problems they present, but complex generalized weighing
matrices in full generality have attracted comparatively little scrutiny.

This talk will be in two parts. First we will summarize a survey of the topic of complex
generalized weighing matrices. We will discuss some of the known existence conditions, due
mostly to de Launey [2], and constructions due mostly to Berman [1] and Seberry and Whiteman
[3], that do not apply to any of these special subsets. Then to motivate this, we will demonstrate
how complex generalized weighing matrices with appropriate parameters can be used to build
Hermitian self-orthogonal codes over finite fields of square order, which can in turn be used to
construct quantum error-correcting codes. Some early results of this type will be presented.
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Partial permutation decoding for Zps-linear generalized
Hadamard codes 1

Adrián Torres-Mart́ın

Universitat Autònoma de Barcelona

(Joint work with Josep Rifà and Mercè Villanueva)

Abstract

A code C over Zp of length n is a nonempty subset of Zn
p , with p prime. A nonempty subset

C ⊆ Zn
ps is a Zps-additive code of length n if it is a subgroup of Zn

ps . Let ϕ : Zps −→ Zps−1

p

be the generalization of the usual Gray map, given in [2], and Φ its component-wise extension.
We say that C = Φ(C) is a Zps-linear code of length nps−1. A Zps-additive code C such that
C = Φ(C) is a generalized Hadamard (GH) code is called a Zps-additive GH code and C = Φ(C)
is called a Zps-linear GH code. Recall that a GH code over Zp of length N has pN codewords
and minimum distance (p− 1)N/p.

In [3], it was shown that Zps-linear codes are systematic, by giving a systematic encoding.
This makes Zps-linear codes suitable to apply the permutation decoding method. A partial
permutation decoding can be executed if r-PD-sets, which are subsets of the permutation auto-
morphism group of the code, are provided. We describe the permutation automorphism group
of Zps-linear GH codes and show how to construct r-PD-sets of minimum size r + 1, for all
r up to an upper bound. A generalization of previous results [1] suitable for some families of
Z4-linear Hadamard codes is provided, as well as new constructions that increase the value of r
for a general class of Z8-linear GH codes.
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s-PD-sets for codes from projective planes PG(2, 2h), 5 ≤ h ≤ 9

Nina Mostarac

University of Rijeka - Faculty of Mathematics

(Joint work with Dean Crnković, Bernardo G. Rodrigues and Leo Storme)

Abstract

In this talk we will describe constructions of s-PD-sets for codes from certain projective
planes, for s = 2 and s = 3. A construction of 2-PD-sets of 16 elements for codes from the
Desarguesian projective planes PG(2, q), where q = 2h and 5 ≤ h ≤ 9, will be given. We will
also describe a construction of 3-PD-sets of 75 elements for the code from the Desarguesian
projective plane PG(2, q), where q = 29. These 2-PD-sets and 3-PD-sets can be used for partial
permutation decoding of codes obtained from the Desarguesian projective planes.
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Cyclic self-orthogonal Z2k-codes constructed from generalized
Boolean functions

Sara Ban

University of Rijeka - Faculty of Mathematics

(Joint work with Sanja Rukavina)

Abstract

A Boolean function on n variables is a mapping f : Fn
2 → F2. A bent function is a Boolean

function f such that Wf (v) =
∑

x∈Fn
2
(−1)f(x)+⟨v,x⟩ = ±2

n
2 , for every v ∈ Fn

2 . A generalized
Boolean function on n variables is a mapping f : Fn

2 → Z2h .
The subject of this talk is a construction of cyclic self-orthogonal codes over Z2k from gen-

eralized Boolean functions.
We give three constructions of cyclic self-orthogonal codes over Z2k , for k ≥ 3. In the first

construction we start from a generalized Boolean function determined by three Boolean functions
on n variables to obtain a self-orthogonal Z2k -code of length 2n+2 with all Euclidean weights
divisible by 2k+1, for 3 ≤ k ≤ n. In the second and the third construction, for every k ≥ 3, we
generate a self-orthogonal Z2k -code of length 2n+1 with all Euclidean weights divisible by 22k−1,
starting from a pair of bent functions on n variables.
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Some new extremal Z4-codes of lengths 32 and 40

Matteo Mravić

University of Rijeka-Faculty of Mathematics

(Joint work with Sanja Rukavina)

Abstract

A Z4-code of length n is a Z4-submodule of the Z4-module Zn
4 . The dual code of a Z4-code is

defined as its orthogonal complement with respect to the usual inner product on the module Zn
4 .

A Z4-code is self-dual if it is equal to its dual code. For x ∈ Zn
4 , Euclidean weight of x is defined

as wtE (x) = n1 (x)+4n2 (x)+n3 (x), where ni (x) denotes the number of coordinates in x equal
to i, for i = 1, 2, 3. A self-dual Z4-code can have codewords of Euclidean weight divisible by 4 or
8. If all codewords have Euclidean weight divisible by 8, then it is a Type II code. It is known
that such codes can only exist for lengths divisible by 8. If the self-dual Z4-code is not a Type II
code, it is a Type I code. The minimum Euclidean weight of Type II codes is at most 8

⌊
n
24

⌋
+8.

The same bound holds for Type I codes of length n ̸≡ 23 (mod 4). If minimum Euclidean weight
of a self-dual Z4-code is equal to that bound, it is an extremal Z4-code. All self-dual Z4-codes
are classified up to length 20. Also, extremal Z4-codes of length 24 are classified. Therefore,
length 32 is the smallest length for which new extremal Type II codes can be found.

In this talk, we present some new extremal Z4-codes of lengths 32 and 40. To construct these
codes we developed a search method based on random neighborhood search. With this method,
we constructed at least 182 new Type II extremal codes of length 32 and at least 762 new Type
I codes of the same length. Also, we constructed at least 40 new Type II Z4-codes and at least
4144 Type I extremal codes of length 40.
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Ternary self-dual codes, Hadamard matrices and related designs

Vladimir D. Tonchev

Michigan Technological University, Houghton, USA

(Joint work with Sanja Rukavina, University of Rijeka, Croatia)

Abstract

Extremal ternary self-dual codes are known for the following lengths n ≡ 0 (mod 12): n =
12: the extended Golay code; n = 24: the extended quadratic-residue code [1] and the Pless
symmetry code C(11) [5], [6]; n = 36: the Pless symmetry code C(17) [5], [6]; n = 48: the
extended quadratic-residue code and the Pless symmetry code C(23); n = 60: the extended
quadratic-residue code, the Pless symmetry code C(29), and the Nebe-Villar code [4]. According
to the Assmus-Mattson theorem [1] every extremal ternary self-dual code of length divisible by
12 supports combinatorial 5-designs.

The Pless symmetry code C(q) of length n = 2q+2, where q ≡ −1 (mod 3) is an odd prime
power, contains a set of n codewords of weight n, which after replacing every entry equal to 2
with −1 form the rows of a Hadamard matrix equivalent to the Paley-Hadamard matrix of type
II [6]. In particular, the Pless symmetry code C(17) contains the rows of a Hadamard matrix
P of Paley type II, having a full automorphism group of order 4 · 17(172 − 1) = 19584, and
the rows of P span the code C(17). It was shown in [8] that the code C(17) contains a second
equivalence class of Hadamard matrices equivalent to a regular Hadamard matrix H ′ such that
the symmetric 2-(36, 15, 6) design D has a trivial full automorphism group, and the row span of
the incidence matrix of D over GF (3) is a code equivalent to the Pless symmetry code C(17).

Huffman [3] proved that any extremal ternary self-dual code of length 36 that admits an
automorphism of prime order p > 3 is monomially equivalent to the Pless symmetry code. More
recently, Eisenbarth and Nebe [2] extended Huffman’s result by proving that the Pless symmetry
code is the unique (up to monomial equivalence) ternary extremal self-dual code of length 36
that admits an automorphism of order 3. In addition, it was proved in [2, Theorem 5.1] that
if C is an extremal ternary self-dual code of length 36 then either C is equivalent to the Pless
symmetry code or the full automorphism group of C is a subgroup of the cyclic group of order
8.

In this talk, we report on the existence of a regular Hadamard matrixH∗ which is monomially
equivalent to the Paley-Hadamard matrix of type II such that the symmetric 2-(36, 15, 6) design
associated with H∗ has a full automorphism group of order 24 and its (0,1)-incidence matrix
spans a code equivalent to C(17) [7]. Motivated by this and the results from [2], we classified
all symmetric 2-(36, 15, 6) designs that admit an automorphism of order 2 and their incidence
matrices span an extremal ternary self-dual code of length 36 [7]. The results of this classification
show that up to isomorphism, there exists exactly one symmetric 2-(36, 15, 6) design D with an
automorphism of order 2 that spans an extremal ternary self-dual code of length 36. The regular
Hadamard matrix associated with D is equivalent to the Paley-Hadamard matrix of type II, and
the ternary code spanned by the incidence matrix of D is equivalent to the Pless symmetry code.
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On two-weight codes invariant under the 3-fold covers of the
Mathieu groups M22 and Aut(M22)

Bernardo Rodrigues

Department of Mathematics and Applied Mathematics
University of Pretoria, South Africa

Abstract

By a group representation theoretic approach, in [1] we construct quaternary [693, 6, 480]4,
[1386, 6, 1008]4 and [2016, 6, 1488]4 codes, and binary projective codes with parameters [693, 12, 320]2,
[1386, 12, 672]2, [2016, 12, 992]2 as examples of two-weight codes on which a finite almost qua-
sisimple group of sporadic type acts transitively as permutation groups of automorphisms. In
particular, we show that these codes are invariant under the 3-fold covers 3̂M22 and 3̂M22:2,
respectively, of the Mathieu groups M22 and M22:2. Using a known construction of strongly
regular graphs from projective two-weight codes we obtain from the binary projective two-
weight codes with parameters those given above, the strongly regular graphs with parameters
(4096, 693, 152, 110), (4096, 1386, 482, 462), and (4096, 2016, 992, 992), respectively. The latter
graph can be viewed as a 2-(4096, 2016, 992)-symmetric design with the symmetric difference
property whose residual and derived designs with respect to a block give rise to binary self-
complementary codes meeting the Grey-Rankin bound with equality.
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Genetic algorithms in constructions of block designs and SRGs

Tin Zrinski

University of Rijeka

(Joint work with Dean Crnković)

Abstract

Construction of block designs with certain admissible parameters is often attempted for a
particular set of parameters with the assumption of some additional constraints on the design
structure in order to make the search computationally feasible. A natural constraint is the
assumption that a given group of automorphisms acts on the design. One of the methods
for constructing block designs with a prescribed automorphism group is the method that uses
so called orbit matrices. It consists of two steps: construction of orbit matrices for the given
automorphism group and construction of block designs for the orbit matrices obtained in this way
(this step is called ”indexing of orbit matrices”). Indexing is usually performed by exhaustive
search. However, sometimes exhaustive search is not feasible because there are too many cases to
check. Similarly, strongly regular graphs with certain admissible parameters can be constructed
using orbit matrices for the prescribed automorphism group.

Genetic algorithms are search methods used in computing whose objective is to find exact or
approximate solutions to optimization and search problems. A genetic algorithm mimics natural
evolution, that is, it is based on optimizing a population (a subset of the entire search space).

In this talk, we will describe the use of a genetic algorithm in the step of indexing of orbit
matrices for the construction of block designs and strongly regular graphs with a prescribed
automorphism group.
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Codes from quasi-symmetric designs

Ana Šumberac

University of Rijeka - Faculty of Mathematics

(Joint work with Dean Crnković, Doris Dumičić Danilović, Andrea Švob)

Abstract

Let D = (P,B, I) be a t-(v, k, λ) design. For 0 ≤ s < k, s is called an intersection number
of D if there exists x, x′ ∈ B such that |x∩x′| = s. A t-design is called quasi-symmetric if it has
exactly two block intersection numbers x and y, x < y. In this talk, we give a construction of
doubly even self-orthogonal codes from quasi-symmetric designs.

Block designs from self-dual codes obtained from Paley designs
and Paley graphs

Ana Grbac

University of Rijeka, Faculty of Mathematics, Rijeka, Croatia

(Joint work with Dean Crnković and Andrea Švob)

Abstract

In 2002, P. Gaborit introduced two constructions of self-dual codes using quadratic residues,
so called pure and bordered construction, as a generalization of the Pless symmetry codes. In
this talk, we give conditions under which the pure and the bordered construction using Paley
designs and Paley graphs give self-dual codes. Special focus is on the binary and ternary codes.
Further, we present t-designs from supports of the codewords of a particular weight in the binary
and ternary codes obtained.
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Patrick Solé, A notion of bent sequences based on Hadamard matrices 24
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